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Abstract — The capacity of a Gaussian vector
channel remains the same if the input and the
output are interchanged. This duality relation,
when generalized to multiuser channels, has been
instrumental in a recent characterization of the
Gaussian vector broadcast channel sum capacity.
This paper examines the uplink-downlink duality
from a convex optimization viewpoint. The main
result is a new and simple derivation of uplink-
downlink duality as a special case of a duality be-
tween two minimax optimization problems. The
new derivation generalizes the previous solution
for Gaussian vector broadcast channels under a
power constraint to channels with linear covari-
ance input constraints. It also illustrates that the
minimax representation of the broadcast channel
sum capacity is more general than the duality rep-
resentation.

I. Introduction
There is a curious input-output duality for Gaussian vec-
tor channels. Consider a Gaussian vector channel under
a power constraint:

Y = HX + Z, (1)

where X and Y are vector-valued input and output re-
spectively, H is the channel matrix, and Z is the additive
i.i.d. Gaussian vector noise. The capacity of the channel
remains the same if the input and the output are inter-
changed, the channel matrix transposed, and the same
power constraint applied to the “dual” channel:

Y′ = HT X′ + Z′. (2)

This is true because the capacity of a Gaussian vector
channel under a power constraint is computed via a water-
filling of total power over the set of singular values of the
channel matrix, and the singular values of H and HT are
the same. Note that this holds even when the matrix H
is not necessarily a square matrix. In this case X′ and X
do not have the same dimension.

Interestingly and surprisingly, the input-output dual-
ity of Gaussian vector channels generalizes to the multi-
user setting. Let XT = [XT

1XT
2 ]. Consider the Gaussian

vector channel as a multiple access channel where X1 and
X2 do not cooperate. The capacity region of the multiple
access channel is:

R1 ≤ I(X1; Y |X2)

R2 ≤ I(X2; Y |X1) (3)

R1 + R2 ≤ I(X1, X2; Y ).
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On the other hand, let Y′T = [Y′
1

T
Y′

2
T
]. Consider the

Gaussian vector channel as a broadcast channel. Using
a coding technique called “writing-on-dirty-paper” [1] [2]
[3], the following rate pairs are achievable:

R1 = I(X ′
1; Y

′
1 |X ′

2)

R2 = I(X ′
2; Y

′
2 ) (4)

Or,

R1 = I(X ′
1; Y

′
1 )

R2 = I(X ′
2; Y

′
2 |X ′

2), (5)

where X′
1 and X′

2 are independent Gaussian random vec-
tors with X′ = X′

1 + X′
2, and X′ satisfies the power con-

straint P . The union of all such points as expressed in
(4) and (5) is the largest known achievable region for the
Gaussian vector broadcast channel, but a converse has
not been established except in the sum capacity case. In
fact, the optimization of the rate region above does not
even appear to be a convex optimization problem. How-
ever, in a surprisingly result [4] [5], Jindal, Viswanath
and Goldsmith showed that the union of these achievable
points is precisely the multiple access channel capacity
region (3) under a sum power constraint across both X1

and X2. As the multiple access channel is often referred
to as the uplink channel and the broadcast channel the
downlink channel, this relation is called “uplink-downlink
duality”. The proof of this duality result depends on a
clever choice of the multiple access transmit covariance
matrices for each achievable rate point in the broadcast
channel capacity region and vice versa.

The objective of this paper is to give a new perspective
on uplink-downlink duality for the sum capacity point.
The main result of the paper is a minimax duality for a
class of Gaussian mutual information optimization prob-
lems. Uplink-downlink duality can be derived easily as
a special case of minimax duality. This new perspec-
tive allows the duality between uplink and downlink to
be generalized to broadcast channels under linear covari-
ance constraints. It also illustrates that duality depends
critically on the linearity of the input constraint. For a
broadcast channel with general convex input constraints,
the minimax expression for the sum capacity is more gen-
eral than the duality expression.

The rest of the paper is organized as follows. Section II
contains the main minimax duality result and its proof.
Section III illustrates the application of minimax dual-
ity to the Gaussian vector broadcast channel and gives
a new derivation of uplink-downlink duality. Section IV
contains concluding remarks.



II. Minimax Duality

Consider a Gaussian mutual information expression

C = max
Sx

min
Sz

1

2
log

|HSxHT + Sz|
|Sz|

, (6)

where the objective is to choose a transmit covariance ma-
trix Sx to maximize the mutual information and a noise
covariance matrix Sz to minimize the mutual information,
each subject to a convex constraint. This may correspond
to a compound channel in which the transmitter must
construct a codebook to achieves a negligible probability
of error for all possible channel realizations, or as shall be
seen later, a broadcast channel in which the noise correla-
tion among the receivers may vary arbitrarily. This paper
focuses on the minimax problem under linear covariance
constraints of the form:

tr(SxQx) ≤ 1 (7)

tr(SzQz) ≤ 1, (8)

where Qx and Qz are parameters of the linear constraints.
Without loss of generality, Qx and Qz can be taken as
symmetric. For example, the usual power constraint cor-
responds to the case where Qx is an identity matrix. The
minimax capacity is a function of H, Qx and Qz, and it
is denoted as C(H,Qx, Qz).

The main result of this paper is a characterization of
the dual of the above minimax problem. This duality is
not in the sense of Lagrangian duality in convex optimiza-
tion. Rather, it is a particular feature of the Gaussian
mutual information expression. The derivation is most
transparent when H is invertible, which we assume for
the rest of the section.

The first step in developing the duality is a characteri-
zation of the saddle-point of the minimax problem via its
Karush-Kuhn-Tucker (KKT) condition. The KKT con-
dition consists of the usual water-filling condition with
respect to the maximization over Sx:

HT (HSxHT + Sz)
−1H = λxQx, (9)

and the least favourable noise condition with respect to
the minimization over Sz:

S−1
z − (HSxHT + Sz)

−1 = λzQz, (10)

where λx and λz are the appropriate Lagrangians. (The
coefficient 1

2
is omitted for simplicity.) The KKT condi-

tion is necessary and sufficient for optimality. Now, pre-
and post-multiple (10) by HT and H respectively, substi-
tute (9) into (10), and rearrange the terms, we obtain:

HT S−1
z H = HT λzQzH + λxQx. (11)

Thus, if H is invertible, we get

H(HT λzQzH + λxQx)−1HT = Sz. (12)

This is precisely the water-filling KKT condition with
λzQz as the transmit covariance matrix and λxQx as the
noise covariance. The above is an explicit solution for Sz.
Further, substitute (12) into (9) and solve for Sx:

(λxQx)−1 − (HT λzQzH + λxQx)−1 = Sx. (13)

This is precisely the least-favourable-noise KKT condi-
tion with λxQx as the worst noise and λzQz as the trans-
mit covariance. Define

Σx = λxQx , Σz = λzQz, (14)

Ψx =
1

λx
Sx , Ψz =

1

λz
Sz. (15)

Equations (12) (13) can be re-written as:

H(HT ΣzH + Σx)−1HT = λzΨz (16)

Σ−1
x − (HT ΣzH + Σx)−1 = λxΨx. (17)

Thus, associated with the original minimax problem (6),
there is a “dual” minimax problem:

C = max
Σz

min
Σx

1

2
log

|HT ΣzH + Σx|
|Σx|

, (18)

with linear covariance constraints:

tr(ΣxΨx) ≤ 1, (19)

tr(ΣzΨz) ≤ 1. (20)

The minimax problems (6) and (18) are duals of each
other in the following sense:

• The optimal dual variable λx in the maximization
part of (6) is the optimal dual variable in the min-
imization part of (18).

• The optimal dual variable λz in the minimization
part of (6) is the optimal dual variable in the max-
imization part of (18).

• The saddle-point (Sx, Sz) of (6) is related to the
constraints (Ψx, Ψz) of (18) by (15).

• The saddle-point (Σz, Σx) of (18) is related to the
constraints (Qz, Qx) of (18) by (14).

• C(H,Qx, Qz) = C(HT , Ψz, Ψx).

To verify the last claim, it can be easily seen using (9)
(10) and (14) that at the saddle-point:

log
|HT ΣzH + Σx|

|Σx|
= log

|HSxHT + Sz|
|Sz|

. (21)

To summarize, there is a input-output duality for
Gaussian mutual information minimax problems. By in-
terchanging the input and the output, the constraints of
the original problem become the variables in the dual
problem and vice versa. This minimax duality is differ-
ent from Lagrangian duality. Minimax duality is based on
the manipulation of the KKT conditions of the optimiza-
tion problem. The current derivation assumes that H is
invertible and that the optimal Sx and Sz are full rank.
These are technical conditions that can be removed.

III. Broadcast Channel Sum Capacity

We are motivated to study minimax duality because it
arises naturally in the characterization of the sum capac-
ity of Gaussian vector broadcast channels. The broad-
cast channel capacity is a long-standing open problem in
information theory. Recently, the sum capacity for the
Gaussian vector broadcast channel has been solved inde-
pendently using two seemingly different approaches [3] [5]



[6]. In [3], it was shown that the broadcast channel ca-
pacity is the solution to a minimax mutual information
problem. In [4] [5] and [6], it was shown that the broad-
cast channel sum capacity can be found by solving for
the capacity of a dual multiple-access channel with a sum
power constraint. The objective of this section is to unify
the two approaches. We show that the duality between
the broadcast channel and the multiple-access channel is
a special case of minimax duality. Further, we illustrate
a subtle difference between the two approaches by show-
ing that minimax is a more general expression for sum
capacity than duality for a certain class of channels.

A. Sum Capacity as a Minimax Problem

Consider a Gaussian vector broadcast channel:

Y = HX + Z (22)

where Y1 and Y2 are non-coordinated receivers, YT =
[YT

1 YT
2 ], and Z is the unit variance Gaussian noise. A

sum power constraint E[XT X] ≤ P is imposed on the
input. A key ingredient in the characterization of the
capacity is a connection between the broadcast channel
and channels with side information, first published in [2].
In a classic result known as “writing on dirty paper”,
Costa [1] showed that if a Gaussian channel is corrupted
by an interference signal S that is known non-causally to
the transmitter but not to the receiver, i.e.

Y = X + S + Z, (23)

the capacity of the channel is the same as if S does not
exist. Thus, in a broadcast channel, if we let X = X1+X2

where X1 and X2 are Gaussian vectors, X1 can transmit
information to Y1 as if X2 does not exist, and X2 can still
transmit to Y2 regarding X1 as noise. This precoding
strategy turns out to be optimal for sum-capacity in a
Gaussian broadcast channel. This is proved for the 2-
user 2-antenna case by Caire and Shamai [2], and has
since been generalized by several authors [3] [5] [6] using
different approaches.

We now briefly review the main result in [3]. The ap-
proach in [3] is based on the observation that interfer-
ence pre-subtraction at the transmitter is identical to a
decision-feedback equalizer with feedback “moved” to the
transmitter. However, while the decision-feedback struc-
ture is capacity achieving for the Gaussian vector chan-
nel, it also requires coordination at the receivers because
it has a feedforward matrix that operates on both Y1 and
Y2. Clearly, such coordination is not possible in a broad-
cast channel. But, precisely because Y1 and Y2 cannot
coordinate, they are also ignorant of the noise correla-
tion between Z1 and Z2. Thus, the sum capacity of the
broadcast channel must be bounded by the cooperative
capacity with the least favourable noise correlation:

Cs ≤ min
Sz

I(X;Y1, Y2), (24)

where Sz is the covariance matrix for ZT = [ZT
1 ZT

2 ], and
the minimization is over all Sz whose block diagonal terms
are the covariance matrices of Z1 and Z2. This outer
bound is due to Sato [7].

The Karush-Kuhn-Tucker (KKT) condition associated
with the minimization problem is

S−1
z − (HSxHT + Sz)

−1 =

[
Φ1 0
0 Φ2

]
= Φ, (25)

where Φ is the dual variable corresponding to the di-
agonal constraints. Interestingly, S−1

z − (HSxHT +
Sz)

−1 also corresponds to the feedforward matrix of the
decision-feedback equalizer. So, if the noise covariance is
least favourable, the feedforward matrix of the decision-
feedback equalizer would be diagonal. Thus, after mov-
ing the feedback operation to the transmitter, the entire
equalizer de-couples into independent receivers for each
user, and no coordination is needed whatsoever. Con-
sequently, the Sato outer bound is achievable. Now, this
achievable rate may be further maximized over all Sx sub-
ject to the input constraint. Therefore, the sum capacity
of a Gaussian vector broadcast channel is:

max
Sx

min
Sz

1

2
log

|HSxHT + Sz|
|Sz|

(26)

subject to S(i)
z = I, i = 1, 2.

tr(Sx) ≤ P,

Sx, Sz ≥ 0,

where S
(i)
z refers to the ith block-diagonal term of Sz.

B. Sum Capacity via Minimax Duality

The sum capacity of a Gaussian vector broadcast chan-
nel can also be solved using a different method. In [4],
it was observed that under a input power constraint, the
achievable region of a broadcast channel using the pre-
coding technique is exactly the same as the capacity re-
gion of a dual multiple access channel with the channel
matrix transposed and a sum power constraint applied
to all inputs. In [6], it was observed that the uplink-
downlink duality is closely related to convex Lagrangian
duality. Based this observation, [5] and [6] showed that
the sum capacity of the broadcast channel is precisely
the sum capacity of the dual multiple access channel un-
der a sum power constraint. In this section, we illustrate
that uplink-downlink duality can be readily derived from
minimax duality.

The starting point of the new derivation is the fol-
lowing KKT condition associated with the minimax op-
timization problem (26)

HT (HSxHT + Sz)
−1H = λI (27)

S−1
z − (HSxHT + Sz)

−1 = Φ (28)

where λ is the dual variable associated with the power
constraint and Φ is the dual variable associated with the
diagonal constraint. By minimax duality, the minimax
optimization problem (26) has a corresponding dual min-
imax problem with HT as the channel matrix, Φ as the
input covariance and λI as the noise covariance. In par-
ticular, (Φ, λI) satisfies a water-filling condition:

H(HT ΦH + λI)−1HT = Sz. (29)

This water-filling condition is the key to the duality be-
tween the broadcast channel and the multiple access chan-
nel.



In convex optimization, the dual variables λ and
Φ have the interpretation of being the sensitivity of
the saddle-point with respect to the constraints. Let
Cs(P, N1, N2) denote the sum capacity of the Gaussian
vector broadcast channel with power constraint P and
noise variance N1, N2 in the receivers. Then,

λ =
∂Cs(P, N1, N2)

∂P

∣∣∣∣
(Sx,Sz)

(30)

and

Φi = − ∂Cs(P, N1, N2)

∂Ni

∣∣∣∣
(Sx,Sz)

(31)

So, if P is increased by ∆P , and N1, N2 are both in-
creased by ∆N in the proportion:

∆P

∆N
=

∑
i
Φi

λ
, (32)

then the capacity of the broadcast channel does not
change to the first order. On the other hand, from the
structure of (26), if ∆P and ∆N are in the proportion:

∆P

∆N
=

P

1
, (33)

the saddle-point also scales proportionally, and the ca-
pacity remains unchanged. For both conditions to be
satisfied simultaneously, it must be true that

∑
i
Φi

λ
= P. (34)

Now, let D = Φ/λ and re-write (29) as

H(HT DH + I)−1HT = λSz. (35)

This condition is precisely the KKT condition for a mul-
tiple access channel with an input constraint:

tr(DSz) = tr(D) =

∑
i
Φi

λ
= P. (36)

Thus, the solution to the minimax problem directly cor-
responds to the solution to a maximization problem:

max
D

1

2
log |HT DH + I| (37)

s.t. D is diagonal

tr(D) ≤ P,

D ≥ 0,

This establishes the duality of a multiple access channel
and a broadcast channel.

C. Generalized Duality

The duality between the Gaussian broadcast channel and
the Gaussian multiple access channel is important from
a computational perspective. The multiple access chan-
nel capacity (37) is considerably easier to compute than
the minimax problem (26). Although the duality result
as established in [4] [5] and [6] applies only to a broad-
cast channel with a sum power constraint, it is clear from
minimax duality that it also holds when the broadcast

channel input constraint is a linear covariance constraint
of the form

tr(SxQ) ≤ P, (38)

in which case, the noise covariance I in the dual multiple
access channel (37) is simply replaced by the covariance
matrix Q:

C = max
D

1

2
log |HT DH + Q|. (39)

The same power constraint applies as before: tr(D) ≤ P .
A key requirement for the duality between the broad-

cast channel and the multiple access channel to hold is the
linearity of the constraint. Without linearity, the power
constraint derivation (30) - (36) does not follow, and the
dual minimax problem does not reduce to a single maxi-
mization problem. Thus, for a broadcast channel with an
arbitrary convex constraints of the form

f(Sx) ≤ 0, (40)

although minimax duality still exists, the dual noise co-
variance matrix (λQ = λf ′(·)) now depends on the dual
variables of the minimax problem, which can only be
determined after the minimax problem (26) is explic-
itly solved. Therefore, the minimax expression (26) is a
more fundamental characterization of the Gaussian vector
broadcast channel than the one that the duality approach
provides.

IV. Conclusions

This paper illustrates an input-output duality for a
Gaussian mutual information minimax optimization
problem. It is shown that the uplink-downlink duality
between a broadcast channel and a multiple access chan-
nel can be derived as a special case of the minimax dual-
ity. It is also shown that the minimax expression for the
sum capacity of the broadcast channel is a more general
expression than uplink-downlink duality.
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