
11/20/2005 Overlay Socket API (Advanced) 1

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

CHAPTER 3 APPLICATION PROGRAMMING INTERFACE – ADVANCED
TOPICS 1

3.1. The Enhanced Services API.. 2
Services with acknowledgements.. 5
Synchronization ... 8
Incast ... 9
Duplicate Elimination .. 9
Best-effort Ordering... 9

3.2. Stream API.. 10
API of the Stream Manager .. 13
API of HCastInputStream and HCastOutputStream... 14

3.3. Event Notifications .. 15

3.4. Message Interception API... 19

3.5. Configuring Overlay Sockets – Advanced topics.. 23
Configuration Attributes... 23
Overlay servers .. 25
Creating configurations with createOLConfig... 25
Programming with configuration objects .. 27

3.6. Secure Overlay Sockets... 31
Authentication and Certificates... 32
Neighborhood Keys ... 33
Shared Group Keys .. 36
SSL Security.. 37

3.7. References ... 38

This document is a draft. If you have comments or corrections, please mark this
document up and send it to jorg@cs.virginia.edu. If you send your comments in plain
text, please include the date of this draft (see upper left corner), the page number and the
paragraph number. If you find discrepancies between this document and the most recent
version of the HyperCast software, please give a detailed description of the problem.

Thank you,

Jörg Liebeherr

CHAPTER 3

Application Programming Interface
– Advanced Topics

In this chapter we continue the discussion of the application programming interface of
the overlay socket. We present several APIs that extend the basic best-effort delivery
service for overlay messages. The services discussed in this chapter are:

11/20/2005 Overlay Socket API (Advanced) 2

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

• Enhanced Services API: The overlay sockets supports several services that
enhance the basic delivery service for overlay messages, by adding services for in-
sequence delivery, synchronization, and improved delivery assurance.

• Stream API: The Stream API offers a byte-stream programming interface. This API
is similar to stream sockets in the Berkeley socket environment.

• Secure overlay sockets: Overlay sockets can be configured so that they ensure
integrity or confidentiality for overlay messages, and integrity for messages of the
overlay protocol.

The interactions between application programs and overlay sockets can be enriched by
taking advantage of a message notification system and by intercepting messages:

• Notifications: The event notification system offers mechanisms by which an overlay
socket can report the occurrence of preprogrammed events to an application
program.

• Interception The interception API permits applications that forward a message but
are neither the sender nor the intended receiver of the message to read and
manipulate the message.

This chapter also includes a section about configuring an overlay socket from a server.

3.1. THE ENHANCED SERVICES API

The default delivery service of overlay sockets is a connectionless best-effort delivery of
overlay messages. Messages may be delivered in a different sequence than they were
transmitted, and messages may even get duplicated. This type of service is similar to the
service provided by the IP protocol for the transmission of IP packets. In HyperCast, the
overlay socket implements services that improve the default delivery service for overlay
messages. This is different in IP networks, where improvements to the delivery service
of IP are deferred to higher layer protocols, e.g., the transport-layer protocol TCP
provides a reliable service, and the application-layer protocol RTP supplies information
that can be used to achieve an in-sequence delivery of application data.

HyperCast overlay sockets support a variety of services that have a stronger semantics
than the default best-effort delivery service. These services are implemented in the
overlay socket and are made available to applications through the enhanced services
API. This section presents the available services and discusses how application
programmers use enhanced services.

Although the choice of protocols in the underlay network can noticeably improve the
quality of the delivery service of overlay messages, it does not principally change the
semantics of the best-effort service. For example, when TCP is used in an Internet
underlay network, overlay messages will be delivered reliably between neighbors in the
overlay network. However, relying on TCP in the underlay network does not result in a
reliable delivery service for overlay messages. Even if the transmission between
neighbors in the overlay network is reliable, numerous scenarios can result in a message
loss. For example, an overlay socket could drop an overlay message after it has been,
but before it could be forwarded to its neighbors. A likely cause for a message loss is a
change of the overlay network topology while a message is on its route from the sender
to its destination(s).

11/20/2005 Overlay Socket API (Advanced) 3

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Overlay sockets distinguish between enhanced services that are message-oriented and
that are stream-oriented. A message-oriented service is provided separately for each
overlay message. A stream-oriented service is provided for a sequence of messages.
Overlay messages that are delivered with an enhanced service, henceforth called
enhanced service message, have additional fields in the message header. An application
programmer should be aware of the following fields: the service identifier, the message
identifier, the stream identifier, and the sequence number. All enhanced service
messages have service identifier that specifies the service desired for this message.

For message-oriented services, a message identifier is used to distinguish messages. If
two messages have the same message identifiers and the same service identifier they are
treated as two copies of the same message, even if they have different payloads or if
they have different source addresses. For stream-oriented services, an enhanced service
message contains a stream identifier and a sequence number that determines the offset of
the payload in the stream. The sequence number is either set by the application program
or by the overlay socket. The identifiers are set when a message is transmitted, either by
the application program or, if the application program does not specify some values, by
the overlay socket. If the selection of the sequence number is left to the overlay socket,
the sequence number is incremented by one for each message, with a randomly selected
initial sequence number.

Application programmers use the enhanced services API by creating a message with a
specified service identifier. Once created, the message is transmitted with an
appropriate method to transmit a message, e.g., sendTo, SendToAll, SendFlood.

The services available through the enhanced services API are listed in Table 1. The table
includes the service identifier and the available delivery modes. The services are as
follows:

• Hop-by-hop acknowledgement (H2HACK): This service confirms the delivery of
a message between neighbors in the overlay network. Whenever a socket receives a
message, it sends a delivery confirmation (ACK) to the neighbor from which the
message was received. If a neighbor does not receive a confirmation, it retransmits
the message.

• End-to-end acknowledgement (E2EACK): The E2EACK service confirms
delivery of a message to the source of a message. For unicast messages, the
destination sends a delivery confirmation that is forwarded towards the source. For
broadcast messages, each overlay socket that forwards a message waits until it has
received an ACK from all downstream neighbors in the delivery tree and sends a
single ACK to the upstream neighbor in the delivery tree. If an ACK is not received
then the message is retransmitted. The application program is alerted through events
when all ACKs arrive at the source (E2EACK_RECEIVED), or when some ACKs are
not received after a certain number of retransmissions (E2EPARTIALACK_RECEIVED).

• Duplicate Elimination (DELDUPS): This service discards a message if it is a
duplicate of an earlier received message.

• Neighbor synchronization (SYNC): The overlay socket stores each transmitted and
received message and synchronizes the stored message with its neighbors in the
overlay network.

11/20/2005 Overlay Socket API (Advanced) 4

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

• Incast (INCAST): This service merges the payload of unicast messages with
identical destination address and message identifier.

• Best-effort ordering (INORDER): In this stream-oriented service, received
messages are passed to the application program in the order of sequence numbers.

Table 1. Enhanced services in HyperCast.

Enhanced Service Service
Identifier

Service Type Available
Delivery
Modes

Hop-by-hop acknowledgement H2HACK message-oriented Unicast
Broadcast

End-to-end acknowledgement E2EACK message-oriented Unicast
Broadcast

Synchronization SYNC message-oriented Broadcast

Incast INCAST message-oriented Unicast

Duplicate Elimination DELDUPS message-oriented All

Best-effort ordering INORDER stream-oriented All

In the following we describe the methods of the enhanced services API. With exception
of the createMessage method, all methods are available through the I_OverlayMessage
interface.

I_OverlayMessage createMessage(byte[] payload, short serviceID)

This method belongs to the I_OverlaySocket interface. It creates an enhanced
service message with a given service identifier. The service identifier must be one of
the available services: H2HACK, E2EACK, DELDUPS, SYNC, INCAST, INORDER.

void setServiceIdentifier (short service)

Sets the service identifier of the message to one of the available services. When a
message is created with the signature
 OverlayMessage createMessage(byte[] payload)

the message can be changed into an enhanced service message by setting the service
identifier.

short GetServiceIdentifier ()

Returns the service identifier of a message.

void setStreamIdentifier (short StreamID)

Sets the stream identifier to one of the available services message if this is a service
message with a stream-oriented service

short GetStreamIdentifier ()

Returns the stream identifier if this is a service message with a stream-oriented
service.

11/20/2005 Overlay Socket API (Advanced) 5

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

void setSequenceNumber(int getSequenceNumber)

Sets the sequence number of an enhanced service message with a stream-oriented
service. If the application does not select the sequence number, the overlay socket
sets the sequence number. Sequence numbers set by the overlay socket are
incremented by one for each subsequent message, starting with a randomly selected
initial sequence number.

int getSequenceNumber()

Returns the sequence number of the message if this is a message with a stream-
oriented service.

void setMsgIdentifier (int MsgID)

Sets the message identifier if this is a message with a message-oriented service.

short getMsgIdentifier()

Returns the message identifier if this is a message with a message-oriented service.

static int generateMsgIdentifier ()

Creates a message identifier that can be used by the application program.

static int generateStreamIdentifier ()
Creates a message identifier that can be used by the application program.

We next give a more extensive description of the enhanced services in HyperCast,
which gives enough information so that an application programmer can take advantage
of these services. We refer to Chapter [MStore] for the details of the services.

Services with acknowledgements

The hop-by-hop acknowledgement (H2HACK) and end-to-end acknowledgement
(E2EACK) services improve the reliability of message transmissions in an overlay
network. The H2HACK service assures the delivery of a message between neighbor(s)
in the overlay network. The E2EACK service confirms to the source whether or not all
intended destinations have received a message.

Figures 1 and 2 show an example that illustrates these services work for the transmission
of a broadcast message. Each node in the depicted graphs represents an application with
an overlay socket that has joined the overlay network. The edges between nodes indicate
that nodes are neighbors in the overlay network. We assume that there is a broadcast
transmission from node A. Recall that broadcast messages are transmitted by forwarding
a message to downstream neighbors in a rooted tree that is embedded in the overlay
topology and that has the sender of the message as the root of the tree. The transmission
of an overlay message is indicated by an arrow that has label Msg, and the transmission
of a delivery confirmations are indicated by arrows that are labeled H2H ACK or E2E
ACK. Figure 1 shows a transmission scenario for the H2HACK service, and Figure 2
shows a scenario for the E2EACK service.

11/20/2005 Overlay Socket API (Advanced) 6

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

(b)

E

A

B

D

C

F

Msg

H2H ACK

Msg

H2H ACK

Msg

H2H ACK

E

A

B

D

C

F

(a)

Msg

H2H

ACK

Msg

H2H ACK

Figure 1. H2HACK service.

M
sg E2

E

AC
K

Figure 2. E2EACK service.

In the H2HACK service, node A forwards the message to its downstream neighbors in
the tree that has A as root (Figure 1(a)). As soon as B and E receive the message, they
each send an H2H ACK to A. Then, B and E forward the message to their downstream
neighbors (Figure 1(b)), which respond with an H2H ACK. When a node does not send
an acknowledgment, a message is retransmitted, but each message is only transmitted a
finite number of times. [What is the default value?]

In the E2E ACK service, the transmission of delivery confirmations is realized in a
recursive fashion. When a source transmits a message to its downstream, it expects an
ACK from each of its neighbors. The neighbors send an ACK only after they have
received an ACK from their own downstream neighbors to which they have forwarded
the message. An overlay socket that does not have downstream neighbors sends an ACK
immediately after receiving the message. In this way, the ACKs from the leaves trigger
the transmission of ACKs at intermediate nodes. When the source of the message
receives an ACK from each of its downstream neighbor, the E2EACK service for this
message is completed. If that happens, the application receives an event notification of
type E2EACK_RECEIVED. (The notification system in HyperCast is explained later in this
chapter.) If an overlay socket does not receive an E2E ACK from all its downstream
neighbors, it will, after a timeout period, send a partial ACK to its upstream neighbor.
When the source of the data receives a partial ACK from one of its neighbors, it sends a
notification of type E2EPARTIALACK_RECEIVED to the application. This ensures that
some kind of acknowledgement is delivered to the source of the message, even if not all
intended receivers have acknowledged the receipt of the message. In Figure 2(a), A
sends a broadcast message with an E2EACK service, and then waits for an E2E ACK
message. When B and E receive the message, they forward the message to their

11/20/2005 Overlay Socket API (Advanced) 7

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

downstream neighbors and wait for an ACK (Figure 2(b)). When C, D, and F receive the
message, they immediately send an E2E ACK because they do not have downstream
neighbors with respect to A (Figure 2(c)). Nodes B and E send their E2E ACK
immediately after they have received E2E ACKs from all downstream neighbors. When
A has received an ACK from both B and E, the message has been confirmed and a
notification about this message is sent to application.

The above example explained the transmission of broadcast messages. The H2HACK
and E2EACK services are also available for unicast messages. However, the
implementation of the services for unicast messages is different, since unicast messages
are transmitted upstream in a tree that is rooted at the destination of the message. In the
H2HACK server, each overlay sockets that forwards a message to an upstream neighbor
expects an H2H ACK from this server, and retransmits the message if no
acknowledgement is sent. An overlay socket that receives a message, immediately sends
an H2H ACK. In the E2EACK service, there are two methods to send
acknowledgements for unicast services. By default, each overlay socket that forwards a
message to an upstream neighbor waits until an E2E ACK is received from that
neighbor. An overlay socket sends an E2E ACK only if it has received an ACK from its
upstream neighbor. If the receiver is the destination it immediately sends an E2E ACK.
In an alternative method to realize acknowledgments in the E2E ACK service, only the
destination sends an E2E ACK for a unicast message. Here, the acknowledgement is
sent as a unicast message to the source of the message.

The H2HACK and E2EACK services do not assume that an overlay topology is fixed
when a message or an acknowledgement is transmitted. In fact, the implementation of
the services accounts for overlay networks where the membership is changing
frequently. In the H2HACK and E2EACK services, and all other enhanced services,
each overlay socket always uses the latest information about its upstream and
downstream neighbors to determine where to transmit messages and from where to
expect ACKs.

The semantics of the H2HACK and E2EACK services are quite different. The
H2HACK service provides a reliable transfer of overlay messages between neighbors in
the overlay network. If an overlay socket receives an H2H ACK for a message, it knows
that an immediate neighbor has received the message. The socket does not know
whether the neighbor has successfully forwarded the message to other overlay sockets.
When an overlay socket receives a message and sends an H2H ACK, but then drops the
message before it is forwarded to the next neighbor, the H2HACK service does not
recover the message. The delivery service of H2HACK is similar to the service provided
by a reliable underlay network protocols, e.g., TCP, between overlay sockets. In fact,
when TCP is used as the underlay protocol the H2HACK service does not offer any
additional benefits.

The level of delivery assurance provided by the E2EACK service is much stronger than
in the H2HACK service. In most cases, when an application receives an
E2EACK_RECEIVED event, all intended receivers have received the message. However, it
is relatively easy to construct a scenario where the source receives the event, but not all
receivers obtain the message. For example, when a new overlay socket joins an overlay
network before the source has issues an E2EACK_RECEIVED, but after all its neighbors in
the overlay network have transmitted an E2E ACK for a message, the message will not
be received by the new sender. Without keeping track of the membership of overlay
sockets in an overlay network, it may be difficult to significantly improved the delivery
assurance of the E2EACK service. We note that in an overlay network where overlay

11/20/2005 Overlay Socket API (Advanced) 8

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

sockets frequently join and leave, there is an increased chance that the transmission of
messages and E2E ACKs is not completed before the timeout for partial ACKs occurs,
and a E2EPARTIALACK_RECEIVED is issued to the source of the message application.

The following program transmits the HelloWorld message using the E2E ACK service.
The methods handle_E2EACK_RECEIVED and
handle_E2EPARTIALACK_RECEIVED are event handler methods that are part of the
NotificationHandler class. The methods are called when the corresponding events occur.
In the example, when the application program receives a partial acknowledgement, it
retransmits the message.

public class HelloWorld extends NotificationHandler implements

I_ApplicationCallBack I_ReceiveCallback {

 public static void main(String[] args) {

 String MyString = new String("Hello World");

 HelloWorld hw = new HelloWorld();

 HyperCastConfig ConfObj =

 HyperCastConfig.createOLConfig("hypercast.xml");

 I_OverlaySocket MySocket=ConfObj.createOverlaySocket(hw, hw);

 MySocket.joinOverlay();

 Thread.sleep(4000);

 I_OverlayMessage msg =

 MySocket.createMessage(MyString.getBytes(), E2EACK);

 MySocket.sendToAll(msg);

 }

 void handle_E2EACK_RECEIVED (Object event) {

 short MsgID = (byte []) event;

 System.out.println("Message " + MsgID+ “is acknowledged”);

 }

 void handle_E2EPARTIALACK_RECEIVED (Object event) {

 short MsgID = event;

 System.out.println("Message " + MsgID+ “partially acknowledged”);

 //Redo with different message ID;

 String MyString = new String("Hello World");

 I_OverlayMessage msg =

 MySocket.createMessage(MyString.getBytes(), E2EACK);

 MySocket.sendToAll(msg);

 }

}

Synchronization

11/20/2005 Overlay Socket API (Advanced) 9

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

The synchronization service of HyperCast assures persistence of overlay messages that
are transmitted in an overlay network. Each overlay socket stores all messages that have
been transmitted or received in a local repository. Periodically, each overlay socket
contacts its neighbors in the overlay network to synchronize the content of its repository
with that of its neighbors. If a neighbor has a message that is missing in the local
repository, the overlay socket requests the missing message from the neighbor.
Whenever an overlay message receives a message for the first time, the message is
delivered to the application program.

The synchronization service is useful for interactive shared collaboration applications,
e.g., a shared whiteboard, where an application that joins an overlay network needs to
receive data that has been transmitted before the application joined. The synchronization
service can help with recovering messages that were transmitted while an application
was disconnected from the overlay network.

Incast

An incast service supports many-to-one communication primitives, where multiple
applications send data to a single application. The need for many-to-one
communications appears in many application domains, such as, collection of sensor data
from a sensor array, collection of responses to distributed queries, and transmission of
network management information from managed devices to a monitoring application.
Incast can be thought of as a reverse broadcast where multiple overlay sockets send data
to a single overlay socket. An incast message is a unicast message. Each overlay socket
that receives and forwards an incast message stores and holds the message for a finite
period of time. If during this holding time, other messages arrive with the same message
identifier and the same destination address, the overlay socket concatenates the payloads
of these messages to form a single payload. When the holding time of a message
expires, a single message is sent to the next upstream neighbor in the tree. In this sense,
incast permits to merge messages that are sent from multiple sources to the same
destination. The incast service only merges messages that have the same destination
address and message identifier.

Duplicate Elimination

In this service, an overlay socket memorizes the message identifier of each message that
is forwarded or delivered to the application program. If the overlay socket receives a
message with a known message identifier, the message is dropped. The duplicate
elimination service is particularly useful in conjunction with the flooding delivery mode,
where it can prevent the transmission of duplicates of the same message.

Best-effort Ordering

The best-effort ordering message is a stream-oriented service that tries to ensure an in-
sequence delivery of messages of messages with the same stream identifier. An overlay
socket uses the sequence number in stream-oriented messages to determine if an arrived
message is in sequence. The service assumes that messages are transmitted with
increased sequence numbers. The service is useful in situations when frequent changes
to the network topology cause out-of-sequence delivery of messages, i.e., messages are
received in a different order than they were sent. The INORDER delivery does not
recover lost or excessively delayed messages. A reliable in-sequence service that

11/20/2005 Overlay Socket API (Advanced) 10

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

combines a retransmission scheme of the H2HACK or E2EACK services with the
INORDER service is currently not provided in HyperCast.

The INORDER service does not consider the source address of a message when
ordering messages according to sequence numbers. Thus, when INORDER messages
with identical stream identifier are received from different sources, the overlay socket
treats them as belonging to the same sequence.

An overlay socket uses the concept of an expected sequence number to determine if a
message is in-sequence. The expected sequence number is initialized with the first
received message for a given stream identifier. The expected sequence number is
incremented each time a message is delivered to the application program. After the first
message, the overlay socket delivers the message with the expected sequence number to
the application program. Received messages with a sequence number smaller than the
expected sequence number are discarded. Messages with a sequence number larger than
the expected sequence number are buffered for some time. When the timer goes off, the
message and all buffered messages with a smaller sequence number are passed to the
application in the order of the sequence numbers, and the expected sequence number is
reset. Since an in-sequence delivery of messages to the application is violated when a
timeout occurs on the buffering times, the service is said to provide a best-effort
ordering.

3.2. STREAM API

The stream API for overlay sockets gives programmers the simplicity and convenience
of the byte-oriented streams programming abstraction from the Java I/O package.
Streams in Java are defined as ordered sequences of data from a source (input streams)
or to a destination (output streams). The stream API is built on top of the message-
oriented interface of the overlay socket. It permits programs to send or receive bytes by
writing to a Java OutputStream or by reading from a Java InputStream. The stream API
is provided through the StreamManager class, which translates the message-oriented
best-effort ordering service (INORDER) into a byte-stream oriented API.

Input and output streams are bound to a stream identifier of INORDER messages. The
binding occurs when the streams are created. When an application program creates an
output stream and binds it to a stream identifier, the data transmitted on this stream are
INORDER messages with the given stream identifier. There are no explicit operations
for allocating or releasing stream identifiers. A stream identifier is allocated implicitly
when an overlay socket is sending data with a given stream identifier for the first time.
An overlay socket may delete information about a stream identifier if no data is sent to
the stream for a long time. Stream identifiers are locally interpreted and do not have a
scope where uniqueness is assumed or enforced. For unicast messages, messages with
identical stream identifier can be in use for data streams between different senders and
receivers, without interfering with each other. For broadcast messages, if two sources
use the same stream identifier, the messages may become interleaved at the receivers.

11/20/2005 Overlay Socket API (Advanced) 11

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Stream Manager

Overlay Socket Interface

Stream Interface

Application

Best-effort

ordering

(INORDER)

messages

Figure 3. Stream Manager.

The following application program illustrates the use of the Stream API. We present a
version of the HelloWorld program that transmit the “Hello World” string to an output
stream, and a version that reads the string from an input stream. The implementation of
the sender is as follows:

public class HelloWorld_StreamSender {

 public static void main(String[] args) {

String MyString = new String("Hello World");

HyperCastConfig ConfObj = HyperCastConfig.createOLConfig("hypercast.xml");

I_OverlaySocket MySocket=ConfObj.createOverlaySocket(null);

MySocket.joinOverlay();

Thread.sleep(4000);

StreamManager MyStreams = MySocket.getStreamManager();

try {

 HCastOutputStream out = MyStreams.getOutputStream(1111);

 byte[] b = MyString.getBytes();

 for (int i=0; i < b.length; i++) {

 out.write((int) b[i]);

 }

11/20/2005 Overlay Socket API (Advanced) 12

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

 out.flush();

} catch(Exception e) { }

 }

}

The program creates an overlay socket that joins an overlay network, as seen many
times before. Before sending data, the program waits for a few seconds to give the
overlay protocol the opportunity to integrate the overlay socket in the overlay network.
Then, the application program creates an object of type StreamManager. This is the
stream manager that supports the creation of input and output streams for an overlay
socket. The program requests from the stream manager an output steam that is bound to
stream identifier 1111. The class HCastOutputstream extends the base class
OutputStream by a few methods that give access to HyperCast specific information.
Once the output stream is created, the program writes the string “HelloWorld” byte by
byte. The stream manager is responsible for generating overlay messages, filling the
payload of the message, and transmit the message. By calling flush, the application
forces the stream manager to transmit an overlay message. By default, the stream
manager broadcasts all data sent to an HCastOutputstream output stream, but the
delivery mode can be modified by the application. In the above example, the delivery
mode of the output stream can be set to unicast by invoking.

out.SetUnicast (LAddr);

Here, LAddr is the logical address of the intended destination in the overlay network.
The HCastOutputstream can switch back to broadcast delivery mode by issuing

 out.SetBroadcastl;

Next, we take a look at the corresponding program that receives a stream. This is
implemented by the following program:

public class HelloWorld_StreamReceiver {

 public static void main(String[] args) {

HyperCastConf ConfObj = HyperCastConf.createOLConfig("hypercast.xml");

I_OverlaySocket MySocket=ConfObj.createOverlaySocket(null);

MySocket.joinOverlay();

StreamManager MyStreams = MySocket.getStreamManager();

HCastInputStream in = MyStreams.acceptInputStream(1111);

byte[] a = new byte[1];

int length;

try {

 while((length = in.read(a)) > 0) {

 for (int i=0; i<length; i++) {

 System.out.println((char) a[i]);

 }

 }

 in.close();

11/20/2005 Overlay Socket API (Advanced) 13

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

} catch (Exception ee) {}

 }

}

This program creates a StreamManager object which creates an HCastInputstream that
is bound to stream identifier 1111. The acceptInputStream method blocks the
application program until the stream manager receives a message with the specified
stream identifier. If a message with stream identifier 1111 arrives, the application reads
the data byte by byte and displays the results. The stream manager buffers incoming
traffic for each stream identifier, even if the application has not created an input stream
for the identifier. However, the amount of data buffered is limited. In the example, when
acceptInputStream is issued and data from the HelloWorld_StreamSender program has
already arrived for stream identifier 1111, the application may receive data that has been
received before the application has issues the acceptInputStream data. The stream
manager does not distinguish different sources when receiving messages on an input
stream. Therefore, when multiple applications use the same stream identifier to send
data to the same overlay socket, the data of the stream from different sources may
become interleaved in the stream manager.

In the HelloWorld program, the application program specifies a specific stream
identifier. If data arrives to the stream manager, but not for stream identifier 1111, the
application continues to wait. If the application wants to create an input stream for
arriving data with any given stream identifier, it uses the statement.

HCastInputStream in = MyStreams.acceptInputStream();

API of the Stream Manager

Next, we give an overview of the API for programs that take advantage of the stream
manager. With exception of the first method, all of the following methods are defined by
the StreamManager class.

StreamManager getStreamManager()

A stream manager is created by the getStreamManager method of the overlay socket
interface. The stream manager can be created at any time during the lifetime of the
connections. Once created, the stream manager exists for the remainder of the
lifetime of the overlay socket. After a stream manager is created, all INORDER
messages that the overlay socket delivers to the application program are sent to the
stream manager.

int getServiceIdentifier ()

Returns the service identifier of a message.

HCastInputStream acceptInputStream()

HCastInputStream acceptInputStream(short sid)

Block the calling thread until data arrives to the stream manager and creates an input
stream. Without a parameter the calling thread is blocked until data arrives for a
stream identifier for which the application does not yet have an input stream. If the
call is issued and data is available in the stream manager for one or more streams for

11/20/2005 Overlay Socket API (Advanced) 14

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

which no input stream has been created, the stream manager creates an
HCastInputStream for one of these streams. If a parameter is provided, the method
blocks the calling thread until data is available with a matching stream identifier.

HCastOutputStream getOutputStream()

HCastOutputStream getOutputStream (short sid)
Creates an HCastOutputStream with a given stream identifier. If no parameter is
provided the stream manager determines the identifier. After an output stream is
created the application program can write data to the output stream.

API of HCastInputStream and HCastOutputStream

The HCastInputStream and HCastOutputStream classes extend the InputStream and
OutputStream in the Java I/O package, and support all methods defined for these
streams. For input streams, these include the following methods:

int available()
Returns the number of bytes that can be read (or skipped over) from this input
stream without blocking the next caller of a method for this input stream.

void close()
Closes an input stream and releases any system resources associated with the stream.

int read()

Reads the next byte of data from the input stream.

int read(byte[] b)

Reads some number of bytes from the input stream and stores them in a buffer.

int read(byte[] b, int off, int len)

Reads up to len bytes of data from the input stream into an array of bytes.

long skip(long num)
Skips over and discards num bytes of data from this input stream.

The methods required by OutputStream are as follows:

void close()
Closes this output stream and releases any system resources associated with this
stream.

void flush()
Flushes this output stream and forces any buffered output bytes to be written out.

void write (byte[] b)
Writes b.length bytes from the specified byte array to this output stream.

void write (byte[] b, int offset, int len)
Writes a given number of bytes an output stream. The written data is from a byte
array starting at a specified offset.

11/20/2005 Overlay Socket API (Advanced) 15

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

void write (byte b)
Writes the specified byte to this output stream.

The following additional methods are defined in the HCastOutputStream class provides,
in addition the following methods:

short getStreamIdentifier ()

Returns the stream identifier associated with an HCastInputStream or
HCastOutputStream.

void setUnicast (I_LogicalAddress Laddr)

Sets the delivery mode for all outgoing messages to unicast with the specified logical
address as destination.

void setBroadcast ()
Sets the delivery mode for all outgoing messages to broadcast.

void setFlood ()
Sets the delivery mode for all outgoing messages to flooding.

byte getDeliveryMode ()

Returns the current delivery mode for outgoing messages. The values are broadcast
(0x1), flood (x02), or unicast (0x3).

void setHopLimit (short value)
Sets the hop limit field for outgoing messages of a given output stream. The hop
limit is the maximum number of overlay sockets traversed before a message is
dropped.

short getStreamIdentifer (InputStream)

Returns the stream identifier of an HCastInputStream and HCastOutputStream.

3.3. EVENT NOTIFICATIONS

HyperCast has a notification system by which the overlay socket can report events of
interest to an application program. For example, when an application program has issued
a joinOverlay it often wants to wait until the overlay socket has been integrated in the
overlay network topology before transmitting data. In several of the earlier presented
versions of the HelloWorld program, application programs paused for a few seconds
before transmitting the “HelloWorld” string. However, this time may overestimate or
underestimate the actual time until the overlay socket is integrated into the overlay
network. With the event notification system of the overlay socket, an application
program can be alerted when the overlay protocol has stabilized.

The event notification system for application is handled by the NotificationHandler
class. Objects of this class have an event queue and a thread. The notification system is
triggered when some object in the overlay socket fires an event. Firing an event
corresponds to adding an event object to the event queue. The thread processes events in
the queue in a FIFO order. For each event, a NotificationHandler has an event handler

11/20/2005 Overlay Socket API (Advanced) 16

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

method with an empty implementation. By overriding these empty handler methods an
application programs can determine the code to be executed when an event occurs. All
events in HyperCast are predefined. An application programmer can write custom event
handlers, but cannot define new events. Adding new events requires changes to the
HyperCast software and is explained in Chapter [ChangeCode].

To enable notifications of events, an application program creates an object that extends
the HyperCast event handler class NotificationHandler. An application can use events in
three ways: (1) It can specify a handler method that is executed when an event is fired;
(2) It can block and wait until an event occurs; Or (3) it can implement a complete
notification handler that processes all events.

We next show how an application program that uses the event notification system. The
following code segments defines a customized event handler that extends the
NotificationHandler class:

class MyNotificationHandler extends NotificationHandler {

 public void handle_NODE_HASBECOMESTABLE

 (final NODE_HASBECOMESTABLE event) {

 System.out.println ("Socket is in a stable state at: " + event.getTimestamp());

 }

 public void handle_NODE_NEIGHBORHOODCHANGED

 (final NODE_NEIGHBORHOODCHANGED event) {

 System.out.println ("Neighborhood change at: " + event.getTimestamp());

 }

}

This class overrides the handler methods for the events NODE_HASBECOMESTABLE
and NODE_NEIGHBORHOODCHANGED. The event
NODE_HASBECOMESTABLE is fired when the overlay protocol has reached a stable
state. Often, when a protocol has become stable for the first time after an overlay socket
has joined the overlay network, the overlay socket has been fully integrated into the
overlay socket. The event NODE_NEIGHBORHOODCHANGED is fired when the
neighborhood of the overlay socket has changed, that is, a new neighbor has arrived or
an existing neighbor has left. Most overlay protocols support these events. For all other
events, the empty default handlers are invoked.

The example illustrates the convention for naming event handler methods. For an event
of type

 NODE_HASBECOMESTABLE

the handler method is called

 handle_NODE_HASBECOMESTABLE ()

When an event handler is invoked it contains as parameter an event event object, that
carries information about the event. Each event object has a timestamp that can be
accessed with the method getTimestamp. The timestamp is the time when the event has
occurred. In addition, there is an event specific object that contains information about
the event. To exploit this information, an application programmer needs to know the
type of the event specific object.

11/20/2005 Overlay Socket API (Advanced) 17

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

The following version of the HelloWorld program uses the previously defined
MyNotificationHandler class:

public class HelloWorld implements I_ApplicationCallBack I_ReceiveCallback {

 public static void main(String[] args) {

 String MyString = new String("Hello World");

HelloWorld hw = new HelloWorld ();

MyNotificationHandler nh = new MyNotificationHandler();

HyperCastConfig ConfObj = HyperCastConfig.createOLConfig("hypercast.xml");

 I_OverlaySocket MySocket=ConfObj.createOverlaySocket(hw, nh);

 MySocket.joinOverlay();

hw. WaitUntilNODE_HASBECOMESTABLE();

I_OverlayMessage msg = MySocket.createMessage(MyString.getBytes());

 MySocket.sendToAll(msg);

 }

}

The program creates a notification handler object, which is passed as an argument when
the overlay socket is created:

 I_OverlaySocket MySocket=ConfObj.createOverlaySocket(hw, nh);

This is a new signature of the createOverlaySocket method. The first argument sets the
callback method for arriving messages, as seen many time before, and the second
argument is the notification handler. If an overlay socket is created in this fashion, the
event handlers defined in the class MyNotificationHandler are executed each time the
corresponding events are fired. The HelloWorld program with E2EACK service (from
Section [Enhanced Service] also contains an event notification handler. The
implementation of the notification handler in that example is different, in that the
application program extends the NotificationHandler class.

When the overlay socket is created, the application program blocks until the overlay
protocol in the overlay socket has reached a stable state. This is done by calling:

 nh. WaitUntilNODE_HASBECOMESTABLE ();

The WaitUntilNODE_HASBECOMESTABLE method is associated with the event
NODE_HASBECOMESTABLE. The calling thread is blocked until the event is fired. If an
application program does not want to wait indefinitely for an event, it can provide an
argument that specifies the maximum waiting time in milliseconds. For example, by
invoking

nh. WaitUntilNODE_HASBECOMESTABLE (1000);

the application program is blocked for at most one second. When the maximum waiting
time is reached, the method unblocks the thread and returns a null object. If multiple
threads are blocked on the same event, all threads waiting on the event become
unblocked. This can be useful in multithreaded applications, where different threads
may want to block on different events. The prefix WaitUntil is the convention used for all
methods that block on an event. Note that the HelloWorld program blocks on the event

11/20/2005 Overlay Socket API (Advanced) 18

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

NODE_HASBECOMESTABLE and also receives an event notification via the event
handler method handle_NODE_HASBECOMESTABLE.

The third method to deal with events is when the application program intercepts all
events that are fired, instead of writing event specific handler methods. This is done by
overriding the method handle of the NotificationHandler. The handle methods gives the
application program the most flexibility with respect to processing events. However,
overriding the handle method should be done with caution, since it disables the built-in
event notification process of invoking event specific handler methods and unblocking of
threads waiting on events. The following version of the notification handler contains an
implememtation of the handle method. If this class is used for the HelloWorld program,
then the call that blocks the program with WaitUntilNODE_HASBECOMESTABLE is
not available.

class MyNotificationHandler extends NotificationHandler {

 public void handle (final NOTIFICATION_EVENT event) {

 if (event instanceof NODE_HASBECOMESTABLE) {

 NODE_HASBECOMESTABLE ev = (NODE_HASBECOMESTABLE) event;

 System.out.println ("NODE_HASBECOMESTABLE at: " +

 ev.getTimestamp());

}

else {

 System.out.println ("Some other event at: " + event.getTimestamp());

}

 }

}

At the end of the section, we give an overview of the available events. Refer to Table 2
for information how an event is fired and what the event object is. For each defined
event, the NotificationHandler class has an event handling method (with prefix handle_)
and a method on which a thread can block (with prefix WaitUntil). As discussed,
applications can override the event handling methods, but the WaitUntil methods that
block an application are immutable.

Table 2. Events defined in HyperCast.

Event Fired by: Event object:

NODE_HASBECOMESTABLE Overlay protocols HC and DT

null

NODE_LEAVEOVERLAY Overlay protocols HC, DT,
and SPT

null

NODE_LOGICALADDRESSCHANGED Overlay protocols HC, DT,
and SPT

null

NODE_NEIGHBORHOODCHANGED Overlay protocols HC, DT, null

11/20/2005 Overlay Socket API (Advanced) 19

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

and SPT

E2EACK_RECEIVED,
E2EPARTIALACK_RECEIVED

E2EACK enhanced service I_OverlayMessage
(currently it is a short
containing a message
identifier)

NEWSTREAM_ARRIVED_EVENT Stream manager short
(containing a stream
identifier)

NODE_SPT_CHILDRENCHANGED,
NODE_SPT_PARENTCHANGED,
NODE_SPT_ ROOTCHANGED

Overlay protocol SPT ????

• NODE_HASBECOMESTABLE (Note: currently it is NODE_ISSTABLE): The event
is fired when the overlay node in the overlay socket satisfies the conditions for local
stability as defined by the overlay network protocol. Normally, local stability means
that the overlay protocol has converged after the local socket has joined the overlay
or after a neighbor of the overlay socket has joined or left. The event may not be
defined by all overlay protocols.

• NODE_LEAVEOVERLAY (Note: Rename “NODE_LEAVEGROUP” to

“NODE_LEAVEOVERLAY”). The event is fired by an overlay node when the node
determines that it has left the overlay network.

• NODE_LOGICALADDRESSCHANGED: The event indicates that the logical
address of the overlay socket has changed.

• NODE_NEIGHBORHOODCHANGED: The event is fired when the neighbor table
of the overlay node has changed, that is, a new neighbor in the overlay network has
appeared or an existing neighbor has left.

• E2EACK_RECEIVED, E2EPARTIALACK_RECEIVED: The events are fired at the
source of messages that are sent with the E2EACK service. When an event
E2EACK_RECEIVED is fired, the overlay socket has received all expected
E2EACKs. This indicates that the delivery of an E2EACK message has been
successful. When the event E2EPARTIALACK_RECEIVED is fired, the
transmission of an E2EACK message has not been successful. The event object for
these events contain the complete messages. With the message, the application can
match the delivery confirmation with the transmitted message.

• NEWSTREAM_ARRIVED_EVENT: The event is fired by the stream manager, which
implements the stream API, when data is received for a new stream identifier. An
application program can react to this event by creating a new input stream.

• NODE_SPT_CHILDRENCHANGED, NODE_SPT_PARENTCHANGED,
NODE_SPT_ ROOTCHANGED: These events are specific to the SPT protocol, and
are explained in the context of the SPT protocol.

3.4. MESSAGE INTERCEPTION API

The message interception API consists of a callback method that permits applications
participating in an overlay network to view and manipulate every incoming message

11/20/2005 Overlay Socket API (Advanced) 20

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

before the message is processed by the overlay socket. The interception API is an ideal
access point for malicious or non-cooperating users in an overlay network, who want to
filter or modify messages based on payload content. The interception API explicitly
exposes the vulnerability of application overlay network, where a non-cooperating
application may manipulate or filter data for which it is neither the sender nor the
receiver. Application layer networks can discourage or limit the impact of non-
cooperative or malicious users by providing appropriate incentives or by auditing the
behavior of applications. HyperCast leaves it to the application programmer to supply
such policies and mechanisms.

The role of the intercept callback is best explained by reviewing how an incoming
overlay message is processed in an overlay socket. Refer to Figure 4 for an illustration.
When a message arrives the overlay socket first verifies correctness of the message.
Then the message is processed and the header of the message is updated. Next, the
message is forwarded to neighbors as determined by the message header and the
neighbor table of the overlay protocol. In the last step, the overlay socket determines if
the message should be delivered to the application program. Broadcast and flooding
messages are always passed to the application. Unicast messages are passed to the
application if the destination address of the message matches the logical address of the
overlay socket. A message is passed to an application in one of two ways. By default,
the message is written to the application buffer from which it can be retrieved by the
application program with the receive method. If the application program provides a
receive callback method at the time the overlay socket is created, this callback is
invoked on the message.

Application Program

Overlay Socket

Verify validity

of message

Call

InterceptCallback

Forward

message

Underlay Network

Process

message

Intercept

Callback

Receive

Callback

Application

Buffer

Call

ReceiveCallback

Figure 4. Processing an Incoming Packet.

Figure 4 illustrates that the intercept callback is invoked right after the correctness of the
header is verified. When the callback is completed the overlay socket continues
processing the message. The intercept callback can change the payload of the message,
modify the source and destination addresses, change a unicast message to a broadcast
message, force the message to be dropped by setting the hop limit field to zero, and so

11/20/2005 Overlay Socket API (Advanced) 21

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

forth. In comparison, the regular receive operation is safer, since the message is passed
to the receive method only after the overlay socket is done with processing the message.

When an application program uses the intercept callback, the application program may
see the same overlay message twice: Once by the intercept callback before the message
is processed by the overlay socket, and once by the receive callback after the message is
processed by the overlay socket. Figure 5 illustrates the traversal of a unicast message
through the overlay network.

The figure shows the processing of a message at the source, at an intermediate
application that forwards the unicast message, and at the destination the message. At the
source the message is passed by the application program to the overlay socket, and is
transmitted over the underlay network. When an overlay socket receives the unicast
message, the message is normally only passed to the application if the overlay socket is
the destination of the message. However, with the intercept callback, all intermediate
applications see and possibly modify the unicast message. At the destination, the
message is first passed to the intercept callback and then to the receive callback.

Figures 6 shows how the intercept callback operates for broadcast messages. Since a
broadcast message is forwarded to all applications in the overlay network, each
application in the overlay network intercepts the message.

Figure 5. Interception of a unicast messages

Figure 6. Interception of a broadcast message

11/20/2005 Overlay Socket API (Advanced) 22

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Although it appears that the main role of the intercept callback is for malicious purposes,
the interface can be useful in many scenarios. In the following version of the
HelloWorld program, an overlay socket uses the intercept callback to add its own logical
address to the payload. As a result, each transmitted overlay message carries information
about its route through the overlay network. The following program extends the
HelloWorld program to include the interception API:

public class HelloWorld implements I_ReceiveCallback, I_InterceptCallback {

 I_OverlayMessage InterceptCallback (I_OverlayMessage msg) {

 byte[] data = msg.getPayload();

 String ChangedString = data.toString() +

 “(“ + MySocket.getLogicalAddress().toString()+ “,”

 System.currentTimeMillis() + “)”;

Msg.setPayload = ChangedString.toBytes()

return msg;

 }

 public void ReceiveCallback (I_OverlayMessage msg) {

 byte[] data = msg.getPayload();

 System.out.println("Received message is " + new String(data) + ".");

 }

 public static void main(String[] args) {

 HelloWorld hw = new HelloWorld ();

 String MyString = new String("Hello World");

 NotificationHandler nh = new NotificationHandler();

HyperCastConfig ConfObj = HyperCastConfig.createOLConfig("hypercast.xml");

 I_OverlaySocket MySocket=ConfObj.createOverlaySocket(hw, nh, hw);

 MySocket.joinOverlay();

 nh.WaitUntilNODE_HASBECOMESTABLE();

 MyString = MyString + MySocket.getLogicalAddress().toString();

I_OverlayMessage msg = MySocket.createMessage(MyString.getBytes());

MySocket.sendToAll(msg);

 for(;;);

 }

}

All application programs that use the intercept callback implement the
I_InterceptCallback interface, which contains a single method InterceptCallback. This
method is called when a message is intercepted. The implementation of the intercept
callback in the extracts the payload of the message, and then changes the payload by
adding the logical address of the overlay socket to the message. The result of the
interception can be seen when the receive message displays the payload.

The intercept callback is set when the overlay socket is created. The parameters in
I_OverlaySocket MySocket=ConfObj.createOverlaySocket(hw, nh, hw);

11/20/2005 Overlay Socket API (Advanced) 23

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

sets the receive callback in the first argument, the notification callback in the second
interface, and the intercept callback in the third argument. Here, the HelloWorld class
provides callbacks for both intercepting and receiving messages.

In the createOverlaySocket method, the object that provides the intercept callback is
always the third argument. If no receive callback and no notification handler are set, the
first and second argument are set to null:

I_OverlaySocket MySocket=ConfObj.createOverlaySocket(null, null, hw);

3.5. CONFIGURING OVERLAY SOCKETS – ADVANCED TOPICS

This section has additional information for application programmers on the
configuration of overlay sockets. We discuss the organization of configuration files, we
show how to download configuration information from a server, discuss how the method
createOLConfig operates when interacting with a server, and discuss an API that
interacts with the configuration of an overlay socket.

Configuration Attributes

Configuration attributes describe the configuration of an overlay socket. All
configuration attributes discussed so far are stored in a configuration. However, some
attributes cannot be obtained from the configuration file, and must be specified by the
application program. Such attributes generally contain confidential information, such as
a password to access a private key or a certificate. We refer to configuration attributes
that must be configured by the application program as private attributes, and all other
attributes as public attributes. Private attributes are never stored in a configuration file
and are not retrievable from a server.

From Chapter [API-basic] you know that configuration files for overlay sockets are
XML documents. The root element of the configuration file has the name public,
indicating that the configuration file contains the public attributes. Figure 7 shows the
hierarchical organization of public attributes. Attributes that contain subattributes are
indicated as boxes. When a configuration file is loaded by an application program, either
from a local file or an overlay server, it is represented as a DOM document. A DOM
document has a tree structure consisting of a hierarchy of nodes, each representing an
element of the XML document. Each node in the tree represents an element in the XML
file. The configuration object contains a DOM representation of the XML configuration
file. We use XPath expressions to refer to a single element or a subtree in the XML
document. As an example, /Public/Node/DTBuddyList/BuddyList is an XPath expression
that denotes the attribute BuddyList in the overlay protocol DTBuddyList.

Although they are not stored in a file, private attributes are also organized as an XML
document and are internally represented as a DOM document. The root element of the
document has the name private. The number of private attributes is small, and only a
few socket configurations require private attributes, mostly for setting security
properties of an overlay socket.

11/20/2005 Overlay Socket API (Advanced) 24

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Figure 7. Structure of the configuration file.

The format and the default values of attributes are described by XML schema files.
There is one XML schema file for the public attributes and another one for the private
attributes. An XML configuration file document that is valid with respect to the schema
file is likely to result in a usable configuration file. The schema files for the public and
the private attributes are part of the HyperCast software distribution, and have names:

hypercast_xxx.xsd
hypercastPrivate_xxx.xsd

Here, xxx is the version of the HyperCast software. Each new distribution of the
HyperCast socket contains new XML schema files. Since the schema files describe all
valid configurations of overlay sockets, they are quite large. The API for configuration
objects can validate a configuration against a schema definition.

When the configuration of an overlay socket requires an attribute that is not specified,
either by the application program or the configuration file, then the overlay socket
selects the default value for the attribute from the XML schema. If a default value is
needed, but the schema file does not specify a default, then the configuration of the
overlay socket fails.

Remark: To accelerate the lookup of default values when applications configure an
overlay socket, the default values from the XML schema files are made available to
application programs via the Java class file ConfigurationDefault.class. This avoids the

11/20/2005 Overlay Socket API (Advanced) 25

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

need to parse or lookup the XML schema file when a default value is needed. The
HyperCast utility package hypercast.util contains a standalone program
ExtractConfigurationDefaults.class which generates the ConfigurationDefault.java file.
The program may be run as follows:

 java hypercast.util.ExtractConfigurationDefaults
 ./hypercastMyVersion123.xsd
 ./hypercastPrivateMyVersion123.xsd
 ConfigurationDefaults.java

Here, the name of the XML schema files are hypercastMyVersion123.xsd and
hypercastPrivateMyVersion123.xsd. The ConfigurationDefaults.java file must be copied
to the directory that contains the HyperCast source files. Since changes to the XML
schema files of HyperCast are done by developers of HyperCast systems software, the
creation of the default source file is transparent to application programmers.

Overlay servers

If HyperCast is running in an environment where it can access the Internet, an
application can interact with a special HTTP server, called overlay server, that stores
configuration files and generate new overlay network identifiers. An overlay server is an
HTTP server that stores configuration files, where the configuration files are indexed by
their local identifier. Given the URL of the configuration file, a user can download
stored configuration files with a web browser. In addition to this obvious use of a web
server, HyperCast provides methods to interact with an overlay server and automatically
download or create configuration files.

The HyperCast software contains the implementation of an overlay server. This server is
a minimal implementation of an HTTP server and is run as a standalone application. An
overlay server is started with the command:

java overlay_server 8080

This command starts an overlay server at TCP port number 8080.

Creating configurations with createOLConfig

We next discuss in detail how the method createOLConfig creates a configuration object
from a configuration file. The first step of the configuration of a socket is the creation of
a HyperCastConfig object from the XML configuration file. The configuration object
contains all information needed to configure an overlay socket. In all examples seen so
far, an configuration object was created from a configuration file hypercast.xml by
calling the static method:

HyperCastConfig ConfObj = HyperCastConfig.createOLConfig("hypercast.xml");

The createOLConfig method creates a configuration object from the configuration file
and may also interact with an overlay server.

In the following we discuss the operations performed by the createOLConfig method,
without and with an overlay server. Let us first assume that the configuration object does
not involve an overlay server. This is indicated in the configuration file with one of the
following selections:

11/20/2005 Overlay Socket API (Advanced) 26

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

<OverlayServer>None</Overlayserver>

<OverlayServer></Overlayserver>

<OverlayServer />

If the configuration file contains an overlay identifier, the overlay socket will try to join
an overlay network with the given overlay identifier. If the file does not contain an
overlay identifier, the configuration object picks a new overlay identifier, using a local
address and a timestamp. The selection of a new overlay identifier results in the creation
of a new overlay network.

Let us now consider that the configuration file specifies an overlay server. An overlay
server is specified in the configuration file by providing the URL of the server, as
follows:

 <OverlayServer>

 <HTTPServer>143.71.22:8080/Groups</HTTPServer>
 </OverlayServer>

If the server cannot be reached, the overlay socket is configured from the information in
the local file.

Next we describe the actions performed by the createOLConfig method when the
configuration file is executed. The method first creates a configuration object of type
HyperCastConfig from the XML configuration file, and then contacts the overlay server.
If the configuration file has specified an overlay identifier, the configuration object
contacts the overlay server to test if the overlay server has a configuration file with the
given identifier. If the overlay server has a configuration file for this overlay identifier,
the configuration object will make an attempt to download this file. If the configuration
file does not exist at the server, the configuration object uploads its own configuration
file from the server, thereby creating a new configuration file at the overlay server. If
some attribute values in the downloaded file are different from the local configuration
file, the downloaded information takes precedence and overwrites the value in the
configuration object. (The configuration file is not modified, however). There is one
exception when overwriting attributes. Attributes listed in the LocalAttributes list in the
local configuration file are not overwritten with downloaded information. Attributes in
this list are assumed to be locally assigned.

Now let us suppose that the local configuration file does not specify an overlay
identifier. Then, the configuration object uploads the configuration file (without an
overlay identifier) to the overlay server. The server generates a new overlay identifier
for this file, creates a new configuration file at the overlay server, and returns the
complete file (with overlay identifier) to the configuration object. The overlay identifier
in the returned file is used by the configuration object when the socket is created.

Figure 8 illustrates the interactions of the configuration object of type HyperCastConfig
with the overlay server. The object is created from a configuration file. The
configuration object interacts with the overlay server by testing if a given overlay
identifier exists, and by downloading and uploading a configuration file. Once the
interaction with the overlay socket is completed, the configuration object creates an
overlay socket. Additionally, The HyperCastConfig object can also be accessed and with
the methods of the configuration API discussed in the next subsection.

11/20/2005 Overlay Socket API (Advanced) 27

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Figure 8. Interaction of the createOLConfig method with a configuration file and overlay

server.

In all situations, when the overlay server cannot deal with a request, it returns an error
message (that starts with “ERROR”). If that happens the configuration object throws a
HyperCastConfigurationException and does create an overlay socket.

Programming with configuration objects

The method createOLConfig defines a default set of actions to be performed when
configuring an overlay socket. While the createOLConfig method is likely sufficient for
the vast majority of applications, the decisions made by createOLConfig, e.g., for
selecting an overlay identifier when none is specified in the configuration file, may not
be suitable for some application program.

In the following we describe an API for configuration objects that gives application
programmers a great deal of flexibility for manipulating the configuration object. The
API has a variety of methods for constructing a configuration, for uploading and
downloading configuration files to and from an overlay server, and for reconciling
configuration information from multiple sources.

Before discussing the methods of the API in detail, let us take a look at the
implementation of the ` method. The method is implemented as follows:

public static HyperCastConfig createOLConfig(String filename) {

 HyperCastConfig ConfObj =new HyperCastConfig (filename);

 try {

 String overlayId = ConfObject.getTextAttribute (“/OverlayID”);

 String overlayServer = ConfObject.getTextAttribute (“/OverlayServer”);

 Boolean existsOverlayId = ((overlayId == null) || (overlayId.equals (""));

 Boolean existsOverlayServer =

 (overlayServer == null) || (overlayServer.equals (""));

 if (! existsOverlayId && ! existsOverlayServer)

11/20/2005 Overlay Socket API (Advanced) 28

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

 ConfigObj.createandsetOverlayId();

 if (existsOverlayServer) {

 URL serverURL = ConfObject.getURIAttribute (“/OverlayServer”);

 if (! existsOverlayId || ! ConfObject.doesOverlayExist (serverURI, overlayId))

 String OverlayId = ConfigObj.UploadConfig (serverURI);

 document DConfig

 = ConfigObj.DownloadConfig(serverURI, OverlayId);

 ConfigObj.MergeConfig (document DConfig);

 }

 } catch (Exception e) {

 System.err.println("Exception when creating overlay configuration object.");

 System.err.println("Exception: " + e.getMessage());

 System.err.println("Exiting.");

 e.printStackTrace(System.err);

 System.exit(1);

 }

return ConfObj;

}

The program first constructs a HyperCastConfig object from the XML configuration file
whose name is passed as an argument. The configuration information is stored in a
DOM document. Then the program determines if the configuration file contains an
overlay identifier and an overlay server. If neither are specified then the configuration
object sets a new overlay identifier with the method createandsetOverlayId. If an
overlay server is specified, the URL of the server is extracted with the method
getURIAttribute. If the configuration file does not have an overlay identifier or if the
overlay identifier is not known at the server, then the configuration object uploads the
entire DOM document with the configuration information to the overlay server. The
method returns the new value of the overlay identifier that has been chosen by the
overlay server. Before transmitting the document, it is converted into an XML
document. Finally, the configuration object downloads the configuration file from the
server (DownloadConfig) and then reconciles the downloaded information with the
content of the configuration object.

Next we discuss the methods of the configuration API. Since the configuration object is
needed for the configuration of an overlay socket, modifying the configuration object
after a socket has been created has generally no effect.

HyperCastConfig (filename XMLfilename)

HyperCastConfig (URL serverURI, String OverlayId)

These are the two constructors for the configuration object. The first constructor uses
an XML file, the second constructor downloads a configuration file from an overlay
server, using the given overlay identifier. The constructors fail when the file does not
exist or when the overlay server does not have a configuration file with the given
overlay identifier.
The constructors also compute the overlay hash of the socket configuration. The
overlay hash is built from the values of the hash attribute list, and serves as a
signature for the configuration of an overlay socket. The overlay hash is included in

11/20/2005 Overlay Socket API (Advanced) 29

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

protocol messages sent by an overlay socket. An overlay socket rejects received
protocol messages whose overlay hash is different from that of the overlay socket. In
this way, an overlay socket can join an overlay network only if it has the same
overlay hash as the sockets in the overlay network.

 boolean testIfAttributeIsDefined (Xpath name)

Tests whether an attribute is defined. This method is generally not needed in
application programs. When an overlay socket is configured and an attribute is not
defined, then the configuration takes the default value for the attributes.

String getTextAttribute (String name)

Retrieves a public attribute from the configuration object. The attribute is specified
as a string containing an XPath expression, and the type of the attribute is specified
in the name of the method. There are many such methods, one for each data type
used in the configuration file: getIntAttribute, getLongAttribute, getNonNegative-

IntAttribute, getPositiveIntAttribute, getNonNegativeLongAttribute, getPositive-

LongAttribute, getNonNegativeShortAttribute, getURIAttribute.

setTextAttribute (String name, String value)

Modifies a public attribute in a configuration object. The attribute is specified as a
string containing an XPath expression, and the value is given as the second
parameter. The attribute is specified in the name of the method. There is one method
for each data type that can appear in the configuration value: setIntAttribute,

setLongAttribute, setNonNegativeIntAttribute, setPositiveIntAttribute, setNon-

NegativeLongAttribute, setPositiveLongAttribute, setNonNegativeShortAttribute,

setURIAttribute.

String getPrivateTextAttribute (String name)

Retrieves a private attribute from the configuration object. Private attributes must be
explicitly set by the application program and are never stored in a configuration file.
As with public attributes, there are numerous versions of the methods for the
different types of attributes.

setPrivateTextAttribute (String name, String value)

Sets a private attributes in the configuration object.

String UploadConfig (URL serverlocation)

 This method uploads the public attributes in the configuration object as an XML
document to an overlay server. The DOM document in the configuration object is
transmitted as an XML document. The overlay server returns the overlay identifier
in response to an upload operation, and the value is returned by the method. Private
attributes are not uploaded.
How long does the program block to wait? What happens if server cannot be
contacted?

document DownloadConfig (URL serverlocation, String OverlayIdentifier)

This method downloads a configuration file with public attributes from an overlay
server and stores it as a DOM document. The parameters identify the location of the

11/20/2005 Overlay Socket API (Advanced) 30

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

overlay server and the overlay identifier of the configuration that is retrieved. If the
overlay configuration cannot be retrieved a null object is returned. How long does
the method wait?

void MergeConfig (document fromDOM)

Merges a (downloaded) configuration file with public configuration attributes with a
configuration object. The attributes from the configuration overwrite the attributes in
the configuration object, with exception of the attributes in the local attribute list of
the configuration object.

boolean doesOverlayExist(URL serverlocation, String OverlayIdentifier)

This method tests if an overlay with the given overlay identifier exists at the
specified overlay server. The method returns true if the overlay server has a
configuration with the given overlay identifier, and returns false otherwise.

void createandsetOverlayId()

Creates a new overlay identifier ands set the configuration to this identifier. The
method is invoked when the local configuration file does not define an attribute for
the overlay identifier. The overlay identifier that is created concatenates a local
address (e.g., an IP address) and a local timestamp.

boolean validatePublicConfig (String XSDfilename)

Validates the DOM document configuration object with the public attributes against
an XML schema description. The name of the XML schema file is provided as a
parameter. The method returns true if the validation is successful and false
otherwise. This method is computationally intensive.

boolean validatePrivateConfig (String XSDfilename)

Validates the private attributes in the configuration object with the XML schema file
that is supplied as a parameter. The method returns true if the validation is
successful and false otherwise.

document getPublicConfiguration()
Returns the public configuration attributes as a DOM document.

document getPrivateConfiguration()
Returns the public configuration attributes as a DOM document.

int getOverlayHash ()

 The methods retrieves the overlay hash from the configuration object.

void setOverlayHash ()

 The methods recomputes the overlay hash. The overlay is computed from the values
of the attributes listed in the HashAttributeList.

The configuration object has several versions of the method createOverlaySocket that
creates an overlay socket.

11/20/2005 Overlay Socket API (Advanced) 31

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

I_OverlaySocket createOverlaySocket (I_ReceiveCallback callback)

Creates an overlay sockets with a callback method to be executed when a message is
received by the overlay socket. If the callback is set to null, then the overlay sockets
writes messages for the application in the application buffer. The application obtains
messages from this buffer by calling receive.

I_OverlaySocket createOverlaySocket (I_ReceiveCallback callback,

NotificationHandler nh)

Creates an overlay socket with a callback method for received messages, and a
notification handler. With a notification handler, the application can indicate to
block until an event occurs. The application can provide handler methods that are
invoked when an event fires.

I_OverlaySocket createOverlaySocket (I_ReceiveCallback callback,

NotificationHandler nh, I_InterceptCallBack Icb)
Creates an overlay sockets which, in addition to a callback method for received
messages, and a notification handler, provides a callback for the intercept method
described earlier in this chapter. By using null arguments, this method can emulate
all of the above versions of createOverlaySocket.

3.6. SECURE OVERLAY SOCKETS

HyperCast overlay sockets can support authentication, integrity and confidentiality of
data. The following discusses issues relevant to writing application programs with
security features. The security features are described in full in a separate chapter.

Most importantly, there is no separate API to apply the security features of an overlay
socket. Application programs that take advantage of security features can utilize the
same API that is available to other overlay sockets. All security configurations are
determined from configuration attributes. Configuration attributes that involve
confidential information are designated as private. Recall that private attributes are not
available through the configuration file, but must be defined by the application program.

Before we discuss security in HyperCast, we need to recall that overlay sockets
exchange two types of messages. The overlay protocol which maintains the membership
of an overlay socket in the overlay network exchanges protocol messages with other
overlay sockets. Data from application program is transmitted in overlay messages.

An overlay socket can be configured with three different security levels: plaintext,
integrity, and confidentiality. The security level is setting the attribute
/Public/SecurityLevel in the configuration file to either plaintext, integrity or privacy.
Plaintext means that no security features are activated. Here protocol messages and
overlay messages are transmitted in plaintext and the origin of a message is not
authenticated. At the integrity level, overlay sockets authenticate neighbors in overlay
network and check if a message has been subject to unauthorized modification. With
integrity, all protocol messages and overlay messages are digitally signed with a
message authentication code (MAC), or, in short, a hash. There are a total of three
different types of hashes:

• The sender of a protocol message computes a MAC for the entire message, and
adds it to the message. The MAC is verified by the receiver of the message. This
ensures integrity for protocol messages.

• When an overlay socket sends or forwards an overlay message, it computes a
MAC for the header of the message. The MAC is verified by the receiver of the

11/20/2005 Overlay Socket API (Advanced) 32

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

message. In this way, the integrity of the message header is verified at each hop
on the route of the message. Ensuring integrity for message header protects,
among others, against unauthorized changes of the route of a packet and the
destination address of a message.

• The sender of an overlay message also computes a MAC for the payload of an
overlay message. The MAC is computed at the source and verified at the
destination(s) of the message. The MAC is not inspected or modified when a
message is forwarded. This protects against unauthorized changes of application
data while a message is transmitted in the overlay network.

At the privacy level, in addition to providing integrity, the payload of each overlay
messages is encrypted. The encryption is done at the source of a message and the
decryption occurs that the destination(s) of the message.

Authentication and Certificates

Authentication of overlay sockets is managed through X.509 digital certificates. When
an overlay socket receives the protocol message from another overlay socket for the first
time, it requests a certificate from this socket. The certificates must be signed by the CA
whose certificate is specified in the configuration file.

Each application program is responsible for maintaining its own certificate, and the
associated private and public keys. The certificate is managed through a keystore, an
encrypted database of private keys and X.509 certificates authenticating the public
keys.1 Overlay sockets access private keys and certificates from the keystore. The
configuration file declares the location of the certificates and the keystore. The attribute
/Public/KeystoreLocation stores the location of the keystore file. The attribute
/Public/CertificateLocation specifies the file that contains the X.509 certificate of the
application program. (The certificate is obtained from the private and public key pair in
the keystore file.) The attribute /Public/CACertificateLocation specifies the file that
contains the X.509 certificate of the Certificate Authority (CA) that granted the
certificates. The default values of the files are testcert.cer for the certificate and the CA
certificate, and .keystore for the keystore file.

Access to the keystore and the private key stored in the keystore is protected by
passwords. This information is stored in private attributes. The password to access the
keystore is kept in the attribute /Private/KeyStorePassword. The private key is accessed
with an alias and protected with a password. They are stored in the attributes
/Private/PrivateKeyAlias and /Private/PrivateKeyPassword, respectively.

Each application program that uses the keystore must define the values of the private
attributes. When the attributes are not defined, the overlay socket cannot be constructed.
The private attributes can be set as follows:

setPrivateTextAttribute (“/Private/KeyStorePassword”, “MyKeyStorePassword”);
setPrivateTextAttribute (“/Private/PrivateKeyAlias”, “MyPrivateKeyAlias”);
setPrivateTextAttribute (“/Private/PrivateKeyPassword”, “PrivateKeyPassword”);

1 HyperCast assumes that the keystore format uses the default type JKS by Sun Microsystems.

11/20/2005 Overlay Socket API (Advanced) 33

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

In most applications, the passwords must be entered by the user running the application.
Entering a password may include a graphical user interface, the use of smart cards or
biometric devices.

The keystore file is an encrypted database of private keys and certificates authenticating
the corresponding public keys. The command keytool, included with JDK 1.4 or later,
can create a keystore file and generate and manage keys for the keystore. As an
alternative to the keytool command, keystores can be created and managed directly by
the Java KeyStore API of the Java.

The keys generated by the keytool command are pairs of a public and a private key.
Public keys are embedded in a X.509 certificate. The following describes some of the
keytool commands to manipulate the keystore file. The following commands generates a
key pair with a public key and a private key:

keytool -genkey -alias mykey -keypass mykeypasswd

The public key is wrapped in a X.509 certificate. By default, the command interactively
requests information that are needed to create the certificate. The default location of the
keystore is file .keystore in the home directory of the current user. The option –keystore
mykeystore specifies a location that is different from the default.

The next command writes the certificate associated with the created key pair to a file.

keytool -export -alias mykey -file mycertfile.cer

The certificate stored in this file can now be submitted to and signed by a certificate
authority. After the certificate has been signed or if a certificate has already been created
and signed, it can be imported into the keystore with the command:

keytool -import -alias mykey -file mycertfile.cer

In some cases, it may be easier to give all overlay sockets the same self-signed
certificate, that is, a certificate that has been signed by the user who created the
certificate, and distribute the certificate to all application programs of the overlay
network. A self-signed certificate is created with the following command:

keytool -selfcert -alias mykey

Finally, the command

keytool –list

lists the entire content of the keystore.

There are two methods for constructing and managing the keys that hash or encrypt
information in an overlay socket. One method uses the novel concept of neighborhood
keys and the second method is based on shared group keys. The method is determined
by setting the attribute /Public/Security/KeyModeMethod. to either NeighborhoodKeys
or GroupKeys. There is an additional third method to realize security, which is based on
SSL tunnels. This method is orthogonal to the first two methods, since it is entirely
based on the configuration of adapters in the overlay socket. We next discuss each
method in a separate section.

Neighborhood Keys

The neighborhood key method was developed for HyperCast overlay networks
[citeZaritsky], and presents a new method to ensure authentication, integrity, and

11/20/2005 Overlay Socket API (Advanced) 34

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

confidentiality in overlay networks. Here, each overlay socket authenticates every
overlay socket that it communicates with by exchanging X.509 certificates. Each
overlay socket maintains a symmetric key, called a neighborhood key, that it shares with
its neighbors in the overlay network. Each time the neighborhood of an overlay socket
changes, i.e., a new neighbor appears or an existing neighbor disappears, the overlay
socket computes a new neighborhood key and sends the key to its current neighbors.
Keys are computed with the algorithm specified by the attribute
/Public/Security/CryptAlgorithm. The neighborhood key is securely exchanged with the
RSA algorithm using the public key of the neighbor.2

With the security level set to integrity, the overlay socket computes secure hashes for
each outgoing message. Protocol messages and the header of overlay messages are
hashed with the neighborhood key. To enforce integrity of the payload, the overlay
socket generates a new key for each message, called the message key, and hashes the
payload with the message key. The message key is encrypted with the neighborhood key
and added to the header of the message. [Double-check that this is indeed done.
Neigbhors exchange certificates, but do not exchange keys.] When security is
enabled, in addition, the payload of each overlay message is encrypted with the message
key.

When an overlay socket receives a hashed protocol messages from a neighbor, it uses
the neighborhood key of that neighbor to verify integrity. When an overlay socket
receives a hashed or encrypted overlay messages, it uses the neighborhood key of that
neighbor to verify integrity of the overlay header and to decrypt the message key using
the neighborhood key with which the payload was signed or encrypted. When the
message needs to be passed to the application program, the decrypted message key is
used to verify the integrity of the payload and decrypt the payload. When an overlay
message must be forwarded to the next hop, the overlay socket computes a new hash for
the header and re-encrypts the message key with its own neighborhood key.

Figure 9 illustrates the encryption of (the payload of) a message before it is transmitted
by an overlay socket. The message is encrypted with a message key. The message key is
encrypted with the neighborhood key of the overlay socket and added to the header of
the message. The encrypted message key can be decrypted only by an overlay socket
that holds the neighborhood key.

2 HyperCast realizes the RSA implementation from bouncycastle.org.

11/20/2005 Overlay Socket API (Advanced) 35

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Figure 9. Transmission of a message with neigbhorhood keys.

Figure 10 illustrates the forwarding of an encrypted message. Again the figure only
shows the payload of the message. When an encrypted message arrives, the overlay
socket must have the neighborhood key of the overlay socket from which the message is
received. The overlay socket first decrypts the message key in the message and then re-
encrypts the message key with its own neighborhood key. Note that the payload of the
message is not modified in the process.

Figure 10. Forwarding a message with neigbhorhood keys.

The algorithms used for hashing and decryption are specified in the configuration file.
The attribute /Public/Security/MacAlgorithm specifies the hashing algorithm,
/Public/Security/CryptAlgorithm specifies the encryption method for encrypting the
message key and the payload, and /Public/Security/SymmetricKeyLength specifies the
length of the encryption key. The algorithm specified as CryptAlgorithm is also applied
when generating neighborhood keys. Since Java permits the inclusion of third party
implementations of cryptographic algorithms, the Java implementation of HyperCast
permits the incorporation of a large variety of algorithms. Tables 3 and 4 summarize the
values of the attributes that will be supported in most Java installations.

Message encrypted
with

M

Message encrypted
with

1. Arrived message

2. Overlay socket decrypts
message key with
neighborhood key of sender

4. Overlay socket encrypts the

message key with its own
neighborhood key.

 encrypted
 with

M M

M

Neighborhood key of the
neighbor from which the
message was received

Neighborhood key of the
overlay socket

Message M

Message encrypted
with

M

Message encrypted
with

1. Overlay socket creates a
message key for each
message.

2. The overlay socket encrypts

the message with a message
key.

3. The overlay socket encrypts

the message key with its
neighborhood key and adds
the encrypted key to the
message.

 encrypted
 with

M M

M

Neighborhood key of the
overlay socket

Message encrypted
with

 encrypted
 with

M M

11/20/2005 Overlay Socket API (Advanced) 36

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Table 3. Values for the attributes MacAlgorithm.3

HmacMD5 The HMAC-MD5 keyed-hashing algorithm as defined in RFC
2104: "HMAC: Keyed-Hashing for Message Authentication".

HmacSHA1 The HMAC-SHA1 keyed-hashing algorithm as defined in RFC
2104: "HMAC: Keyed-Hashing for Message Authentication".

Table 4. Values for the attributes MacAlgorithm CryptAlgorithm.4

AES Advanced Encryption Standard as specified by NIST in a draft
FIPS. Based on the Rijndael algorithm by Joan Daemen and
Vincent Rijmen.
SymmetricKeyLength must be set to 128, 192, and 256 bits

Blowfish The block cipher designed by Bruce Schneier.
SymmetricKeyLength must be a multiple of 8, and can only range
from 32 to 448.

DES The Digital Encryption Standard as described in FIPS PUB 46-2.
SymmetricKeyLength must be equal to 56.

DESede Triple DES Encryption (DES-EDE).
SymmetricKeyLength must be equal to 112 or 168

The neighborhood key method has a number of desirable properties. Since nodes
exchange neighborhood keys only if they are neighbors in the overlay topology, and
update their neighborhood key every time the neighborhood changes, only the current
neighbors in the overlay topology can read encrypted information. The neighborhood
scheme ensures forward secrecy, that is, a departing overlay socket cannot read
messages that are transmitted after the socket has left, and backward secrecy, that is, a
joining overlay socket cannot read messages that were transmitted before the overlay
socket joined the overlay network.

When a signed or encrypted message is forwarded by an overlay socket, then the
encrypted payload of the message and the hash of the payload need not be recomputed.
This is important since decrypting and re-encrypting the complete payload each time a
message is forwarded is not practical. Instead, the neighborhood key method merely
decrypts and re-encrypts the field in the header that contains the message key.

When a new overlay socket joins or an existing overlay socket leaves, then only the
neighbors of the coming or leaving socket update their neighborhood keys. This is
different from many group key management schemes [citeRFC??] which require that
all members of a group update a key each time the group membership changes.

Shared Group Keys

The symmetric key method assumes that there is a single symmetric key, called the
session key, that is shared by all overlay sockets. The session key is stored in the private
attribute /Private/GroupKey. The generation and distribution of new session keys is not

3 from: JavaTM Cryptography Extension (JCE) Reference Guide for the JavaTM 2 SDK,

Standard Edition, v 1.4.

4 from: JavaTM Cryptography Extension (JCE) Reference Guide for the JavaTM 2 SDK,

Standard Edition, v 1.4.

11/20/2005 Overlay Socket API (Advanced) 37

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

handled by the overlay socket, and must be implemented by the application programs.
All encryption and signing of messages is done with the session key.

When the value of the shared key changes, the attribute storing the shared key must be
updated. To ensure that changes to the attribute have an immediate impact in the use of
the overlay socket, the methods that apply the group key look up the attribute whenever
the group key is being used to encrypt or decrypt a message.

Overlay sockets with group keys authenticate each other with X.509 certificates as
discussed previously. With integrity enabled, the overlay socket computes hashes for
each protocol message, for the header of an overlay message and for the payload of an
overlay message. All hashes are computed with the group key. When security is
enabled, then, in addition, the payload of each overlay message is encrypted with the
group key. The encryption and signing of the payload is done at the source of an
overlay message. The integrity of the header of the overlay message is verified at each
hop. In this way, any attempt to alter a header field can be detected.

The advantage of the group key method is that overlay sockets that forward an overlay
message involve less processing than with the neighborhood key method. The main
disadvantage of a shared key is that ensuring forward and backward secrecy requires
generating a new group key each time a new overlay sockets joins an overlay network or
an existing overlay socket leaves. Since Hypercast does not include procedures for
generating and distributing new group keys, the group key must be managed by the
application program or a separate protocol.

The available hashing and encryption algorithms are the same as in the neighborhood
key method.

SSL Security

1. SSL should read X509 certificate from keystore?

2. The implementation of SSL_UnicastAdapter has many attributes that are
not in the configuration file:

.MaximumPacketLength

.Timeout

.MaxIdleTime

.CipherSuite

.keystore

With SSL security, overlay messages and protocol messages are transmitted over Secure
Socket Layers (SSL) tunnels. An SSL tunnel is a secure communication channel that
provides message privacy by encrypting all information exchanged using a session key,
that is negotiated with the public key of the requestor of the SSL tunnel.

The configuration of SSL security is different from the configuration of the previously
discussed security methods, and is done entirely by configuring adapters that transmit
messages over SSL tunnels. SLL tunnels for protocol messages and overlay messages
are configured independently. SSL security is established for overlay messages by
selecting the socket adapter in the configuration file to be of type SocketAdptSLL, and
for protocol messages by selecting the node adapter to be of type NodeAdptSSL. If an
overlay socket transmits data over one of these adapters, it first establishes an SSL
tunnel and then transmits the data over that tunnel.

11/20/2005 Overlay Socket API (Advanced) 38

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

SSL tunnels can be run with a variety of security protocol configurations, called cipher
specifications [citeRFC2249]. SSL tunnels in HyperCast use the cipher specification
TLS_RSA_WITH_AES_128_CBC_SHA. This specification designates that the protocol
version is TLS, that the key exchange is done with the RSA protocol, that the hash
algorithm to compute a message digest is computed with the SHA-1 algorithm, and that
data is encrypted with the symmetric AES in cipher block chaining (CBC) mode with
128 bits [citeAES].

SSL tunnels provide the strongest type of security available in HyperCast. The main
drawback is that the establishment of a single SSL tunnel takes considerable time,
generally in the order of 10 seconds or more. Since each overlay socket establishes an
SSL tunnel to each neighbor to which it transmits data the delay to set up all necessary
SSL connections can be considerable, especially when an overlay socket joins the
overlay network. Another drawback of SSL security is that it assumes that the underlay
network is an IPv4 network.

3.7. REFERENCES

[RFC2085] Oehler, M., and R. Glenn, "HMAC-MD5 IP Authentication with Replay
Prevention", RFC 2085, February 1997.

 [AES] Advanced Encryption Standard, FIPS-197. National Institute of Standards and
Technology, November 2001.

