Professor Deepa Kundur

University of Toronto

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

1 / 17

Complex Numbers Review

Complex Exponential Function

Continuous-time:

$$x(t) = Ae^{j(\omega t + \phi)}$$
 Recall, Euler's relation: $e^{j\theta} = \cos \theta + j \sin \theta$
 $= A(\cos(\omega t + \phi) + j \sin(\omega t + \phi))$
 $= A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$ complex function

The complex exponential function has similar properties to sinusoids – e.g., periodicity

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

Complex Numbers Review

Complex Numbers and the Quadratic Equation

complex numbers are natural solutions to:

$$aw^2 + bw + c = 0$$
 where $b^2 - 4ac < 0$

$$w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

▶ we define $j \triangleq \sqrt{-1}$

Complex Numbers Review

Complex Numbers and Coordinate Systems

Two common types:

- 1. rectangular: real and imaginary components
- 2. polar: magnitude and phase components

Rectangular Coordinates

$$w = \underbrace{x}_{\text{real part}} + j \underbrace{y}_{\text{imaginary part}} x, y \in \mathbb{R}, w \in \mathbb{C}$$

Note: $\mathbf{x} = \mathcal{R}e\{\mathbf{w}\}$ and $\mathbf{y} = \mathcal{I}m\{\mathbf{w}\}$

Let $w_1 = x_1 + i v_1$ and $w_2 = x_2 + i v_2$.

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

5 / 17

Complex Numbers Review

Rectangular Coordinates

Note:

$$w_1^* = x_1 - i y_1$$

$$|w_1| = \sqrt{x_1^2 + y_1^2}$$

and

$$w_1 \cdot w_1^* = (x_1 + j \ y_1)(x_1 - j \ y_1) = x_1^2 + y_1^2 = |w_1|^2$$
 REAL

Complex Numbers Review

$$w_{1} \pm w_{2} = (x_{1} + j y_{1}) \pm (x_{2} + j y_{2})$$

$$= (x_{1} \pm x_{2}) + j (y_{1} \pm y_{2})$$

$$= (x_{1} + j y_{1}) \cdot (x_{2} + j y_{2})$$

$$= (x_{1} + j y_{1}) \cdot (x_{2} + j y_{2})$$

$$= (x_{1} + x_{2} + x_{1}(j y_{2}) + (j y_{1})x_{2} + (j y_{1})(j y_{2})$$

$$= (x_{1} + x_{2} + x_{1}(j y_{2}) + (j y_{1})x_{2} + (j y_{1})(j y_{2})$$

$$= (x_{1} + x_{2} + y_{1} + y_{2}) + j (x_{1} + y_{2} + y_{2})$$

$$= (x_{1} + x_{2} + y_{1} + y_{2}) + j (x_{2} + y_{2}) + j (x_{2} + y_{2})$$

$$= (x_{1} + y_{1} + y_{2}) + j (x_{2} + y_{2}) + j (x_{2} + y_{2})$$

$$= (x_{1} + y_{2} + y_{2}) + j (x_{2} + y_{2}) + j (x_{2} + y_{2}) + j (x_{2} + y_{2})$$

$$= (x_{1} + y_{2} + y_{2}) + j (x_{2} + y_{2} + y_{2} + y_{2}) + j (x_{2} + y_{2} + y_{2}) + j (x_{2} + y_{2} + y_{2} + y_{2}) + j (x_{2}$$

rofessor Deepa Kundur (University of Toronto) Complex Numbers Review

Complex Numbers Review

Polar Coordinates

$$w = re^{j\theta}$$
 $r \in \mathbb{R}^+, \theta \in \mathbb{R}, w \in \mathbb{C}$

Note: $r \equiv \text{magnitude}$ and $\theta \equiv \text{phase}$

Let $w_1 = r_1 e^{j\theta_1}$ and $w_2 = r_2 e^{j\theta_2}$.

6 / 17

$$\begin{array}{lll} w_1 \cdot w_2 &=& r_1 e^{j\theta_1} \cdot r_2 e^{j\theta_2} = (r_1 \ r_2) e^{j(\theta_1 \ + \ \theta_2)} \\ \text{magnitude} &\equiv & r_1 \ r_2 \\ \text{phase} &\equiv & \theta_1 + \theta_2 \\ & \frac{w_1}{w_2} &=& \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} = \frac{r_1}{r_2} e^{j(\theta_1 \ - \ \theta_2)} \\ \text{magnitude} &\equiv & \frac{r_1}{r_2} \\ \text{phase} &\equiv & \theta_1 - \theta_2 \\ w_1 \pm w_2 &=& r_1 e^{j\theta_1} \pm r_2 e^{j\theta_2} = \cdots \\ \text{magnitude} &\equiv & \sqrt{(r_1 \cos \theta_1 \pm r_2 \cos \theta_2)^2 + (r_1 \sin \theta_1 \pm r_2 \sin \theta_2)^2} \\ \text{phase} &\equiv & \arctan\left(\frac{r_1 \sin \theta_1 \pm r_2 \sin \theta_2}{r_1 \cos \theta_1 + r_2 \cos \theta_2}\right) & \ddot{-} \end{array}$$

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

9 / 17

Complex Numbers Review

Polar Coordinates

Note:

$$w_1^* = r_1 e^{-j \theta_1}$$

$$|w_1| = |r_1 e^{j\theta_1}| = |r_1| \cdot |e^{j\theta_1}| = r_1 \cdot 1 = r_1$$

and

$$w_1 \cdot w_1^* = (r_1 e^{+j \theta_1})(r_1 e^{-j \theta_1}) = r_1^2 = |w_1|^2$$
 REAL

rofessor Deepa Kundur (University of Toronto)

Complex Numbers Review

Rectangular to Polar Conversion:

$$r_0 = \sqrt{x_0^2 + y_0^2}$$
 $\theta_0 = \arctan\left(\frac{y_0}{x_0}\right)$

Polar to Rectangular Conversion:

$$x_0 = r_0 \cos \theta_0$$

 $y_0 = r_0 \sin \theta_0$

Note:

$$z_0 = x_0 + j y_0 = r_0 \cos \theta_0 + j r_0 \sin \theta_0 = r_0 \underbrace{\left(\cos \theta_0 + j \sin \theta_0\right)}_{= e^{j\theta_0} \text{ (EULER)}}$$
$$= r_0 e^{j\theta_0}$$

rofessor Deepa Kundur (University of Toronto)

12 / 17

Complex Functions

The same coordinate systems exist for complex functions.

For $x(t) \in \mathbb{C}$:

- 1. rectangular: $x(t) = x_R(t) + jx_I(t)$
- 2. polar: $x(t) = |x(t)|e^{j\angle x(t)}$

Note: This means that two graphs are required to plot a complex function x(t):

- (i) $x_R(t)$ vs. t and $x_I(t)$ vs. t, OR
- (ii) |x(t)| vs. t and $\angle x(t)$ vs. t.

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

13 / 17

Complex Numbers Review $x_R(t)$:

 $x_I(t)$:

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

Complex Numbers Review

Example: $x(t) = Ae^{j(\omega t + \phi)}$

Rectangular:

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

14 / 17

Complex Numbers Review

Polar:

$$x(t) = Ae^{j(\omega t + \phi)}$$

magnitude $= |x(t)| = A$
phase $= \angle x(t) = \omega t + \phi$

Professor Deepa Kundur (University of Toronto)

Complex Numbers Review

16 / 17

