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Lab 3: FFT Convolution 
Professor Deepa Kundur 

Objectives of this Lab 
• This lab addresses algorithmic implementations of a real-time FFT on long data signals.  

Popular Overlap-Add and Overlap-Save methods are studied.  

Prelab  
Prior to beginning, you must carefully read over this lab in order to plan how to implement the 

tasks assigned.  Please highlight all the parts you need to show or answer for the TA, so that you do not 
miss any graded points during the in-lab component or for the report.   

Deliverables 
• Please show the TA all requested in-lab components for full points. 

• After the lab, each group must submit a separate report answering all the questions 
requested by the TA and asked in this Lab (see Questions section).  For full points, please 
make sure you address all the parts in the lab that are required for the report.   

Grading and Due Date 
Please note STRICT DEADLINE for report on the course web site. 
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Lab 4: FFT Convolution 
Overlap-Add and Overlap-Save Algorithms 

Introduction and Background 
For this lab, you will need to understand the theory behind the Overlap-Add and Overlap-Save 

algorithms in order to get them successfully up and running. The functions you will implement already do 
exist in Simulink; otherwise you wouldn’t have the real-time filtering capabilities you’ve been enjoying 
so far! However, for this lab you must implement them from scratch to learn all the nuances.   

In a real-time signal processing scenario, an input signal is constantly fed into the DSP to be 
processed, and the associated output is made ready without “much delay” (otherwise it wouldn’t be called 
“real-time”). So if we had a long input signal that continues in time indefinitely, we don’t want to wait 
until the entire input signal has terminated before filtering it; this would be equivalent to doing something 
“off-line” after all the input is available. Instead, we would like to filter the blocks of input as they come 
in. Furthermore, we would like to filter these blocks quickly, which means the use of the Fast Fourier 
Transform (FFT) algorithm is necessary to implement the associated processes in the frequency domain. 
There are two methods for segmenting a long (possibly infinitely long) input signal into shorter blocks, 
and processing them quickly using the FFT. They are called the Overlap-Add method and the Overlap-
Save method. The former method is easiest to explain. 

Overlap-Add 
The Overlap-Add method is based on the observation that when we consider two discrete-time 

signals, say xk(n) and h(n), with support L and support M, respectively (note: the support is the length of 
the smallest consecutive stretch of points that contains all non-zero signal elements), the resulting 
convolution yk(n) = xk(n) * h(n), has a support of L+M-1. For example, say the support for xk(n) is n = 0, 
…, L-1 and the support for h(n) is n = 0, …, M-1, then the support for yk(n) is at n = 0, …, L+M-2. The 
questions at the end of this lab will elucidate this concept. 

Using this idea suppose our input stream x(n) is an infinite sequence starting at time n = 0. Divide 
x(n) into L-length blocks and convolve each L-block with h(n) (using linear convolution). Then sum all 
the convolution outcomes along the L-boundaries (we elaborate more soon). This works because of the 
additive property of convolution which states  (x1(n) + x2(n)) * h(n) = x1(n) * h(n) + x2(n) * h(n), and is 
visually depicted in Figure 1. 
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Figure 1: Basic Idea Behind Overlap-Add Method.  The kth L-block of x(n) is denoted xk(n). 

In Figure 1, the operation of convolving a very long x(n) with h(n) is equivalent to the operation 
of convolving each L-block of x(n), denoted xk(n) for the kth block, with h(n) and then conducting 
addition judiciously to deal with the “tail” region from each block convolution as we discuss next. An 
important aspect is that after convolving each block with h(n), the resulting intermediate signal is L+M-1 
samples in length as discussed earlier, and thus the extra M-1 samples at the end due to convolution 
expanding the support (called the “tail”) must be added to the first M-1 samples of the next convolved 
block. This is illustrated in Figure 2, where the right hand side (RHS) of the equality shows the result 
(graphically) after convolution.  Specifically, the kth output block is given by: yk(n) = xk(n)  * h(n) and the 
last M-1 samples of yk(n) must be added to the first M-1 samples of yk+1(n) to produce the appropriate 
output signal y(n) = x(n) * h(n). 
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Figure 2: “Tail” Resulting from Convolution must be Added to Next Convolved Block; Note: yk(n) = xk(n)  * h(n). 

 

One main challenge in a real-time processing scenario is that the timing of completing a block 
convolution needs to be appropriately synchronized with the overall output speed so that that tail region 
may be added to the next block at the right time.  If the process of convolving each block is slower than 
outputting the samples of blocks already convolved, then the tail region will not have the opportunity to 
be added to the next block (because the next block is still in the process of going through convolution), 
resulting in the erroneous output of the samples 0 to M-2 and L to L+M-2 for each block. One way to deal 
with this is to slow down the rate of output, which may fail to meet the timing requirements for a given 
application. Another, more attractive approach, is to speed up the process of convolution.  This can be 
achieved through the use of the FFT for convolution. A reminder of how to use the FFT algorithm to filter 
a block of input to perform convolution is summarized here (note: this is not the entire Overlap-Add 
algorithm as the output blocks must be combined at the end of this): 

1. Zero-pad the filter h(n) with L-1 zeros to make it length (L+M-1). 
2. Compute the (L+M-1)-FFT of the zero-padded h(n) result of Step 1 and save. 
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3. Zero-pad each L-block input segment xk(n) with M-1 zeros it make it length (L+M-1). 
4. Compute the (L+M-1)-FFT of the zero-padded result of Step 3 and save. 
5. Multiply sample-by-sample the two FFT results from Steps 2 and 4. 
6. Take the inverse (L+M-1)-FFT (IFFT) of the resulting product from Step 5 to produce yk(n). 

 
After each block yk(n) is computed as above, it is added to the next block as shown in Figure 2 

and more simply in Figure 3. The throughput is L samples per block processed. 

 

Figure 3: Illustration of Combining filtered output blocks for Overlap-Add Method. 

 

Overlap-Save 
The Overlap-Save method is a bit more difficult to explain than the Overlap-Add method as it is 

based, in part, on the concept of circular convolution which in this context results in time-domain 
aliasing. We describe an Overlap-Save method with the same throughput of L samples per block 
processed as discussed for Overlap-Add. 

  Textbooks often give complicated formulas when explaining circular convolution. Here is an 
easier way to consider circular convolution. Let’s consider xk(n) and h(n) with support regions n = 0, …, 
N-1 and n = 0, …, M-1, respectively; note the difference from the previous section: the support length for 
xk(n) is now N for Overlap-Save, but it was L for Overlap-Add. Let yL,k(n) be the result of normal 
convolution (often called linear convolution) of xk(n) and h(n). Then the N-circular convolution of xk(n) 
and h(n) can be described in terms of yL,k(n) via the diagram in Figure 4 for N = 4 and M = 3. Consider 
two stages. The first stage takes a periodic extension of the linear convolution result yL,k(n) where the 
period used for the extension is N. The second stage windows the result such that we consider only N 
points at n = 0, …, N-1 leaving all other points with zero-values.  The periodic extension is created by 
adding all shifted versions (where the shifts are restricted to be integer multiples of N) of the linear 
convolution result yL,k(n).  Because xk(n) is of length N and h(n) of length M, the length of yL,k(n) will be 
N+M-1. Thus, taking a periodic extension of yL,k(n) with period N will result in overlap. Since the overall 
goals is to conduct a linear convolution (but using the FFT), this overlap is essentially “corruption” in the 
beginning of the windowed sequence as shown in Figure 4. In general the points at n = 0, 1, 2, …, M-2 
will be corrupt from what we call time-domain “self-aliasing”. However, the remaining points at n = M-1, 
M-2, M-3, …, N-1 will still be equal to the desired yL,k(n).   

The idea in the Overlap-Save method is to exploit the process of N-circular convolution, which 
can more efficiently be implemented via an FFT in contrast to normal linear convolution.  Since the 
output from linear convolution is N+M-1 in length, the N-circular convolution will corrupt the first M-1 
samples, leaving the last N-M+1 samples of the circular convolution result pristine (we do not worry 
about a “tail” since for circular convolution the window only takes N points effectively discarding the last 
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M-1 samples from a normal linear convolution). Since the first M-1 samples are always corrupted and 
undesirable, the Overlap-Save method selects N-blocks that overlap by M-1 points such that the previous 
block output can provide the information of the corrupted points in the current block output. For the very 
first block (which has no “previous” block to compensate for corruption), the first M-1 samples are set to 
0 effectively shifting the input to the right by M and avoiding self-aliasing in that case. 

 
Figure 4: Illustration of Circular Convolution in Contrast to Normal Convolution.  Please note for simplicity, the block subscript 

k used in the body of the text is dropped in this diagram. 

Finally after each output block is generated it is combined into the convolved output stream y(n) 
as illustrated in Figure 5.  Figure 5 demonstrates the relationship between input blocks and output blocks 
for the Overlap-Save method.  The N-length blocks need to overlap effectively by M-1 points in order to 
compensate for the corruption due to using the FFT for convolution (resulting in corruption in the 
circularly convolved output block). 

The following algorithm will further help you implement the Overlap-Save method. We deal with 
input blocks of length N. To have an equivalent throughput to the Overlap-Add method (which helps for 
comparison reasons), we let N=L+M-1 where L is the same parameter as specified in the Overlap-Add 
method and M is the length of h(n) as for both the Overlap-Add and Overlap-Save methods: 

1. Zero pad h(n) with L-1 zeros such that it is of length N and has support n=0, 1, …, N-1. 
2. Take the N-FFT of h(n) and save for repeated access in the future. 
3. If the current block being processed is the first block, then the first M-1 samples are zeros; fill the 

remaining L samples with the signal x(n), starting at n=0.  Save the last M-1 samples of this block 
for processing of the next block. 
If the current block being processed is not the first block, then take the last M-1 samples from the 
previous block (previously saved) as the first M-1 samples of the current block (this creates an 
overlap), and fill the remaining L samples with the next new samples of x(n).  Save the last M-1 
samples of this block for processing of the next block.  
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Figure 5 illustrates this overlap process. 
4. Take the N-FFT of each N-length input block xk(n) and save.   
5. Multiply sample-by-sample the FFT result from Step 2 with the FFT result from Step 4. 
6. Take the inverse N-FFT of the result from Step 5. 
7. Discard the first M-1 samples from Step 5 that are corrupted, keeping only the last L samples. 
8. Concatenate the kept L samples of each block to produce the overall output as illustrated in 

Figure 5. 

 

Figure 5: Illustration of Breaking up Input Blocks and Combining Filtered Output Blocks for Overlap-Save Method. 

 

Notice that for the Overlap-Save method, no zero-padding is required for any of the input blocks (but it 
may be required one-time for the FFT of h(n)), and no addition operation is required either as in the 
Overlap-Add method. Depending on the relative values of the parameters L, M and N, one method may be 
more computationally and/or memory efficient than the other.  

Design and Implementation 

Overlap-Save Algorithm 
First, you will construct a block diagram for an Overlap-Save algorithm using elementary 

Simulink blocks.  For this model, we will walk you through it step by step. The model will implement an 
FIR filter kernel of length M = 113. The algorithm will use an FFT and inverse FFT of length N = L + M 
-1 = 512. Thus, the input blocks will be of length N = 512 and the throughput will be L = 400 output 
samples per processed block. 

Designing the Filter Kernel 
1. Before the Simulink model can be built, the FIR filter needs to be designed.  Go to the command 

window and type fdatool to bring up MATLAB’s Filter Design & Analysis Tool. 
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2. Select Lowpass under Response Type. 
3. Choose an Equiripple FIR under Design Method. 
4. Specify the filter order as 112 (this will result in a kernel of length M = 113). 
5. Under Frequency Specifications, set Units to Hz, Fs to 8000, Fpass to 400, and Fstop to 800. 
6. Click Design Filter.  The Magnitude response of the filter is displayed. 
7. Go to File → Export.  Choose Export To Workspace and Export As Coefficients. Under Variable 

names, name the Numerator h.  Press Export.  This exports the filter coefficients to the MATLAB 
Workspace as a 1×113 vector named h.  You can verify the presence of this variable by going to 
the command window and typing “whos”. 

Building the Simulink Model 
1. In a new Simulink model, set the Amplitude of a Sine Wave Source to 1 and the Frequency to 

100 Hz.  Also, set the Sample time to 1/8000 (this will imitate a sampling rate on the C6437 
board).   

2. Connect your input to a Buffer block that you can find in Signal Processing Blockset → Signal 
Management → Buffers.   Set the Output buffer size to 400.  The buffer divides the input signal 
into data block segments of length L.  The output of the buffer is a frame-based signal (as 
opposed to a sample-based signal) such that each segment (or “frame” ) of 400 samples is 
processed as one chunk, as required  by the Overlap-Save process. 

3. Add a Delay Line block to the diagram from Signal Processing Blockset → Signal Management 
→ Buffers.  Set the Delay line size to 400 and connect the output of the Buffer to the Delay Line 
input.  Effectively, the Delay Line delays its input by one data block (“frame”) of length L. 

4. The Overlap-Save algorithm calls for the last  M-1  points from the previous data block to be 
saved and appended to the beginning of the next data block.  The Delay Line inserted in step 3 
above allows us to access the previous data block.  In order to extract the necessary M-1 points, 
insert a Submatrix block from Signal Processing Blockset → Signal Management →Indexing that 
you connect to the output of the Delay line.  Set the Row span to Range of rows, the Starting row 
to Index, the Starting row index to 289, the Ending row to Last, and the Column span to All 
columns.  Here’s what this block does:  the data blocks outputted from  the Delay Line are 400×1 
column vectors;  we want the last M-1 points.  The Submatrix block selects elements 289 through 
400 of these input vectors and outputs  112×1 column vectors. 

5. The next step is to take the M-1 saved points from step 4 and append them to the beginning of the 
current data block.  To do this, we can use a matrix concatenate block from Simulink→ Math 
Operations.  Insert this block into the model and set Number of inputs to 2, Mode to 
Multidimensional Array, and Concatenate Dimension to 1.  Connect the output of the Submatrix 
block from step 4 to the first (top) input of the Matrix concatenate block, and connect the output 
of the Buffer block from step 2 to the second (bottom) input of the Matrix concatenate block.  
These connections cause the 112×1 vectors from the Submatrix block (the  M-1  saved data 
points) and the 400×1 vectors from the Buffer (the current data block) to be combined into  
512×1 vectors that are suitable for FFT calculation. 

6. Add an FFT block to the mode.  Connect the output of the Matrix Concatenate block to the input 
of the FFT block.  This will compute the 512-point FFT of the overlapped data blocks.  Notice 
that N = L+M-1 = 512  is chosen to be a power of two; this is necessary because Simulink’s FFT 
block uses a radix-2 FFT algorithm. 
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7. The next step in the Overlap-Save algorithm is to multiply the FFT computed in step 7 by the 
FFT of the filter kernel.  Before we can do this, we need to import the filter coefficients into the 
Simulink model.  Add a From Workspace block to the model from Simulink → Sources.  Set 
Data to the name of the filter kernel you exported to the MATLAB Workspace and Sample Time 
to 400/8000.  Note that this sample time causes the filter coefficients to be read at the same rate 
that data blocks are outputted from the Buffer block of step 3. 

8. In order to compute the FFT of the filter kernel, we need to extend it so it has a length of 512.  To 
do this, add a Pad block from Signal Processing Blockset → Signal Operations.  Set Pad over to 
Columns, Pad value to 0, and Column size to 512.  Connect the output of the From Workspace 
block in step 7 to the input of the Pad block.  The Pad block simply appends enough zeros to the 
end of the filter kernel to make it a 512×1 vector. 

9. Add another FFT block to the diagram and connect the output of the Pad block from the previous 
step to the input of this FFT block.  Clearly, this just computes the 512-point FFT of the filter 
kernel. 

10. Now we are ready to perform the frequency multiplication necessary for FFT convolution. 
Connect the Output of the two FFT blocks to the two inputs of a Product block. 

11. Once frequency multiplication has occurred, the inverse FFT needs to be computed.  Insert an 
IFFT block from Signal Processing Blockset → Transforms.  Under the IFFT block parameters, 
select the check box labeled “Input is conjugate symmetric.”  This tells Simulink that the output 
should be real-valued; that is, any small imaginary parts in the output due to rounding errors will 
be ignored.  Connect the output of the Product block to the input of the IFFT block. 

12. The last major step in the Overlap-Save algorithm is to discard all of the points that have aliasing.  
Namely, the first M-1  points of the data blocks resulting from the inverse FFT operation need to 
be thrown out.  To do this, insert another Submatrix block into the model.  Set Row span to 
Range of rows, Starting row to Index, Starting row index to 113, Ending row to Last, Column 
span to All columns.  Connect the output of the IFFT block to the input of the Submatrix block.  
Note that by discarding M-1  points, the data blocks are reduced in size back to 400 points, the 
size of the original data blocks from the input signal. 

13. Add an Unbuffer block from Signal Processing Blockset → Signal Management → Buffers and 
connect its input to the output of the Submatrix block from step 12.  As its name suggests, the 
Unbuffer block takes the frame-based signal of 400×1 vectors from the Submatrix block and 
converts it into a sample-based signal (the original format of the input). 

14. To view the filtered signal, add a Scope block to the model from Simulink → Sinks and connect 
its input to the output of the buffer block.  

15. The Overlap-Save filter is now complete.  Save your model. 

C6437 Real-Time Simulation 
1. For the real-time simulation on the C6437 board, you may want to re-save your model under a 

different name. 
2. Insert a DM6437 target block.  
3. Replace the Sine Wave source block with the DM6437 ADC block. Set ADC input source to line 

in, sampling rate to 8000 Hz, and set the samples per frame to 400. 
4. Connect the output of the ADC to the input of a Data Type Conversion block. Set the output data 

type to single.  
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5. Because the output of the ADC is an Nx2 matrix (a stereo signal), an additional identical filter 
kernel is needed. Copy the From Workspace, Pad, and FFT blocks of the filter kernel. Take the 
output of the original and the copy of the filter kernel and feed this into a Matrix Concatenate 
block. Connect the output of the Matrix Concatenate block to the input of the Product block (the 
block right before the IFFT). 

6. For the simulation on the board, we’re going to add high frequency noise to the input signal to see 
if the filter can attenuate it properly.  To do this, add a noisy input to the input created in step 3 by 
adding a Uniform Random Number block followed by a Highpass Filter block. Set the Minimum 
and Maximum parameters to -5 and 5, respectively of the Uniform Random Number block.  Also, 
set the Sample time to 1/8000. Set the parameters of your highpass filter such that there will be 
practically no noise below 2000 Hz. 

7. Delete any scopes you may have in your model.   
8. In order to view the original input, the input corrupted by noise, and the filter output during 

simulation, we’re going to use the board’s manual switches to select which signal goes to the 
board’s output. Just like we did in Lab 2, with a Multiport Switch and a DIP Switch block 
configure your model to be able to output the original input signal, the noisy input, and the 
filtered output. 

9. Connect a Data Type Conversion block to the output of the Multiport Switch and set the output 
data type to int16. 

10. Connect the output of the conversion block to the input of the DM6437 DAC block and set the 
sampling frequency to 8000 Hz.  

11. Set the simulation to Normal mode and configure the simulation parameters as in Lab 2.  
12. Build your Simulink model by pressing CTRL-B. The project should load and run automatically 

if you have selected the Build and Execute option in the Link for CCS tab of the Configuration 
Parameters. 

13. Connect the input of the board to the function generator and the output of the board to the 
oscilloscope.  Feed the board with a sine wave of 1 Vpp and 100 Hz. Try different configurations 
for the board’s switch, identify and explain the corresponding outputs obtained. 

14. Disconnect the output of the board from the oscilloscope and connect it instead to speakers.  Use 
the switches on the board to listen to the 100 Hz input tone, the noise-corrupted signal, and the 
filtered signal. 

Overlap-Add Algorithm 
Now that you have walked through the Overlap-Save algorithm step-by-step, it is time to try 

designing an algorithm for yourself.  Your task in this section is to design from scratch a filter that uses 
the Overlap-Add algorithm.  You should be able to do this using the same type of blocks (Buffer, Delay 
Line, Submatrix, etc.) that were used in the Overlap-Save filter.  The guidelines are as follows: 

1. Use the same lowpass filter as was used for the Overlap-Save algorithm.  However, change the 
order of the filter to 500 such that the filter kernel has a length of M = 501.  Also, change the 
Fstop parameter from 800 Hz to 500 Hz.  Essentially, we are using a longer, more expensive filter 
kernel to produce a lowpass frequency response that drops of much more sharply than the 
previous filter.  Even with a filter order of 500, FFT convolution can filter the output in a 
reasonable amount of time. 
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2. Divide the input to the filter into data blocks of length L = 1548.  Note that this makes the size of 
your FFT and inverse FFT calculations N = L+M–1 = 2048. 

 
Here are some hints on how to proceed with your design: 

1. It is probably best to use Pad blocks from Signal Processing Blockset → Signal Operations to 
append zeros to the end of data blocks. 

2. When using the Delay Line block, make sure that the block parameter named Delay line size is 
set to be the same size as the input vector to the block.  For example, if you input 50×1 data 
blocks into the Delay Line and want a delay of one data block, set the Delay line size to 50. 

3. If you use a From Workspace block to import the filter coefficients to the Simulink model in a 
similar way to the Overlap-Save algorithm, make sure to set the sample time to 1548/8000.  This 
will match the rate at which the length L data blocks are received by the filter at its input. 

 
Perform the same tests as for the Overlap-Save algorithm. Note and explain any obtained result. 
 


