
© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 1

CHAPTER 3 MONITOR AND CONTROL SYSTEM1

3.1. Statistics in HyperCast.. 5
Statistics in XML Format ... 7
Application Programming Interface for Statistics.. 10

3.2. HyperCast statistics in application programs... 15
The StatsProcessor and SimpleStats Classes ... 16
An Extended Example.. 19

3.3. The Monitor Protocol.. 27
Messages of the Monitor Protocol .. 27
Programming with Portals .. 33
Programming with Monitors.. 37
Programming with Monitor Messages .. 43
Programming With Notification Triggers.. 45

3.4. The Runcontrol and Runserver Applications... 46
A Simple Experiment with RunControl and Runserver.. 48
A list of all available commands can be found in Appendix I. ... 49
RunServer Statistics ... 49
RunControl GUI .. 51

3.5. References ... 54

Appendix I: Methods to access statistics .. 55

Appendix I: Options for RunControl and RunServer .. 58

Appendix II: Commands of RunControl... 59

Appendix III: Displaying Maps in RunControlGUI ... 64

Appendix IV: XMLUtil: Helper methods to for XML Processing... 66

This is an unfinished draft. If you have comments or corrections, please mark
this document up and send it to jorg@comm.utoronto.ca. If you send your
comments in plain text, please include the date (see upper left corner), the page
number and the paragraph number. If you find discrepancies between this
document and the most recent version of the HyperCast, please give a detailed
description of the problem.

Thank you,

Jörg Liebeherr

CHAPTER 3

 Monitor and Control System
The ability to remotely control and coordinate a network is an important aspect of a
network architecture. It includes a set of functions to monitor and control the
configuration, state and traffic flow in a network and detect failure conditions. A system

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 2

that performs these functions, referred to as a network management system, includes a
component for describing and presenting the information that is being monitored, and a
component for accessing monitored information. The latter consists of a system that
collects the monitored information, systems that are being monitored, and a protocol for
exchanging information between the two types of systems. They are referred to,
respectively, as managing entity, managed systems, and management protocol.

Today, all operators of large-scale networks rely on a network management system to
control and coordinate deployed networked hardware. Although application-layer
overlay networks are software artifacts, they can benefit from a network management
system in the same way as a system of networked hardware devices. Tasks such as
monitoring and visualizing the topology of an application-layer overlay network that is
running on hundreds of different computers become tedious unless facilities are in place
that collect relevant information and make it accessible to a monitoring system.

Another way to motivate the need for a network management system in overlay
networks is derived from the principles and practices of protocol design. Protocols for
computer networks are built around three operational planes: the data plane, the control
plane, and the management plane. The data plane is concerned with the exchange of
application data. The control plane comprises the functions that do not themselves
transport data, but set up and maintain the ability to transport data, e.g., a routing
protocol. The management plane comprises the network management system that
permits monitoring information related to the control plane and the forwarding plane.
Most comprehensive protocol architectures draw a clear distinction between these
operational planes. The design of a protocol architecture for overlay networks is no
exception and should follow the same principles.

HyperCast has a complete network management system that gives remote access to
internal state variables of overlay sockets. With the monitor and control system, a single
monitor application can manage all aspects of a HyperCast overlay network. In the
network management system, each overlay socket maintains a collection of variables
with state information, called statistics. The statistics of an overlay socket are organized
as an XML document. The format of the XML document is defined in XML schema files
that are dynamically generated and that can be queried through the monitor and control
system. In the context of HyperCast, a managing system is called a monitor, managed
systems are called portals, and the management protocol is called the monitor protocol.
Monitors and portals are both components of application programs. They communicate
through the monitor protocol by exchanging XML formatted message.

The components of the monitor and control system are illustrated in Figure 1. The figure
shows a monitor application that contains a monitor, and an application program with an
overlay socket and a portal. When the monitor application wants to access a statistic
from a remote overlay socket, it has its monitor send a request message to the portal of
the remote socket. When the portal receives the message, it interprets the message and
accesses the statistic of the overlay socket. The portal puts the results in a monitor
message and sends the message to the monitor, which, in turn, passes the results of the
query to the monitor application. As indicated in the figure, a portal can also access
statistics from an application program.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 3

M
od

ify

R
et

rie
ve

Application Program

Monitor

Overlay Socket

Monitor protocol
messages

Protocol and
Overlay Messages

Monitor Application

Modify

Retrieve
Statistics

Portal

M
od

ifyRet
rie

ve

Statistics
(optional in
application)

Figure 1. Components of the monitor and control system in HyperCast.

Monitor protocol messages between monitors and portals are transmitted over a separate
HyperCast overlay network, which is referred to as monitor overlay network. Setting up
an overlay network for monitor and control has several advantages. First, by taking
advantage of the multicast operations available in a HyperCast overlay network, a single
monitor can control a large number of remote applications. Second, it is possible to take
advantage of the security features available in HyperCast. Third, since HyperCast
overlay networks can deal with different underlay network technologies, using
HyperCast overlays for sending monitor protocol messages extends the same
capabilities to the monitor and control system.

Figure 2 illustrates the relationship between a monitor overlay network and an overlay
network that is being monitored. The monitor overlay network, shown on the left of the
figure, performs monitor and control functions for the overlay network shown on the
right of the figure. Each application program has one portal that connects to the monitor
overlay network. All portals are accessed by a single monitor. It is possible to have more
than one monitor connected to the same monitor overlay network. Also, it is feasible to
have multiple monitor overlay networks, each with one or more monitors, that manage
the same overlay network.

The monitor and control system of HyperCast has several measures to protect against
unauthorized access. First, application programs exercise control if they can be
accessed by a remote network management system by deciding whether (or not) they
instantiate a portal. An application can prevent remote access to its state variables by not
creating a portal. In addition, authentication of monitors and portals, as well as integrity
and confidentiality of the data transmitted on the monitor overlay network can be
realized through the security architecture of HyperCast overlay sockets.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 4

Application

Application

Application

Portal

Portal

Portal

Monitor
Application Monitor

Monitor
overlay network

Overlay
Socket

Overlay
Socket

Overlay
Socket

Overlay
Socket

Overlay
Socket

Overlay
Socket

Overlay
Socket

Overlay network
(being monitored)

Figure 2. A monitor overlay network.

The monitor and control system of HyperCast bears some similarities to the Simple
Network Management Protocol (SNMP) framework, which provides facilities for
managing and monitoring network resources in the Internet. The SNMP framework
consists of SNMP agents, Management Information Bases (MIBs), SNMP managers,
and the SNMP protocol. An SNMP agent is a software component that runs on a host,
router, or another piece of network equipment, and that maintains information about its
configuration and current state in a database. The organization of a database is specified
in a MIB, which uses the syntax of ASN.1 (Abstract Syntax Notation 1) to describe
managed data and their properties. An SNMP manager is an application program that
contacts SNMP agents to query or modify the database of an agent. The SNMP protocol
is an application layer protocol for exchanging data between SNMP agents and
managers.

We can relate SNMP to the monitor and control system of HyperCast. The set of
statistics in HyperCast correspond to database of managed objects in SNMP, the XML
schema description corresponds to a MIB, a portal corresponds to an SNMP agent, a
monitor corresponds to a SNMP manager, and the monitor protocol corresponds to the
SNMP protocol. A major difference of the monitor and control system of HyperCast to
the SNMP framework is that the structure of managed data in HyperCast is dynamically
created when a query is made to the XML schema. In HyperCast, each component of the
overlay socket builds and maintains its own statistics. Differently, MIBs in SNMP are
static files that describe the managed information of a specific system configuration.
Each modification to the managed information in SNMP generally requires constructing
and disseminating a new MIB file. HyperCast avoids this problem by generating XML
schema description of managed information on the fly. In this way, HyperCast can deal
with a large variety of different configurations and even permit dynamic changes to the
managed information of a system. Another advantage over SNMP is that the application
of XML technology makes it is easier to access complex objects, such as tables or
complete sets statistics of a component of an overlay socket.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 5

3.1. STATISTICS IN HYPERCAST

HyperCast statistics give access to state information of an overlay socket and, if so
configured, of an application program. Statistics are available for many components of
an overlay socket. Each statistic is stored and maintained by the component where this
statistic plays a role. For example, the statistic that keeps track of the number of bytes
transmitted by the node adapter is kept in the node adapter. The components of the
overlay socket that maintain statistics are as follows:

• The overlay socket maintains statistics that track the forwarding of messages and
the delivery of messages to applications. In addition, the statistics of the overly
socket provide access to the statistics of other components of the overlay socket.

• The overlay node has statistics that relate to the logical address of the overlay
socket, the neighbors of the overlay socket in the overlay network, and state
information of the overlay protocol.

• The statistics of the socket adapter and the node adapter track the number of
transmitted and received messages and bytes. The node adapter, also gives access to
the physical address of the overlay socket.

• The configuration object has statistics for the configuration attributes of an overlay
socket. All configuration parameters of a socket can be accessed (and possibly
modified) through the monitor and control system.

• The message buffer has statistics that record the backlog of received messages that
have not been retrieved by the application program.

• The message store supports statistics specific to the enhanced message services.

• HyperCast statistics can also be defined for application programs. In this fashion,
state information about application programs can be remotely monitored. Support of
application-defined statistics must be provided by the application programmer.

• A portal maintains statistics that keep track of messages exchanged by the monitor
protocol.

The statistics of an overlay socket have a hierarchical organization as illustrated in
Figure 3. The hierarchy reflects the software architecture of the overlay socket. Requests
to access a statistic are processed from the top of the hierarchy and are forwarded to the
component where the statistic is stored. Consider an access to the statistics to the
number of overlay protocol messages that have been transmitted by the overlay socket.
Since the node adapter is responsible for transmitting protocol messages, the
corresponding statistic, with name USentPackets, is maintained by the node adapter.
When this statistic is requested from an overlay socket, the request is forwarded to the
node component, which, in turn, forwards the request to the node adapter.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 6

Figure 3. Hierarchy of overlay socket statistics. (USentPackets is a statistic in the
node adapter. The location of other statistics is indicated by dots).

AN XML PRIMER

XML (eXtensible Markup Language) is a standardized method for representing text and
data across different hardware and software platforms. XML documents look similar to
HTML (Hypertext Markup Language) documents. HTML and XML have in common
that they use tags and attributes to mark up documents. Unlike HTML, the attributes and
tags in XML are not predefined. The following is an example of an XML document:

 <?xml version="1.0"?>

 <project location=”University of Virginia”>

 <projectname>HyperCast</projectname>

 <version>3</version>

 <year />

 </project>

The first line (<?xml version="1.0"?>) contains the XML declaration that specifies the
XML version and possibly other information. The remainder of the document consists of
elements. An element is a unit of data surrounded by an opening tag and a closing tag.
For example, in <version>3</version>, 3 is the data, <version> is the opening tag and
</version> is the closing tag. The tag <year />, represents an empty element, which is
identical to <year></year>. Elements can be contained (nested) in other elements,
resulting in a hierarchically structured XML document. The first element of an XML
document is called the root element. It contains all other elements of the document. In
the example, the element with tag <project> is the root element. The root element
contains three elements. Elements can be further specified with attributes. In the
example, the root element has one attribute (location=”University of Virginia”).

The XML syntax specifies rules for tagging and nesting elements and attributes.
Documents with correct XML syntax are called well-formed. The permissible content of
elements and their position in an XML document is specified in a schema description,
which is kept in a separate file. If a well-formed XML document complies with its
schema description it is said to be valid. XML schema is one of several available
languages to specify a schema description. XML schema descriptions follow the XML
syntax. The XML schema description of the XML document above is as follows:

<?xml version="1.0"?>

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 7

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="Project">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="projectname" type="xsd:string">

 <xsd:element name="version" type="xsd: positiveInteger default=”3”>

 <xsd:element name="year" type="xsd:gYear">

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

The first line is the XML declaration. The second line is the opening tag for the root
element, which specifies a schema element. The attribute

xmlns:xsd=http://www.w3.org/2001/XMLSchema defines a namespace for the
schema. Namespaces in XML can avoid conflicts for elements that have the same
name. The assigned value xsd is the standard name space for XML schema descriptions.
All tags in the schema file have a prefix that refers to the namespace. The elements in
the root element define the structure of the XML document. A project is defined as a
sequence of three elements: one element specifies the project name, another the version
and the last element is a date. XML schema requires that elements with nested elements
are of type complexType. The other elements are defined using predefined types in
XML schema: a string, a positive integer, and a data type that specifies a year.

An XML document is linked to an XML schema by specifying the location of the
schema file in an attribute of the root element. In our example, assuming that the XML
schema is stored in file project.xsd, the opening tag of element Project should be
changed as follows:
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:NamespaceSchemaLocation="project.xsd">

XPath is an extension to the XML framework to identify locations in an XML
document. The syntax for the most basic XPath expressions is similar to addresses in a
file system. In an XPath expression, a forward slash refers to the root element. In the
above XML document, the XPath expression /version refers to the element describing
the version. XPath defines more complex expressions to select parts of a document
based on the value of attributes or based on the value of data in an element.

DOM (Document Object Model) is a programming language and operating system
independent API for representing XML documents. To make an XML file accessible via
the DOM API, it is converted into a document object using a DOM parser. A DOM
document has a tree structure consisting of a hierarchy of nodes, each representing an
element of the XML. The tree structure of the document object makes it easy to navigate
and manipulate the content of the XML document. The DOM API can convert XML
documents into DOM documents and vice versa.

Statistics in XML Format

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 8

All statistics of an overlay socket are organized as a single XML document. The XML
document for the statistics of an overlay socket generally has the following structure:
<Socket>

<Node>

 …

 <NodeAdapter>

 …

<UPacketsSent>120</UPacketsSent>

<UBytesSent>12384 </UBytesSent>

 </NodeAdapter>

</Node>

<Config> … </Config>

 <MsgBuf> … </MsgBuf>

<SocketAdapter> … </SocketAdapter>

</Socket>

The precise structure of the XML document and the names of the elements are defined
during the configuration of the overlay socket. The XML document of the overlay
socket is recursively built from XML documents that describe the statistics of the
overlay socket components. Components of the overlay socket with statistics include the
overlay node, the configuration object, the message buffer and the socket adapter. Each
component of the overlay socket defines an XML document that specifies the statistics
of this component. If a component has subcomponents, then it uses the XML documents
of its subcomponents. For example, the XML document of the overlay node includes the
XML document containing the statistics of the node adapter. The names of the tags are
defined by the object that contains the statistics using values in the configuration file,
but can be modified. For example, NodeAdapter is the default name for the element that
contains the statistics of the node adapter of an overlay socket.

The permissible content of the XML document and its precise structure is specified by
an XML schema description. When a monitor program wants to remotely access the
statistics of an overlay socket, and does not know which statistics are available, it can
request a XML schema description from the overlay socket. If so requested, an overlay
socket can return two XML schema files: one schema describes the readable statistics,
and one schema describes the writeable statistics. Generally, writeable statistics are also
readable, and, therefore, appear in both schemas.

Since the statistics available in an overlay socket are dependent on the configuration of
the socket, so is the XML schema describing the structure format of the statistics. To
deal with the large variety of socket configurations, the XML schema description for the
statistics of an overlay socket is dynamically generated when the schema is requested.
Each component of the overlay socket supplies XML schemas for the statistics
supported by this component. When a schema is requested from an overlay socket, the
schema is recursively generated from the schemas of its components.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 9

Figure 4. Accessing an overlay socket statistic with XPath expressions.

Requests for statistics in HyperCast are specified with XPath expressions. With XPath
expressions, it is possible to access a specific statistic or a subset of the available
statistics. For example, the XPath expression to locate the statistic that keeps track of the
number of bytes transmitted by the node adapter socket is

/Socket/Node/NodeAdapter/UBytesSent

Figure 4 illustrates the relation of this XPath expression to the organization of statistics
in the overlay socket. Each triangle in the figure represents the set of all statistics of a
particular component or a single statistic. The outermost triangle represents the XML
element with the statistics of the overlay socket, which is specified as /Socket. The
triangle labeled /Socket/Node denotes the statistics of the overlay node, and the triangle
/Socket/Node/NodeAdapter denotes the statistics of the node adapter. The innermost
triangle identifies the statistic /Socket/Node/NodeAdapter/UBytesSent. To request the
statistic UBytesSent of the node adapter, a request for
/Socket/Node/NodeAdapter/UBytesSent is sent to the overlay socket. When the overlay
socket receives the request, it requests the statistic /Node/NodeAdapter/UBytesSent from
the overlay node, which in turn forwards a request for expression
/NodeAdapter/UBytesSent to the node adapter. Finally, the node adapter looks up the
value of the statistic UBytesSent.

With XPath expressions it is possible to identify statistics that are not scalar values. For
example, the neighborhood table in the node component of an overlay socket, which
stores information about the neighbors of an overlay socket in the overlay topology, is
identified with the XPath

/Socket/Node/NeighborTable

If one is interested in the second row of the neighborhood table, the XPath expression is

/Socket/Node/NeighborTable[2]

It is feasible to access all statistics of an entire subtree of the XML document. As an
example, to access all statistics available in the overlay node and its subcomponents, the
XPath expression is

/Socket/Node

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 10

To access all statistics, the XPath expression is

/Socket or /*

XPath expression may refer to collections of elements in a document, so a query for a
statistic may return an array of XML elements. The HyperCast software only
implements a small subset of the available XPath syntax. Future versions of the software
may provide a more comprehensive implementation.

To modify a statistic of an overlay socket, in addition to locating the statistic with an
XPath expression, one needs to specify the new value of the statistic. To set the
Heartbeat timer (defined in the Hypercube overlay protocol) to 1000, the expression is

(/Socket/Node/HeartBeat, <HeartBeat>1000</HeartBeat>)

The value of the statistic is expressed in terms of an XML element. The element must be
valid with respect to the XML schema for writeable statistics. It is possible to modify an
entire subtree of the writeable statistics. For example, the following tuple can be used to
modify all writeable statistics of the overlay node

(/Socket/Node, <Node> … </Node>)

Application Programming Interface for Statistics

Statistics are accessed through a statistics API, which is supported by all overlay socket
components that maintain statistics. The statistics API specifies methods for querying
and modifying statistics, as well as a method to query the XML schemas that describe
statistics. The implementation of HyperCast stores XML documents with statistics as
DOM documents.

Figure 6. Statistics API.

The statistics API defines methods to read and write statistics stored in an object, as well
as the name of component (see Figure 6). The method getStats is responsible for
retrieving statistics, setStats can modify statistics, getReadSchema retrieves the XML
schema description of readable statistics, and getWriteSchema retrieves the XML
schema description of writeable statistics. Requests for statistics of subcomponents are
forwarded to the referenced component. The methods getStatsName and setStatsName
retrieve and modify, respectively, the name of the element associated with the object.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 11

The forwarding of requests is illustrated in Figure 7 for the XPath expression
/Socket/Node/NodeAdapter/UBytesSent. Referring to Figure 7, when the overlay socket
analyzes the prefix of the XPath expression /Socket/Node/NodeAdapter/UBytesSent, it
determines that the referenced statistic is located in the overlay node. Then, it requests
the expression with XPath /Node/NodeAdapter/UBytesSent from the overlay node. The
overlay node, in turn, requests the statistics with XPath expression
/NodeAdapter/UBytesSent. At the node adapter, processing the statistic results in the
lookup of the state variable that is associated with the statistic UBytesSent. The result is
then recursively passed up in the hierarchy as a DOM element.

Figure 7. Accessing a statistic of an overlay socket.

In the Java implementation of HyperCast, the statistics API is specified in the I_Stats
interface. The following describes the methods the I_Stats interface:

Element[] getStats(Document doc, XPath XPathExp)

Retrieves statistics from an object. The first argument is a document object that
gives a handle to a DOM document where the XML data is stored. The second
argument is an XPath expression that specifies the requested statistics. Since an
XPath expression matches one or more statistics, the getStats method returns the
result of the query as an array of DOM elements. Each element in the array may
contain a single statistic or a subtree of statistics.

Element[] setStats(Document doc, XPath XPathExp, Element newValue)

Modifies the statistics of an object. The first argument plays the same role as in the
getStats method, that is, it is a handle to a DOM document. The second argument is
an XPath expression that locates the statistics to be modified, and newValue contains
the new value of the statistics that is modified in the form of a DOM element. When
the given XPath expression matches multiple statistics, each of them is modified
with newValue and the array of the new values, which are actually set to the matched
statistics, are returned in the form of an array of elements. The newValue element
can be as simple as single integer or as complex as an entire subtree that contains all
statistics of a component of the overlay socket. For each matched element with
respect to the given XPath expression, one can think of the setStats operation as
substituting a complete subtree of the XML document, where the XPath expression
references the position of the subtree in the document, and newValue is the new
value of the subtree.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 12

Element[] getReadSchema (XPath XPathExp)

Element[] getWriteSchema(XPath XPathExp)

These methods return descriptions of the available readable or writeable statistics
of the component identified by an XPath expression. The XML schema of an
overlay socket component contains a description of the statistics supported by
the component and all of its sub-components. Since an XPath expression
matches one or more statistics, the above methods return the array of schemas
with each as a DOM element. The getReadSchema method returns an array of
schemas. Each schema in the array is for a readable statistic that can be retrieved
with getStats. The getWriteSchema method returns an array of schemas for the
writeable statistics that can be modified with setStats.

String getStatsName ()

Retrieves the element name of the object. The element name of an object is
originally assigned from the attribute StatName in the configuration file. The XML
schema for configuration files specifies the default names for the components.

void setStatsName (String name)

Modifies the element name of the statistic as given by the argument.

When an error occurs during the access of statistics, e.g. a statistic is not found or does
not have a name, an attempt is made to modify a read-only statistic, or a format violation
occurs, a HyperCastStatsException is thrown by the overlay socket component where
the error occurred.

Next we discuss an application program that creates an overlay socket and then accesses
a statistic of the overlay socket. The program queries the number of transmitted bytes by
the node adapter, which are kept in the statistic
"/Socket/Node/NodeAdapter/UBytesSent". The complete program is as follows:

import hypercast.*;

import hypercast.util.XmlUtil;

import java.io.*;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.apache.xpath.*;

public class AccessStatistics {

 public static void main(String args[]) {

 HyperCastConfig ConfObj = HyperCastConfig.createConfig("hypercast.xml");

 I_OverlaySocket MySocket=ConfObj.createOverlaySocket(null);

 MySocket.joinOverlay();

 Document doc = XmlUtil.createDocument();

 XPath xpath = XmlUtil.createXPath("/Socket/Node");

 Element[] resultElements = null;

 try {

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 13

 resultElements = MySocket.getStats(doc, xpath);

 } catch (HyperCastStatsException e) {

 System.err.println("Query fails:" + e.getMessage());

 }

 if (resultElements != null) {

 for (int i=0; i<resultElements.length; i++) {

 Document resultDoc = XmlUtil.createDocument();

 resultDoc.appendChild(resultDoc.importNode(resultElements[i], true));

 try {

 XmlUtil.writeXml(resultDoc, System.out);

 } catch (IOException e) {

 System.err.println("Can’t write XML file:" + e.getMessage());

 }

 }

 }

 /* Add code segment “Modify a statistic” here */

 MySocket.closeSocket();

}

The program imports several Java packages that define classes related to processing
DOM objects [citeMcLaughlin][citeGriffith]. The program first creates an overlay
socket that joins an overlay network. Then, the program instantiates an empty DOM
document, which will be serve as a handle, and an XPath expression for the statistic
/Socket/Node/NodeAdapter/UBytesSent.

Document querydoc = XmlUtil.createDocument();

XPath xpath = XmlUtil.createXPath("/Socket/Node/NodeAdapter/UBytesSent");

The statistic is retrieved with the getStats method of the Statistics API. The parameters
are the DOM document and the XPath expression:

resultElements = MySocket.getStats(querydoc, xpath);

The result of the query is returned as an array of elements. For each returned element, an
empty DOM document is created and the element is added to the created document:

Document resultDoc = XmlUtil.createDocument();

resultDoc.appendChild(resultDoc.importNode(resultElements[i], true));

Then, the DOM document containing the element is displayed by invoking
XmlUtil.writeXml(resultDoc, System.out);

This results in the following output:

<?xml version="1.0" encoding="UTF-8"?>

<UBytesSent>12384</UBytesSent>

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 14

If the requested statistics is /Socket/Node/NodeAdapter, then the output of the program is
an XML document that contains all statistics of the node adapter:

<?xml version="1.0" encoding="UTF-8"?>

<NodeAdapter>

<RecvBuf>

<MaxMessages>100</MaxMessages>

<NumOfMsgsInQueue>0</NumOfMsgsInQueue>

<NumOfReadersWaiting>1</NumOfReadersWaiting>

<NumOfWritersWaiting>1</NumOfWritersWaiting>

</RecvBuf>

<UPacketsReceived>3501</UPacketsReceived>

<UBytesReceived>2345</UBytesReceived>

<UPacketsSent>325760</UPacketsSent>

<UBytesSent>13011</UBytesSent>

</NodeAdapter>

The following program segment modifies a statistic of the overlay socket (The segment
can be added in the AccessStatistics class at the indicated position). The segment
modifies the boolean statistic Running in the overlay socket. If this statistic is set to
false, the overlay socket leaves the overlay network.

 // Code segment: Modify a statistic

 xpath = XmlUtil.createXPath("/Socket/Running");

 Element element = XmlUtil.getXmlValue(doc, "/Running", "false");

 try {

 resultElements = MySocket.setStats(doc,xpath,element);

 } catch (HyperCastStatsException e) {

 System.out.println("Set request fails:" + e.getMessage());

 }

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 15

3.2. HYPERCAST STATISTICS IN APPLICATION PROGRAMS

Application programs may specify their own statistics that provide access to and control
of application-specific information. An application with an overlay socket can link the
statistics of the overlay socket to those of the application. When an application program
defines statistics, it puts itself at the top of the statistics hierarchy, as illustrated in Figure
8.

Figure 8. Hierarchy of overlay socket statistics, when the application supports
statistics.

Here, the statistics of the overlay socket are nested in the element for the application
statistics, e.g.,
<Application>

<Socket> … </Socket>

</Application>

If an application program contains multiple overlay sockets, then the Application
element can have one element for the statistics of each socket, e.g.,
<Application>

<Socket> … </Socket>

<Socket> … </Socket>

<Socket> … </Socket>

</Application>

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 16

Figure 9. Accessing an overlay socket statistic with XPath expressions.

Figure 9 depicts a situation where the application supports statistics and the application
has one overlay socket. In this case, the statistics of the overlay socket are an element in
the statistics of the application. The root element, denoted by /Application, of the XML
document are the statistics of the application. The statistics of the overlay socket are
denoted by /Application/Socket. Here, the XPath expression to locate the statistic
UBytesSent in the node adapter is /Application/Socket/Node/NodeAdapter/UBytesSent.

The StatsProcessor and SimpleStats Classes

An application program with application-defined statistics must implement the statistics
interface, and must be able to process queries made to the statistics API, and statistics
accessed through the application must be linked to objects that are accessed by the
application. Since all statistics are made available as DOM elements and statistics are
accessed using XPath expressions, an implementation of the statistics API may involve
considerable effort. To reduce the burden on application programmers (as well as
HyperCast developers) HyperCast offers an implementation of two classes,
StatsProcessor and SimpleStats, that hide XML-related programming tasks and offer a
uniform method for defining statistics in an application program. The cost of this
convenience is that each statistic must be explicitly defined as an object.

Consider an application that defines the following statistics:

<AA>
 <BB>
 </CC>
 </BB>
 <DD>
 <EE/>
 <EE/>
 </DD>
 </FF>
 </AA>

Each element is defined within an object that implements the I_Stats class. Let us refer
to the object that defines statistics X as ObjX and its class as ClassX. Objects that define

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 17

statistics with nested elements (</AA>, </BB>, </DD>) define a StatsProcessor.
Objects that define elements with text, i.e., the leafs in the XML tree, extend the
SimpleStats class.

When an object instantiates a StatsProcessor it determines whether the statistics that are
accessed through it are readable or writeable. For example, when object ObjAA creates
its StatsProcessor by

MyStatsprocessor = new StatsProcessor(ObjAA, true, false);

This statement defines that the statistics accessed through the StatsProcessor are
readable (first flag) but not writeable (second flag). Once a StatsProcessor is created,
the object adds the nested elements to it. This is done with the method addStatsElement
which has the following signature:
public void addStatsElement(String Name, I_Stats statsObj, int minoccur, int maxoccur)

The first parameter is the name of the element, the second parameter is the I_Stats
object, and the third and fourth define the number of occurrences of this element. The
minimum and maximum occurrence are used to define the XML schema for this
element. In our example, object ObjAA adds nested elements as follows:

ObjAA.addStatsElement ("BB", ObjBB, 1, 1);

ObjAA.addStatsElement ("DD", ObjDD, 1, 1);

ObjAA.addStatsElement ("FF", ObjFF, 1, 1);

Object ObjAA also needs to specify a name for its own statistic. This is done with the

call

 ObjAA.setStatsName("AA");

Each object with a StatsProcessor redirect calls to its statistics to the StatsProcessor
object. For each method of the statistics API, the StatsProcessor has a corresponding
method that handles the call to the statistic. For the getStats method, the StatsProcessor
has a method with name getStatsResults. The redirection of getStats method to the
corresponding method of the StatsProcessor is done as follows:

public Element[] getStats (Document doc, XPath xpath)

throws HyperCastStatsException {

 return statsProcessor.getStatsResult (doc, xpath);

}

The redirection for the other methods of the statistics API is done accordingly.

Lastly, the application must specify statistics that are the leaf elements in the XML tree,
and which contain a scalar value of a statistic. Each of these elements (i.e., </CC>,
</EE>, </FF> is defined by an object that extends the simple SimpleStats class. The
SimpleStats class provides methods that deal with the manipulation and presentation of a
well-formed XML document for the statistic. The application programmer must provide
methods for the construction of an XML schema for the element, and must specify the
relationship of the getStats and setStats methods to the application program. As an
example, we provide the definition of ClassCC for element </CC>. Assuming that the
statistic is a read-only statistic, the application program must specify the methods
getStats and getReadSchema.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 18

class ClassCC extends SimpleStats {

 protected String getStats() { return VariableCC; }

 public Element[] getReadSchema (Document doc, XPath xpath)

 throws HyperCastStatsException {

 return XmlUtil.createSchemaElement (doc/* document instance */,

 statisticsName/* element name */, "xsd:String"/* type */,

 null/* restriction base */, null/* pattern value */);

 }

}

Here, the </CC> element is bound to a text variable with identifier VariableCC.
Whenever, the statistic is accessed, the value of VariableCC is returned. The XML
schema for the statistic is defined with the help of the createSchemaElement method of
the XMLUtil class.

Each I_Stats object defines the schema element to describe its characteristics, such as
type and data pattern. If an I_Stats object defines a StatsProcessor instance, which
implies that it contains nested statistics, it is an intermediate node on the schema tree
and which is defined as an XML element of type complexType. The corresponding
schema element is defined as below:

<xsd:element name="xxxx">

 <xsd:complexType>

 ……

 </xsd:complexType>

</xsd:element>

name in the above definition refers to the name of the statistic.

For simple statistics, they have type attribute and can optionally have pattern attribute to
define the constraints. When a simple statistic does not have pattern attribute, the
corresponding schema element is defined as following:

 <xsd:element name="xxxx" type="xsd:xxxx" />

For example, the schema elements for the statistics CurrentTime and KillApp are:

 <xsd:element name="CurrentTime" type="xsd:Long" />

 <xsd:element name="KillApp" type="xsd:Boolean" />

When a simple statistic defines pattern attribute, the corresponding schema element is:

 <xsd:element name="xxxx"/>

 <xsd:simpleType>

 <xsd:restriction base="xsd:xxxx">

 <xsd:pattern value="xsd:xxxx" />

 </xsd:restriction>

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 19

 </xsd:simpleType>

</xsd:element>

For example, the schema element for the logical address of a SPT overlay node is
defined as:

 <xsd:element name="LogicalAddress"/>

 <xsd:simpleType>

 <xsd:restriction base="xsd:String">

 <xsd:pattern value="\d+" />

 </xsd:restriction>

 </xsd:simpleType>

</xsd:element>

Above element defines the logical address to be a string consisting of one or more digits.

A static method createSchemaElement is defined in the class StatsUtil to simply the
creation of schema elements for simple statistics:

public static Element[] createSchemaElement(Document doc,

String statsName, String statsType, String restrictionBase, String
patternValue)

The parameter doc provides a container to help creating Element and Node instances.
Parameters Stats, statsType are passed as the values for the attributes name and type,
restrictionBase and patternValue are passed as the values in the elements restriction
base and pattern value. Once this method is called, the different form Element is created
depending on the value of parameter statsType. If statsType is “xsd:simpleType”, the
createSchemaElement method creates the schema element for a statistic having pattern
attribute; otherwise it creates the schema element for a statistic without pattern attribute
defined.

If an application program calls the method createSchemaElement, it needs to add the
following statement at the beginning of the program:

 import hypercast.util.XmlUtil;

An Extended Example

We now present an extended example that applies the discussed concepts. The
following program fragment presents an application program that defines a few statistics
taking advantage of the StatsProcessor class.

import java.io.IOException;

import org.apache.xpath.XPath;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import hypercast.HyperCastConfig;

import hypercast.HyperCastStatsException;

import hypercast.I_OverlaySocket;

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 20

import hypercast.I_Stats;

import hypercast.SimpleStats;

import hypercast.StatsProcessor;

import hypercast.util.XmlUtil;

public class HelloWorld_Statistics implements I_Stats

{

 private String Location = "Location unknown";

 private I_OverlaySocket Mysocket;

 private String statisticsName = null;

 private StatsProcessor statsProcessor;

 public HelloWorld_Statistics () {

 HyperCastConfig sConf =

 HyperCastConfig.createConfig("hypercast.xml");

 Mysocket = sConf.createOverlaySocket(null);

 InitStatisticsStructure();

 }

…

}

By implementing the I_Stats interface and by defining a StatsProcessor, the class
indicates that it supports the statistics API with support of the StatsProcessor class. The
method InitStatisticsStructure defines the structure of the statistics of the application.

private void InitStatisticsStructure() {

 statsProcessor = new StatsProcessor(this /* I_Stats object */,

 true /* readable flag */,

 true /* writable flag */);

 this.setStatsName("HelloWorld");

statsProcessor.addStatsElement ("CurrentTime" /* name */,

 new CurrentTime() /* I_Stats object */,

 1 /* minoccurs */,

 1 /* maxoccurs */);

 statsProcessor.addStatsElement ("StopApp", new KillApp(), 1, 1);

 statsProcessor.addStatsElement ("Location", new Location(), 1, 1);

 statsProcessor.addStatsElement("MySocket", this.Mysocket, 1, 1);

}

This defines the following statistics. , the statistics have the following structure:

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 21

Figure 10. Statistics of example.

The statistics are defined as readable and writeable, meaning that they are defined in
both XML schemas for readable and writeable statistics. The statistics CurrentTime,
StopApp, and Location are scalar values which are defined by objects derived from the
SimpleStats class. The statistic with name MySocket relates to the overlay socket that
was created previously in the constructor.

The HelloWorld_Statistics class defined as above requires several specifications, which
are described next. First, the HelloWorld_Statistics class must redirect the calls to the
I_Stats interface to methods of the SecurityProcessor class. As noted earlier, the names
of the methods in the StatsProcessor have a suffix `Results’. The implementation of the
I_Stats interface therefore is:

public Element[] getStats (Document doc, XPath xpath)

throws HyperCastStatsException {

 return statsProcessor.getStatsResult (doc, xpath);

}

public Element[] setStats (Document doc, XPath xpath, Element newValue)

 throws HyperCastStatsException {

 return statsProcessor.setStatsResult (doc, xpath, newValue);

}

public Element[] getReadSchema (Document doc, XPath xpath)

 throws HyperCastStatsException {

 return statsProcessor.getReadSchemaResult (doc, xpath);

}

public Element[] getWriteSchema (Document doc, XPath xpath)

 throws HyperCastStatsException {

 return statsProcessor.getWriteSchemaResult (doc, xpath);

}

public String getStatsName () {

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 22

 return statisticsName;

}

public void setStatsName (String name) {

statisticsName = name;

}

Next, for each of the scalar statistics, we need to provide a class that extends the
SimpleStats class. The class specifies the actions performed when accessing a statistic
and the format of the schema element.

The CurrentTime statistic reads the system clock whenever the statistic is read. It is
defined as a read-only only statistic, thus, only the method getStats and getReadSchema
need to be specified:

class CurrentTime extends SimpleStats { // read-only statistic

protected String getStats() {

 return Long.toString(System.currentTimeMillis());

 }

public Element[] getReadSchema (Document doc, XPath xpath)

 throws HyperCastStatsException {

 return XmlUtil.createSchemaElement (doc/* document instance */,

 statisticsName/* element name */, "xsd:Long"/* type */,

 null/* restriction base */, null/* pattern value */);

 }

 }

The KillApp statistic is a Boolean write-only statistic that cannot be read, but only be
modified. W

 the system clock whenever the statistic is read. It is defined as a read-only only statistic,
thus, only the method getStats and getReadSchema need to be specified:

class KillApp extends SimpleStats {

 protected String setStats (String newValue) {

 if (newValue.equals ("true")) System.exit (0);

 return newValue;

 }

 public Element[] getWriteSchema(Document doc, XPath xpath)

 throws HyperCastStatsException {

 return XmlUtil.createSchemaElement(doc/* document instance */,

 statisticsName /* element name */, "xsd:Boolean"/* type */,

 null/* restriction base */, null/* pattern value */);

 }

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 23

}

class Location extends SimpleStats {

 protected String getStats() { return Location; }

 protected String setStats(String newvalue) {

 Location = newvalue;

 return Location;

 }

 public Element[] getReadSchema (Document doc, XPath xpath)

 throws HyperCastStatsException {

 return XmlUtil.createSchemaElement (doc/* document instance */,

 statisticsName/* element name */, "xsd:String"/* type */,

 null/* restriction base */, null/* pattern value */);

 }

 public Element[] getWriteSchema(Document doc, XPath xpath)

 throws HyperCastStatsException {

 return XmlUtil.createSchemaElement(doc/* document instance */,

 statisticsName/* element name */, "xsd:String"/* type */,

 null/* restriction base */, null/* pattern value */);

 }

}

public void ModifyStatistics (String XPathPosition, String XPathElement,

 String ValueElement)

public void AccessStatistics (String XPathexpr)

public void AccessReadSchema (String XPathexpr)

public void AccessWriteSchema (String XPathexpr)

void setStatsName (String name)

public synchronized static void main (String[] args) {

 HelloWorld_Statistics app = new HelloWorld_Statistics ();

 app.AccessStatistics("/*");

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 24

 app.AccessStatistics("/HelloWorld/CurrentTime");

 app.AccessReadSchema("/*");

 app.AccessWriteSchema("/HelloWorld");

 app.ModifyStatistics("/HelloWorld/Location", "/Location", "Toronto");

 app.ModifyStatistics("/HelloWorld/StopApp", "/StopApp", "true");

}

This HelloWorld program creates an overlay socket, as seen in the chapters describing
the application programming interface, and it defines a StatsProcessor. An application
program that supports statistics must implement the I_Stats interface. When the statistics
are implemented by the StatsProcessor class, the I_Stats methods simply invokes
methods of the StatsProcessor as follows:

}

The application defines the supported statistics in the method InitStatisticsStructure(),
which is specified as follows:

 private void InitStatisticsStructure() {

 statsProcessor = new StatsProcessor(this/* I_Stats object */,

 true/* readable flag */, true/* writable flag */);

 statsPro.addStatsElement("Socket"/* name */,

 MySocket/* I_Stats object */, 1/* minoccurs */, 1/* maxoccurs */);

 statsProcessor.addStatsElement ("CurrentTime", new CurrentTime(), 1, 1);

 statsProcessor.addStatsElement ("StopApp", new KillApp(), 1, 1);

 }

class CurrentTime extends SimpleStats { // read-only statistic

 protected String getStats() {

 return Long.toString(System.currentTimeMillis());

 }

// Check: setStats on read-only statistics should cause an exception in the base class)

 public Element[] getReadSchema (Document doc, XPath xpath)

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 25

 throws HyperCastStatsException {

 return StatsUtil.createSchemaElement (doc/* document instance */,

 statisticsName/* element name */, "xsd:Long"/* type */,

 null/* restriction base */, null/* pattern value */);

 }

}

class KillApp extends SimpleStats {

 String setstats (String newValue) {

 if (newValue.equals ("true")) System.exit (0);

 return newValue;
 }

 public Element[] getWriteSchema(Document doc, XPath xpath)

 throws HyperCastStatsException

 {

 return StatsUtil.createSchemaElement(doc/* document instance */,

 statisticsName/* element name */, "xsd:Boolean"/* type */,

 null/* restriction base */, null/* pattern value */)

 }

}

First, the method creates a StatsProcessor object:

statsProcessor = new StatsProcessor(this, true, true);

Above call passes the reference to the I_Stats object to the StatsProcessor and sets the
readable and writable flags of the I_Stats object.

The StatsProcessor maintains all statistics of an I_Stats object. Adding the statistic
Socket to the StatsProcessor is done by the invocation:

 statsPro.addStatsElement("Socket"/* name */,

MySocket/* I_Stats object */, 1/* minoccurs */, 1/* maxoccurs */);

which defines the name of the statistic as Socket and binds it to the I_Stats object
MySocket. It also defines the minimal and maximal occurrence times of the statistic.

The above program also adds statistics CurrentTime and StopAppl to the StatsProcessor.
Different from the Socket statistic, these statistics, refered to as simple statistics, are
bound to an object of a class that is defined specifically for the defined statistics. The
classes, respectively, extend the type SimpleStats, which, in turn, implements the I_Stats
interface. Classes that extend SimpleStats have a simplified interface which requires the
application programmer to specify only the methods getstats and getReadSchema if they
define readable statistics, and specify setStats and getWriteSchema if they are bound to

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 26

writable statistics. The following class definitions define the implementation of statistics
for CurrentTime and KillApp.

The implementation of CurrentTime reads the time of the local system. Since
CurrentTime is a readable statistic, the class CurrentTime only implements getStats and
getReadSchema methods. The KillApp statistic is a write-only statistic that terminates
the application, if the supplied value is set to true. It only overrides setStats and
getWriteSchema methods.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 27

3.3. THE MONITOR PROTOCOL

In the monitor protocol, monitors and portals exchange XML formatted messages over a
HyperCast overlay network, the monitor overlay network. Portals are part of an
application program that is being monitored, and monitors are generally part of an
application program that issues queries and collects responses. We will refer to
application programs that contain a monitor as a monitor application. In most cases, we
will assume that the monitor overlay network has one monitor that communicates with
one or more portals, but there can be more than one monitor in the same monitor overlay
network.

The monitor protocol performs two tasks. The first task is the establishment of
connectivity between monitors and portals. The second task is the exchange of monitor
and control information. Each portal stores the logical address of at most one monitor.
This address can be initialized by an attribute from the configuration file, or it is
obtained from a monitor protocol message that advertises a monitor to the portal. If there
are multiple monitors the portal stores the address of the most recently advertised
monitor. Each monitor maintains a list, called the portal list, with the logical addresses
of all known portals. The portal list may be empty when the monitor is started, and is
updated from monitor messages sent by portals to the monitor.

Messages of the Monitor Protocol

Monitor protocol messages are XML documents. The root element of the message
specifies the message type. The attributes of the root element contain meta information
about the message, including the address of the sender (Src), the address of the receiver
(Dest), a unique message identifier (MsgID), and a Timestamp (TimeStamp). The other
elements are message type dependent.

We first describe the messages that establish and maintain connectivity between the
monitor and portals. Since both monitor and portals are already connected to the same
overlay network, the information to be exchanged is minimal.

• AdvertisePortal: Portals advertise themselves to a monitor by sending
AdvertisePortal messages every tAdvertisePortal milliseconds. No message is sent when
the portal does not have an address for a monitor. When a monitor receives an
AdvertisePortal message, it adds the portal to its portal list. If the portal is already
included, it updates the timestamp in the list. If no AdvertisePortal message has
been received from a portal in the portal list for tPortalTimeotl milliseconds, the
corresponding entry is marked as inactive. However, the entry is kept in the portal
list, until it is explicitly removed by the application that uses the monitor. The format
of the message is:
<AdvertisePortal Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

<Stats index=“1” xpath=“/Portal/Portal/Node/NodeAdapter/UBytesSent” />

• AdvertiseMonitor: A monitor sends one AdvertiseMonitor message every
tAdvertiseMonitor millisecond to all portals in the portal list. When a portal receives an
AdvertiseMonitor message, it updates the logical address information of its monitor.
Each portal only maintains information about one monitor. When a portal does not
hear from a monitor for tMonitorTimeout milliseconds it assumes that the monitor does
not exist and does no longer send AdvertisePortal messages. The format of the
message is as follows:

<AdvertiseMonitor Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…” />

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 28

Both portals and monitors can be set to silent mode. In this mode, portals and monitors
do not send advertisements. A monitor set to silent mode does not set entries in the
portal list as inactive.

The second task of the monitor protocol is the processing of queries that access
statistics. There are three types of queries: queries to obtain a schema description of a
statistic, queries to retrieve a statistic, and queries to modify a statistic. A query consists
of a request message that is sent by a monitor, and a reply message that is sent back to
the monitor. A monitor that has sent a request message waits for reply message from
portal. When the portal receives a request, it translates the request into a call to the
statistics API of the overlay socket, and builds a reply message. Once completed, the
reply message is sent to the sender address of the request message. (This address can be
different from the address of the monitor that is kept at the portal.) Request and reply
messages have a structure as shown in Figures 9 and 10. The figures depict the messages
as XML documents and as DOM document trees. Each message contains one or more
elements with name Stats, which will be referred to as statistic element. Each statistic
element has an index and an XPath expression that locates a statistic. The statistic
elements of a request to read a statistic does not have nested elements. In a reply
message and in a request to change a statistic, the statistic element includes the value of
the statistic as a well-formed XML element.

The MsgID attribute acts a unique identifier for a query. The sender of a request
message creates an identifier, and the reply message uses the same identifier. The
monitor uses the MsgID attribute of a message to match an incoming reply message with
a previously sent request message. Reply messages are always sent as unicast message
to the sender of the corresponding request message. All other monitor messages can be
sent as unicast or broadcast messages. For broadcast messages, the destination attribute
is ignored.

<GetRequest Src= “100011” Dest=“101010” MsgID=“13” TimeStamp="100516">

 <Stats index=“0” xpath=“/Portal/Socket/Node/NodeAdapter/UPacketsSent” />

 <Stats index=“1” xpath=“/Portal/Socket/Node/NodeAdapter/UBytesSent” />

</GetRequest>

GetQuery

 GetRequest
 Src= “100011”

 Dest=”101010”
 MsgID=”13”
 TimeStamp="100516"

 Stats
 index= “1”
 xpath=”/Portal/Socket/Node/Adapter/UBytesSent”

 Stats
 index= “0”
 xpath=”/Portal/Socket/Node/Adapter/UPacketsSent”

Figure 9. GetRequest message as XML document and as DOM document tree.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 29

<GetReply Src= “101010” Dest=”100011” MsgID=”13” TimeStamp="106340">

 <Stats index=“0” xpath=”/Portal/Socket/Node/NodeAdapter/UPacketsSent”>

 <UPacketsSent>120</UPacketsSent>

 </Stats>

 <Stats index=”1” xpath=”/Portal/Socket/Node/NodeAdapter/UBytesSent”>

 <UBytesSent>12384</UBytesSent>

 </Stats>

</GetReply>

GetQuery

 GetReply
 Src= ”101010”
 Dest=“100011”
 MsgID=”13”
 TimeStamp="106340"

 Stats
 index= “1”
 xpath=”/Portal/Socket/Node/Adapter/UBytesSent”

 Stats
 index= “0”
 xpath=”/Portal/Socket/Node/Adapter/UPacketsSent”

UPacketsSent UBytesSent

120 12384

Figure 10. GetReply message as XML document and as DOM document tree.

The steps performed by a portal when it receives a request are illustrated in Figure 10. A
request to access a statistic or a schema arrives to the portal at the overlay socket of the
portal which is connected to the monitor overlay network. The payload of the overlay
message is an XML formatted monitor message which contains one or more statistic
elements each containing a request to read or modify a statistic. An XML parser in the
portal transforms the monitor message into a tree-structured DOM document. Each
statistic element in the document results in an access to the statistics API of the object
that is identified in the XPath expression of the query. Each access returns a DOM
element with the result of the request, which is added to a DOM document. When all
statistic element of a request message are processed, and after some manipulation, the
DOM document with the results consists of a reply message. The DOM document is
translated into an XML document with text and tags by an XML serializer. The result is
a monitor message, which is transmitted to a monitor using the overlay socket.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 30

Portal

XML Parser
and

Serializer

overlay
socket

DOM
document

overlay
message

Access to statistics API
(getStats, setStats, …)

Monitor message
as DOM document

Monitor message
as XML document

Object
with

statistics

Figure 11. Functions performed by portal when accessing a statistic.

The request and reply messages for queries in the monitor protocol are as follows:

• ReadSchemaRequest, ReadSchemaReply, WriteSchemaRequest, WriteSchema
Reply: A request for an XML schema of readable statistics (ReadSchemaRequest) or
writeable statistics (WriteSchemaRequest) is sent from the monitor to a portal. Each
query can sent multiple requests for schemas. Each request is specified as a query
element that identifies an XPath. The portal translates a request into a call to either
GetReadSchema() or GetWriteSchema() of the statistics API. The portal transforms
the requested XML schemas into well-formatted XML documents and sends the
result in a reply message (ReadSchemaReply or WriteSchemaReply). When the
schema cannot be retrieved or an exception is raised at the portal, the reply message
returns an error tag that explains the error, e.g., <error> content of error message
</error>. The message format for requesting and sending a schema with
ReadSchemaRequest and ReadSchemaReply are shown below. Requesting the
schema for writeable statistics is done in the same fashion.

 <ReadSchemaRequest Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…” />

 . . .

 </ReadSchemaRequest>

 <ReadSchemaReply Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…”>

 <xsd:schema xmlns:xsd="http://wwww/w3/org/2000/08/XMLSchema">

 . . .

 </xsd:schema>

 </Request>

 … . .

 </ReadSchemaReply>

• GetRequest, GetReply: A GetRequest message is a request from the monitor to the
portal to retrieve statistics information from a portal. A request may contain multiple
statistic element, each specifying an XPath expression of a. When a portal receives a
GetRequest message, it calls getStats for each statistics element. The results of
getStats are sent to the sender of the request message in a GetReply message. When
the query is invalid or when an exception is raised at the portal, the GetReply

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 31

message contains an error message. A reply message contains the same message
identifier and timestamp as the request message that started the query.

 <GetRequest Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…” />

 . . .

 </GetRequest>

 <GetReply Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…”>

 Well-formed XML message that contains the requested statistic or an

 error message

 </Stats>

 . . .

 </GetReply>

• SetRequest, SetReply: A SetRequest message, sent from a monitor to a portal,
contains requests to modify statistics. Each statistic element in the request specifies
an XPath expression and the new content of the element. For each statistic element,
the portal issues a setStat() call to the statistics API, which sets the new value and
returns the result. When all requests are processed, the portal sends a SetReply
message which contains the query as well as the new value of the statistic. If the
query could not be completed, for example, the XPath expression was not invalid or
an exception is raised, then an error message is returned in the SetReply message.
The SetReply message has the same message identifier and timestamp as the
corresponding SetRequest message.

 <SetRequest Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…”>

 Well-formed XML message that contains the value of the statistic

 </Stats>

 . . .

 </SetRequest>

 <SetReply Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…” />

 . . .

 </SetReply>

• SetTriggerRequest, SetTriggerReply: A SetTriggerRequest message, sent from a
monitor to a portal, contains requests to set up a notification trigger. Each
SetTriggerRequest contains information about one notification trigger, including the
conditionXPath of the trigger, logical operator used by the trigger, the value for
comparison, dataXPath of the trigger, and polling period for checking the trigger
condition. When the SetTriggerRequest is received by the portal, the portal checks
the validity of the conditionXPath and the availability of the logical operator
definition, if either of the two gives a negative result, the SetTriggerReply would
contain an error message, otherwise a trigger will be set up. The trigger polls the
application constantly, the time interval between two polling is specified by the
pollingPeriod value in the setTriggerRequest message, and the XPath of the statistic

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 32

element the trigger polls is specified by the condtitionXPath value in the
SetTriggerRequest. The trigger, then does a comparison between the result of the
polling and a reference value (compareValue in the SetTriggerRequest), the logical
operation used in this comparison is specified by the ConditionOperator value in the
SetTriggerRequest. When this logical comparison produces a positive result, Portal
will send a notification message to the monitor, the notification will contain the
value of the statistic specified by dataXPath.

 <SetTriggerRequest Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “/TriggerList/Trigger”>

 Well-formed XML message that contains the information about the trigger.

 </Stats>

 . . .

 </SetTriggerRequest>

 <SetTriggerReply Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…” />

 error message or a well-formed XML structure representing the trigger

 </SetTriggerReply>

• NotificationRequest, NotificationReply: A NotificationRequest message is created
by a trigger in the portal and sent from the portal to monitor when the pre-defined
condition described by a SetTriggerRequest is satisfied. The NotificationRequest
contains statistic elements whose XPath is given in the
SetTriggerRequest(dataXPath). When the NotificationRequest is sent, the polling
action of the trigger is suspended for a short period of time to allow the monitor to
react to the event. For every NotificationRequest received by a monitor, a
NotificationReply is sent back to the portal as an acknowledgement. If no
NotificationReply is received, the portal would retransmit the NotificationRequest,
the number of retransmission is defined in the configuration file for the portal. The
message ID for both the NotificationRequest and the NotificationReply is the same as
the message ID of the SetTriggerRequest that creates the notification
trigger.Remark: when a notificationRequest is sent out, the polling of statistics in the
portal will stop for pollingPeriod*retransmission, to allow the monitor to respond to
the notification.

 <NotificationRequest Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…”>

 Well-formed XML message that contains the value of the statistic

 </Stats>

 . . .

 </NotificationRequest>

 <NotificationReply Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…” />

 . . .

 </NotificationReply>

• RemoveTriggerRequest, RemoveTriggerReply: A RemoveTriggerRequest, sent
from the monitor to portal, stops a trigger’s polling action and remove it from the
portal’s trigger list. The trigger to be removed can be identified by its alias, or its

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 33

index in the trigger list. The monitor can also send out a RemoveTriggerRequest that
removes all the triggers set up by itself. If the Trigger is successfully removed, the
RemoveTriggerReply would contain the message ID used by the trigger when
sending NotificationRequest, otherwise, the reply would contain an error.

 <RemoveTriggerRequest Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…”>

 xml message containing the alias or index of the trigger to be removed

 </Stats>

 . . .

 </RemoveTriggerRequest>

 <RemoveTriggerReply Sender=“…” Dest=“…” MsgID=“…” TimeStamp=“…”>

 <Stats index=“0” xpath= “…” />

 . . .

 </RemoveTriggerReply>

Programming with Portals

A portal is a component of an application program that is being monitored. Portals are
configured from a HyperCast configuration file, which specifies the attributes of the
portal as well as the attributes of the overlay socket running in the portal. Portals and
monitors that join the same monitor overlay network must have compatible
configuration files. An application with an overlay socket and a portal requires two
configuration files, one file for the configuration of the overlay socket created by the
application and another file for the portal and the overlay socket running inside by the
portal. A configuration file for a portal or monitor contains an attribute
MonitorAndControl that specifies the properties of a portal or a monitor. The
configuration of a portal is done as follows:
<MonitorAndControl>

 <Portal>

 <MonitorAddress />

 <TimeAdvertise>5000</TimeAdvertise>

 <MonitorTimeout>60000</MonitorTimeout>

<Transcript>

<RecordIncoming>true</RecordIncoming>

<RecordOutgoing>true</RecordOutgoing>

<Append>true</Append>

</Transcript>

</Portal>

 </MonitorAndControl>

The element MonitorAddress initializes the address of the monitor. The address is the
logical address of the monitor in the monitor overlay network. In the above example the
address is left empty. The remaining attributes set parameters at the portal.
TimeAdvertise specifies the time inteval in milliseconds between transmissions of
AdvertisePortal messages by this portal. MonitorTimeout is timeout value. If a portal
has not received an AdvertiseMonitor message for MonitorTimeout milliseconds, the
portal stops sending AdvertisePortal messages to this monitor. A portal can be set to

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 34

record all transmitted or received monitor protocol messages into a file. The element
Transcript contains configuration information for this feature. The flags
RecordIncoming and RecordOutgoing, respectively, determine if incoming and outgoing
messages are recorded. The flag Append specifies the recorded data is appended to the
existing file, or if the content of the file is overwritten.

A portal is created by an application program in a similar fashion as an overlay socket.
The application program first creates a configuration object and then uses the
configuration object to create a portal. When creating a portal, the application provides
an object that will be managed through the portal. This can be the application, an
overlay socket run by the application, or any other object that implements the statistics
API.

All statistics that are managed through the portal are referenced have element as root
element, and all XPath expressions of statistics managed through a portal have the prefix
/Portal. If an overlay socket (with statistic name Socket) is managed through the portal,
then all accesses to the statistics of the socket have the prefix /Portal/Socket. The portal
may also have statistics of its own. The top of the hierarchy of statistics accessed
through a portal are illustrated in Figure 12. The managed object is the object that is
provided to the portal when the portal was created, i.e., the application program, an
overlay socket, or some other object.

Figure 12. Hierarchy of statistics accessed through a portal.

The following code fragment is a HelloWorld program that creates an overlay socket
and a portal.

import org.apache.xpath.XPath;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import hypercast.HyperCastConfig;

import hypercast.HyperCastStatsException;

import hypercast.I_OverlaySocket;

import hypercast.I_Stats;

import hypercast.SimpleStats;

import hypercast.StatsProcessor;

import hypercast.MonitorAndControl.I_Portal;

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 35

import hypercast.util.StatsUtil;

public class ApplicationWithPortal {

 private I_OverlaySocket socket;

 private I_Portal portal;

 private String statisticsName = null;

 public synchronized static void main (String[] args) {

 ApplicationWithPortal app = new ApplicationWithPortal();

 app.startSockets();
 }

 public ApplicationWithPortal() {

 HyperCastConfig sConf = HyperCastConfig.createConfig("hypercast.xml");

 socket = sConf.createOverlaySocket(null);

 HyperCastConfig pConf = HyperCastConfig.createConfig("Portal.xml");

 portal = pConf.createPortal(socket, "Socket");
 }

 public void startSockets() {

 portal.activatePortal();

 socket.joinOverlay();

 }

}

The program illustrates the similarity between the creation of a portal to the creation of
an overlay socket. A portal is created as follows:

HyperCastConfig pConf = HyperCastConfig.createConfig("Portal.xml");
portal = pConf.createPortal(socket, "MySocket");

The first statement creates a configuration object from the file Portal.xml. The
configuration file must contain attributes needed to configure the portal and the overlay
socket in the portal. The portal is created with the createPortal method. The first
argument of the method call specifies the object that is remotely accessed by the monitor
protocol. This object must be of a type that implements the I_Stats interface. The second
argument specifies the name by which the object is referenced. In the above example,
the overlay socket MySocket is assigned to the portal, and is associated with the element
Socket. This results in a hierarchy of statistics as shown in Figure 3 and 4. Recall that all
statistics accessed through a portal are contained in the root element Stats. Therefore, the
statistic that provides the number of bytes transmitted by the node adapter are
referenced through the XPath expression /Portal/MySocket/Node/NodeAdapter/
UBytesSent.

Alternatively, the portal could be created with the application program as the managed
object. In this case, the invocation to create the portal would be as follows:

portal = pConf.createPortal(this, "MyAppl");

private StatsProcessor statsProcessor;

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 36

initStatisticsStructure();
Here, the application must provide an implementation of the I_Stats interface. This
can be done as shown in the subsection “Statistics for application programs”, with a
StatsProcessor object.

 If the implementation results in a hierarchy of statistics as shown in Figure 8 and 9, the
statistics accessed through the portal are accessed with XPath expressions with prefix
/Portal//MyApplication/Socket. (Note that Socket is the default name of the statistic
representing the overlay socket. By invoking socket.setStatsName(“MySocket”), the
prefix is changed to /Portal/MyApplication/MySocket.)

Once a portal is created, the portal can be opened and closed with the method
invocations

MyPortal.activatePortal();

MyPortal.deactivatePortal();

When a portal is opened, the overlay socket in the portal joins the monitor overlay
network, and the portal sends and receives advertisement messages. A newly created
socket is not opened. As soon as the portal is opened it can be accessed by a monitor.
When a portal is closed, the portal leaves the monitor overlay network, and is no longer
accessible by a monitor. The openPortal and closePortal methods give an application
program explicit control whether it can be remotely monitored.

The example program illustrates that the portal and the overlay socket in the application
operate independently. An application program can start a portal even if the program
does not have an overlay socket. In fact, portals can be deployed for remote monitoring
of any distributed application that implements the I_Stats interface.

Next, we given an overview of the API for creating and operating portals. With
exception of the method to create a portal, the methods are defined in the I_Portal
interface.

I_Portal createPortal (I_Stats StatsObject, String StatsName)
I_Portal createPortal (I_Stats StatsObject)

This method of the class HyperCastConfig creates a new portal. The configuration
object must specify attributes needed to create a portal. The first argument is an
object that implements the I_Stats interface. This object contains the statistics that
are made available for remote monitor and control through the portal. The second
argument specifies the name of the element by which the object will be referenced.
If the object already has a name assigned, then the second argument can be dropped.

void activatePortal ()
Activating a portal means that the overlay socket of the portal joins the monitor
overlay network, and the portal sends and receives advertisement messages. An open
portal processes queries that arrive from a monitor. When a portal is created, it must
be explicitly opened by the application program.

vod deactivatePortal ()
When a portal is deactivated, the overlay socket of the portal leaves the monitor
overlay, and the portal no longer sends or receives monitor protocol messages. A
closed portal can be re-opened with the openPortal method.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 37

vod closePortal ()
When a portal is closed, the overlay socket of the portal is closed.

 void startTranscript(String filename)
Starts a transcript of all transmitted and received monitor protocol messages. The
command writes an XML declaration and an opening tag <transcript> to the file,
and then appends each transmitted or received monitor protocol message. The
attributes specified in the Transcript element determine which messages are
recorded and if recorded messages are appended to the existing file.

 void stopTranscript()
Stops the transcript of monitor protocol messages, and writes the closing tag
</transcript>.

void setSilentOn()

void setSilentOff()
These methods turn the silent mode of the portal on and off. In silent mode, the
portal does not send advertisement messages. By default, the silent mode is turned
off. When the set of portals and monitors does not change over longer time periods,
setting the monitor to silent mode reduces the traffic due to advertisement messages.

Programming with Monitors

A monitor in the HyperCast software is part of a monitor application that exchanges
messages with portals over a monitor overlay network. In a later section, we will discuss
the RunController, a monitor application that is part of the HyperCast software. Here,
we discuss how to write a monitor application.

Each monitor maintains a table, called the portal list, which contains the portals known
to the monitor. A monitor learns about portals through the configuration file or through
advertisement messages of the monitor protocol. An entry in the portal list contains the
logical address of a portal in the monitor overlay network, the time since the last
advertisement message is contained, and whether the portal is active or inactive. A
portal is marked as inactive if the monitor has not received an advertisement from the
portal for a long period of time. A monitor application addresses portals through the
index in the portal list. This makes the monitor application independent of the
addressing scheme used in the monitor overlay network. When a monitor sends a
request message to portal 0, the request message is sent to the logical address of the
portal that is located in position 0 of the portal list. Entries for inactive portals are not
deleted. It is possible to delete inactive entries and reset the index of the portal list. This,
however, may change the addresses of active portals.

A monitor is configured in the same way as a portal, i.e., from a HyperCast
configuration object. The configuration file for the monitor must contain an attribute
MonitorAndControl that specifies the properties of the monitor. The following is an
example of a monitor configuration.
 <MonitorAndControl>

 <Monitor>

 <PortalList />

 <TimeAdvertise>5000</TimeAdvertise>

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 38

 <PortalTimeout>60000</PortalTimeout>

 <QueryTimeout>5000</QueryTimeout>

<Transcript>

<RecordReceives>true</RecordReceives>

<RecordSends>true</RecordSends>

<Truncate>true</Truncate>

</Transcript>

 </Monitor>

 </MonitorAndControl>

The attributes are similar to those of a portal. The attribute PortalList initializes the
portal list of the monitor. In the above example the attribute is empty. If the portal list is
initialized to the logical addresses 00110, 10110, and 10011, the attribute is replaced by:

<PortalList>

<LogicalAddress>00110</LogicalAddress>

<LogicalAddress>10110</LogicalAddress>

<LogicalAddress>10011</LogicalAddress>

</PortalList>

Portals that are entered in this fashion are static, in the sense that they are never set to an
inactive status because of missing AdvertisePortal messages. The attribute
TimeAdvertise specifies how frequently AdvertiseMonitor messages are sent by the
monitor. PortalTimeout specifies the maximum time that a monitor waits for an
AdvertisePortal message before setting the portal list entry to be inactive. The time unit
is a millisecond. The Transcript element has the same interpretation as in the Portal.

Below is a complete application program that uses a monitor.

import hypercast.HyperCastConfig;

import hypercast.HyperCastStatsException;

import hypercast.util.*;

import hypercast.MonitorAndControl.*;

import org.w3c.dom.Element;

public class SimpleMonitor implements I_ReceiveCallback, I_TimeoutCallback {

 private I_Monitor monitor;

 private String stat = "/Portal/Appl/Socket/Node/LogicalAddress";

 public static void main (String[] args) {

 SimpleMonitor simpleMonitor = new SimpleMonitor();

 int activePortalIndex = simpleMonitor.listenForPortal();

 simpleMonitor.sendRequest (activePortalIndex);

 }

 public SimpleMonitor() {

 HyperCastConfig config = HyperCastConfig.createConfig("Monitor.xml");

 monitor = config.createMonitor();

 monitor.activateMonitor();

 }

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 39

 public int listenForPortal() {

 while (true) {

 System.out.println ("Checking for active Portal...");

 int [] activePortals = monitor.getActivePortalIndices();

 if (activePortals.length > 0) {

 System.out.println ("Found with index: " + activePortals[0]);

 return activePortals[0];

 }

 try { Thread.sleep (3000); } catch (InterruptedException e) {}

 }

 }

 public void sendRequest (int portalIndex) {

 MonMessage request = monitor.createGetRequest();

 request.addStat (StatsUtil.createXPath (stat));

 try {

 monitor.sendTo (portalIndex, request, this, this);

 } catch (NoSuchPortalException nspe) {

 System.err.println ("Bad Portal: " + portalIndex + "\n" + nspe);

 }

 System.out.println ("Sent request with ID: " + request.getMessageID());

 }

 public void close() {

 System.out.println ("Closing...");

 monitor.closeMonitor();

 }

 public synchronized void receiveMessage (MonMessage reply) {

 System.out.println ("Received reply with ID: " + reply.getMessageID());

 try {

 Element[] value = reply.getStatValue (StatsUtil.createXPath(stat));

 String scalar = value[0].getChildNodes().item (0).getNodeValue();

 System.out.println ("Statistic value: " + scalar);

 } catch (HyperCastStatsException hcse) {

 System.err.println ("Stats error reading reply message:\n" + hcse);

 }

 close();

 }

 public synchronized void timeoutMessage (MonMessage message) {

 System.out.println ("Timeout, message ID: " + message.getMessageID());

 close();

 }

}

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 40

The monitor application SimpleMonitor creates a configuration object from the
configuration file Monitor.xml, and then instantiates the monitor from the configuration
object. The instantiation of the monitor is done with:
I_Monitor MyMonitor = config.createMonitor();

Once the monitor is created, the monitor is opened by calling

MyMonitor.activateMonitor();

Activating the monitor is analogous to opening a portal. It means that the overlay socket
in the monitor will join the monitor overlay network, and transmit AdvertiseMonitor
messages. A monitor can disconnect from the monitor overlay network by deactivating
the monitor, using the method call

MyMonitor.deactivateMonitor();

After the monitor is created the application program creates and configures a query for a
statistic:

MonMessage MyQuery = MyMonitor.createGetRequest();

This creates an “empty” request message without a statistic element. Request messages
to modify a statistic are created with the method createSetRequest, and request messages
to retrieve schemas are done with the methods createReadSchemaRequest and
createWriteSchemaRequest. Next, the program adds a statistic element to the query:

MyQuery.addStat(StatsUtil.createXPath("/Portal/Socket/Node/NodeAdapter/UBytesSent"

));

This adds a statistic element that requests retrieval of the statistic
/Portal/Socket/Node/NodeAdapter/UBytesSent. The request message is transmitted with:

MyMonitor.sendTo(0, MyQuery, this, this);

The first argument is the address of the portal. The value 0 sends the message to the first
portal (with index 0) in the portal list. The second argument contains the message. The
third and fourth arguments supply, respectively, objects that implement the callback
functions for processing the response to the message and for a timeout. In the example,
the SimpleMonitor supplies both callbacks for processing a reply message and a timeout
on a response. The callbacks are the methods receiveMessage and timeoutMessage. The
callback for response messages is called when the reply to the request message arrives.
A monitor uses the MsgID element in the message to match a request with the response.
In the example, the receiveMessage method matches the XPath expression from the
request message to identify the statistic element. When the statistic element is obtained,
the method manipulates the statistic element to extract and display the value of the
statistic. The timeout callback is invoked when the monitor waits for more than
QueryTimeout milliseconds for a reply message. Generally, the timeout callback can
implement a policy for retransmitting a request message. In the example, if a timeout
occurs, the request message is transmitted, up to a maximum of five retransmissions.

Since queries may be broadcast, multiple replies may be received for the same query.
For broadcast request messages, the callback method is called for each response that
arrives to the query. The fourth argument specifies the timeout value, in milliseconds,
for waiting on the response to the request message. A timeout occurs if the monitor
waits for more than QueryTimeout milliseconds for a reply message.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 41

The following is an overview of the programming interface of the monitor. Most
methods are available through the I_Monitor interface. The methods are grouped into
methods to manage the monitor, the callback functions, methods to create and send
queries, methods to access and manipulate the portal list, and methods that perform
miscellaneous functions.

Managing a monitor

I_Monitor createMonitor()

A monitor is created with this method of the HyperCastConfig class. If the
configuration does not contain attributes needed to configure a monitor, the creation
of the monitor fails.

void activateMonitor()
When a monitor is opened the overlay socket of the monitor joins the monitor
overlay network, and the monitor sends AdvertiseMonitor messages to announce its
presence in the monitor overlay network. A monitor application can send requests
and receive responses as soon as a monitor has been opened.

 void deactivateMonitor()
When this method is called, a monitor stops sending and receiving overlay protocol
messages, and the overlay socket in the monitor leaves the monitor overlay network.
A monitor application can re-open a monitor by calling the activateMonitor method.

void closeMonitor()
When this method is called, the monitor is firstly deactivated, and the overlay socket
in the monitor is closed.

void setSilentOn()

void setSilentOff()
Turns the silent mode of the monitor on and off. In silent mode, the monitor does not
send advertisement messages and does not set the status of the portals in the portal
list to inactive. If the set of portals is stable and does not change, setting the monitor
to silent mode may reduce the traffic generated by the monitor protocol. In a newly
created portal, the silent mode is turned off.

Creating and sending queries

MonMessage createGetRequest()

MonMessage createReadSchemaRequest()

MonMessage createSetRequest()

MonMessage createWriteSchemaRequest()
A monitor application program can create four types of request message. When
created, a message does not contain statistic elements. Statistics elements with
requests are added using the addStat method of the MonMessage class.

void sendTo (int portalIndex, MonMessage message, I_ReceiveCallback receiveCallback,

 I_TimeoutCallback timeoutCallback)
Sends a request message to a portal. The first argument is the index of the portal in
the portal list, the send argument is the message to be transmitted, the third argument
is the callback method for the reply message, and the last argument is the callback

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 42

when the no reply arrives after waiting for a time given by the QueryTimeout
attribute.

 void sendToAll (MonMessage message, I_ReceiveCallback receiveCallback,

 I_TimeoutCallback timeoutCallback)
Sends a monitor protocol message via broadcast which reaches all portals and nodes
in the monitor overlay network. A request message that is broadcast may result in
more than one reply message. When this happens, the receive callback is called for
each returning reply message. When no reply message arrives after QueryTimeout
milliseconds, the timeout callback is invoked.

Callbacks

When sending a query, a monitor application supplies two callback methods. One
callback method is invoked when the monitor receives a response to the query. Another
callback method is called when a timeout occurs for waiting on the response to a query.
The methods belong to the interfaces I_TimeoutCallback and I_ReceiveCallback.

 void receiveMessage (MonMessage message)
This is the callback method that handles an incoming response to a request message.
The callback contains the received reply message as an argument.

void timeoutMessage (MonMessage message)

This callback method handles a timeout for waiting on a response to a request
message. The argument contains the request message for which a timeout occurred
as an argument. The timeout callback may implement a retransmission of a message.

Interacting with the portal list

The monitor maintains a database of portals, called the portal list, which contains the
addresses and the status of portals. The portal list is updated from advertisement
messages of the monitor protocol. A monitor application addresses portals through the
index in the portal list. The monitor translates the indexes into logical addresses of the
portal overlay network. The API of the monitor has a number of methods to query and
manage the content of the portal list.

int[] getAllPortalIndices()
Returns the set of all portals in the monitor as an integer array. The values of the
array are the indices in the portal list (with 0 as the first entry). Each entry in the
portal list is either active or inactive.

int[] getActivePortalIndices()

Returns an integer array containing the active portals.

int[] getInactivePortalIndices()

Returns an integer array containing the inactive portals.

boolean isPortalActive(int portalIndex)
 Tests if a portal is currently active.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 43

void compactPortalList()
This command removes all portals that are inactive and re-computes the indices of
the portal. Since the monitor application uses the index in the portal list as the
address of a portal, calling this method may change the address of a portal.

void clearPortalList()
Removes all portal entries and resets the portal list. For the portal list, this method
has the same effect as restarting the monitor.

void getPortalAddress(int portalIndex)
Returns the logical address of a portal.

int indexOfPortal (final I_LogicalAddress portalLogicalAddress)
Find the index of a portal by its logical address.

Other methods

 void startTranscript(String filename)
Starts a transcript of transmitted and received monitor protocol messages. The
command writes an XML declaration and an opening tag <transcript> to the file,
and then appends each transmitted or received monitor protocol message. The
attributes specified in the Transcript element determine which messages are
recorded and if recorded messages are appended to the existing file.

 void stopTranscript()
Stops the transcript of monitor protocol messages, and writes the closing tag
</transcript>.

Programming with Monitor Messages
Next we discuss how monitor applications manipulate monitor protocol messages. Since
a monitor application is responsible for sending requests and processing replying
queries, the application programmer of a monitor application must be familiar with
building request messages and processing replies to these messages. Some messages of
the monitor protocol, e.g., the AdvertisePortal messages, are transmitted automatically
without requiring action by the monitor application. All messages discussed here are
providd by the MonMessage class.

Adding and removing statistic elements
Monitor protocol messages are created through the I_Monitor API, as discussed
previously. The available methods are createGetRequest, createReadSchemaRequest,
createSetRequest, and createWriteSchemaRequest. The messages created in this fashion
are empty in the sense that they do not include a statistic element. Statistic elements are
added with the following methods.

addStat(XPath statistic)
Adds a statistic element to a request message. The location of the statistic is passed
as an XPath expression and is added as an attribute to the statistic element. The

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 44

method is used by monitor applications to add a request for a statistic or a schema to
a request message.

addStat(XPath statistic, Element value)
Adds a statistic element to a reply message. The method is used by monitor
application to add a query to modify a statistic to a SetRequest message. The first
argument is the location of the statistic and the second argument is the value of the
statistic. The value, specified in the second argument, is added as an element nested
in the statistic element.

void removeStat(int index)
Removes a statistic element from a query or reply message. The statistic element is
accessed by its index in the message.

void removeStat(XPath xpath)
Removes a statistic element from a query or reply message. The statistic element is
accessed by matching the argument with the XPath attributed in the Stats element.

Processing a message

document getDocument()
Returns the entire monitor protocol message as a DOM document structure. This
method can be invoked by a monitor application when the message should be
entirely parsed and processed by the monitor application.

I_LogicalAddress getSender()
Returns the message of the sender attribute of a monitor protocol message.

I_LogicalAddress getDestination()
Returns the message of the destination attribute of a monitor protocol message.

long getTimeStamp()
Get the timestamp of a monitor protocol message.

long getMessageID()
Returns the message identifier attribute from a monitor protocol message.

int getStatsCount()
Returns the number of statistic elements in a query or reply message.

Element [] getStatValue(int index)
Returns a statistic element from a query or a reply message. If the argument is 0, the
method returns the first statistic element, a 1 returns the second statistic element, and
so forth.

Element [] getStatValue(XPath statistics)
Returns a statistic element from a query or a reply message. The method tries to find
a match of the provided XPath expression with an XPath attribute in a statistic
element of the message.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 45

 XPath getStatXPath(int index)
 Returns the XPath attribute in a statistic element of a query or reply message.

Testing a message

boolean isStatError(int index)
Returns true if a statistic element contains an error message. The statistic element is
accessed by its index in the message.

boolean isStatError(XPath xpath)
Returns true if a statistic element contains an error message. The statistic element is
accessed by matching the argument with the XPath attribute in the Stats element.

Programming With Notification Triggers
Next we discuss how monitor applications can set up a notification trigger in the portal.
This functionality allows the monitor to receive a asynchronous notification message
when certain event takes place in the portal.

Setting up a notification trigger
This is part of the I_Monitor API, the two main methods here are:
createSetTriggerRequest and sendSetTriggerRequest, the message created contains
complete information about the trigger, do not use addStats or removeStats methods on
the SetTriggerRequest message. The sendSetTriggerRequest would check the format and
contents of the message. Exception will be thrown if there are deviations from the
standard format.

 MonMessage createSetTriggerRequest(XPath conditionXPath, XPath dataXPath, String

operator, String compareValue, long pollingInt, String alias)
Returns a monitor message that contains all the information about a trigger. For a
trigger to send out a notification message, the comparison of an application statistic
with a reference value must give a positive result. The conditionXPath is the XPath
representing the statistics to be polled by the trigger when making the comparision.
The third argument “operator” is the String representation of the operator used in the
comparison. The fourth argument “compareValue” is the reference value to be
compared with; pollingInt is the period for the polling action of the trigger. The last
argument is the alias for the trigger. The “dataXPath” is the XPath for the statistic
element that is to be contained in the notificationRequest sent out when the condition
is satisfied.

MonMessage sendSetTriggerRequest(int portalInd, MonMessage setTriggerReq,

I_ReceiveCallback callbackForReq, I_TimeoutCallback toCallbackForReq,

I_ReceiveCallback callbackForNoti)
Sends a monitor message that contains all the information about a trigger. The
portalInd specifies which portal this SetTriggerRequest is sent to. There are three
callbacks in the arguments, the first two are ReceiveCallback and TimeoutCallback
for the setTriggerRequest, the third callback is for the NotificationRequest. The
callback for NotificationRequest cannot be null here.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 46

Removing a notification trigger

MonMessage createRemoveTriggerRequest()

Creates a Monitor Message that removes all the triggers set up by this monitor.

MonMessage createRemoveTriggerRequest(int index)
Creates a Monitor Message that removes the trigger in the portal identified by index.
If the index is pointing to a trigger that is not set up by this monitor, then the trigger
will not be removed and the reply will carry a error message.

MonMessage createRemoveTriggerRequest(String alias)
Creates a Monitor Message that removes the trigger in the portal identified by
alias.If the trigger identified by the trigger alias is not set up by this monitor, then the
trigger will not be removed and the reply will carry a error message.

3.4. THE RUNCONTROL AND RUNSERVER APPLICATIONS

This section describes two applications, RunControl and RunServer, that exploit the
features of the monitor and control system to execute large scale measurements of
HyperCast overlay networks. RunControl and RunServer have been used to monitor
overlay networks that involve more than 100 computers, where each computer runs an
application with up to one hundred overlay sockets.

Figure 13 shows the interaction of the RunControl and RunServer applications.
RunControl is a monitor application that acts as console for measurement experiments
for an overlay network. RunControl contains a monitor that is attached to a monitor
overlay network. RunControl provides to users a command line interface that permits
users to start and monitor a measurement experiments with a HyperCast overlay
network. The commands of RunControl are translated into queries of the monitor
protocol.

RunServer is an application that maintains an array of overlay sockets and that has a
portal. RunControl controls the experiment by sending monitor messages to portals of
the RunServers. RunServer starts all sockets with identical configuration file. The
overlay sockets running in the RunServer join the overlay network only if so instructed
by a command of RunControl.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 47

HyperCast
Overlay Network

Monito
r

protoco
l

Overlay Socket

Overlay Socket

Overlay Socket

Overlay Socket

Overlay Socket

Overlay Socket

Overlay Socket

Overlay Socket

Overlay Socket

Monitorprotocol

Monitor
protocol

Run
server

Portal

Run
server

Portal

Run
server

Portal

Run
control

Monitor

Figure 13. Communication between RunControl and RunServers.

RunControl is started with the following command:1

java –cp “hypercast3.0.jar;runcontrol.jar;xalan.jar”
 commandline.RunControlCLI –mc Monitor.xml

The command assumes that the class path is set so that the libraries can be found. When
downloaded, the JAR files are found in the lib subdirectory. The file Monitor.xml2 is the
configuration files for the monitor and overlay socket in the monitor. When started,
RunControl displays a message which includes the (address) of RunControl in the
monitor overlay network and a command prompt:

NONE_Node started: 128.143.69.53:7550:7551
Opening Monitor at Logical Address: 128.143.136.78:1500:1501
Monitor successfully created.
Started RunControl Command-line interpreter at Tue Nov 30 17:44:37 EST 2004
>

At the prompt, the user types one of the available commands.

A RunServer application can be started with the following command:

java –cp
“lib/hypercast3.0.jar;lib/runcontrol.jar;lib/xalan.jar;lib/bcprov-
jdk14-122.jar”
 runserver.RunServer –ns 10 –pc Portal.xml –sc hypercast.xml

1 In Unix command shells semicolons (“;”) need to be replaced by colons (“:”).

2 We assume that the Monitor.xml file employs the NONE protocol as overlay protocol to
connect monitor and portals. In the NONE protocol logical addresses are identical to
physical addresses.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 48

With the option –ns 10, RunServer starts 10 overlay sockets, which, however, do not
initially join the overlay network. Portal.xml is the configuration file for the portal, and
hypercast.xml is the configuration file used by the overlay sockets of the RunServer
application. The available options for the commands are given in the appendix to this
chapter. In an experiment that involves multiple computers, one RunServer must be run
on each systems involved in the experiment.

A Simple Experiment with RunControl and Runserver

Once RunControl and a set of RunServers are started, the user of the RunControl
application can issue commands at the command prompt. A simple experiment may use
the following set of commands.

NONE_Node started: 128.143.69.53:7550:7551

Opening Monitor at Logical Address: 128.143.69.53:7550:7551

Monitor successfully created.

Started RunControl Command-line interpreter at Tue May 31 06:21:28 EDT 2005

> list_portals

<Portal 0: Address=128.143.69.53:7552:7553 Status=Active>

1 Portals listed

> list_sockets

Sockets created = 10

Sockets started = 0

Sockets available = 10

> start_sockets

starting all sockets

> wait_until_stable

Stable at 3.7970002 seconds since experiment started. (Command took 0.016

seconds to run.)

> kill_remote_servers

Killing 1 servers.

Here, we assume that there is one RunControl and one RunServer command
started as shown previously. The RunControl commands cannot be interrupted. Thus,
when a a command gets stuck, the entire application must be restarted. In most cases, a
restarted RunControl application resynchronizes with currently active RunServer
applications.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 49

We next discuss each of the above commands.

> list_portals

The command displays the status of portals at remote RunServer applications.
The output
<Portal 0: Address=128.143.69.53:7552:7553 Status=Active>

Indicates that there is one portal, with index 0, that is available at logical address
128.143.69.53:7552:7553. The Status=active states that the remote RunServer
and the RunControl application are communicating via the monitor protocol.

> list_sockets

This commands lists the number of available overlay sockets at the remote
RunServer application. The command lists the number of sockets that have been
created by the remote RunServer application, the number of sockets that have
joined the overlay network, and the number of overlay sockets that have not yet
started. The command results in the following output
Sockets created = 10
Sockets started = 0
Sockets available = 10
The output indicates that 10 overlay sockets have been created, but no overlay
socket has joined the overlay network.

> wait_until_stable

With this command, RunControl waits until the overlay network has stabilized. The
command requires that overlay sockets have a statistic /Socket/Node/Stable which takes
value false and true. The DT protocol supports this statistic, but other overlay protocols
may not support this statistic. The command issues queries that request the value of the
Stable statistic from all overlay sockets. As long as one RunServer returns a false for
one of its overlay socket, the RunControl repeats the query every two seconds. When all
RunServers have reported that all their overlay sockets have reached a stable state, the
command is completed. Then, the command displays how long the command was
running. The command displays the elapsed time since the last execution of the
command start_sockets.

> kill_remote_servers

This command terminates all remote RunServer applications. This command requests
each RunServer application to change the statistic /Portal/Appl/KillServer to true. When
the statistic is set to true, the RunServer application terminates.

A list of all available commands can be found in Appendix I.

RunServer Statistics

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 50

The RunServer application implements the I_Stats interface and supports its own
statistics. When a Runserver creates a portal, it specifies the application as the managed
object. The overlay sockets running in the application are accessed by specifying an
index in the XPath expression. For example, to access the number of bytes that were
transmitted by the node adapter of the first overlay socket at Runserver the monitor
requests the following statistic:

/Portal/Appl/Socket[1]/Node/NodeAdapter/UBytesSent

The complete set of statistics defined in Runserver are illustrated in Figure 14 and
explained in Table 1.

Figure 14. Statistics required by RunServer.

Table 1. Explanation of the RunServer statistics.

NumOfSockets The number of overlay sockets that are started by RunServer.

Socket Gives access to the statistics of an overlay sockets in
RunServer. There are NumOfSockets overlay sockets. To
access a specific overlay socket, the XPath expression specifies
an index, e.g., Socket[i] with i = 1, 2, …, NumOfSockets.

Running Indicates whether an overlay socket is currently joining the
overlay network, i.e., is in state running. If Running[i]=true
then the i-th overlay socket (i = 1, 2, …, NumOfSockets) joins
the overlay network. If Running[i]=false the corresponding
overlay sockets leaves the overlay network.

 KillAppl If the statistic is set to true, the RunServer application
terminates.

OverlayID Overlay identifier of the overlay network that is joined by the
overlay socket.

LogicalAddress Logical address of the overlay socket.

PhysicalAddress

Physical address of the overlay socket.

NumOfNeighbors

Number of neighbors of the overlay node in the overlay
topology

NeighborTable The statistics of a neighborhood table entry in the overlay node
of an overlay socket. There are NumOfNeighbors entries in the
table. To access a specific entry, the XPath expression specifies

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 51

an index, e.g., NeighborTable[i] with i = 1, 2, …,
NumOfNeighbors. Each entry has two elements with names
LogicalAddress and PhysicalAddress.

RunControl GUI

The RunControl GUI is a graphical front end to the RunControl application that displays
the logical topology of an overlay network. RunControlGUI is a standalone application
that interacts with remote RunServers and displays the overlay network as a graph.
RunControlGUI can interact with remote application programs other than Runservers, as
long as the applications support the statistics of RunServer (as shown in Figure 14). The
RunControlGUI application is started in a similar fashion as RunControl witht eh
following command:

java –cp “hypercast3.0.jar;runcontrol.jar;xalan.jar”
 gui.RunControlGUI –mc Monitor.xml

Figure 15 depicts the user interface of RunControlGUI for a Pastry overlay network with
16 overlay sockets. The user selects the overlay protocol of the monitored overlay
network, and RunControlGUI depicts an appropriate graph. RunControlGUI includes
the complete RunControl command line interface. Users can type commands in the
window at the bottom of the user interface. Results are displayed in the gray shaded
window.

Figure 15. RunControl GUI (Logical View of a Pastry overlay).

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 52

RunControlGUI can display a logical view and a geographical view of an overlay
network. The user switches between these views by checking either the LView (logical
view) or GView (logical view) box. The logical view presents the overlay network as a
logical graph selecting a representation that is suitable for the overlay topology. The
geographical view displays the actual location of the overlay sockets in the overlay
network. To display the geographical location of applications, RunControlGUI requires
information on the location of remote applications so that the physical address of an
overlay socket can be related to its geographical location. RunControlGUI reads
geographical information from the file location.xml which has the following content:
<AddressLocator>

 <Host>

 <Address>128.143.71.21</Address>

 <Location>

 <LocationName> Charlottesville </LocationName>

 <Latitude>38.05</Latitude>

 <Longitude>-101.52</Longitude>

 </Location>

 </Host>

 <Host>

 …

 </Host>

<AddressLocator>

The root element, AddressLocator, contains a sequence of Host elements that each
specifies the address and the location of a host. In general, the address should be an
initial substring (prefix) of the physical address of an overlay socket of an application.
On the Internet, the address is generally the IP address of the host running the RunServer
application. The location is specified in terms of latitude and longitude. The additional
element LocationName has informational value. When RunControlGUI receives monitor
protocol messages, it tries to match one of the Host elements with a prefix of the
physical address of the overlay socket in the message, and displays the information in
the window. If no match is found, a default geographical location is chosen for the
overlay socket. The geographical view of an overlay network is shown in Figure 16. The
user selects one of the available maps from a pull down menu. The available maps are
image files, and meta information about the image files is found in the file map.xml. In
Appendix III, we explain how the geographical locations are computed. Users can edit
the file map.xml and add new image files to the application.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 53

Figure 16. RunControl GUI (Geographical View).

The RunControlGUI sends periodic queries to RunServers to request information about
the neighbors of each overlay socket in the overlay network. The interval between
queries is specified in the user interface. By pressing the Update button, a user can force
an immediate transmission of queries. When requesting information from the
Runservers, RunControlGUI constructs a monitor protocol request message for each
active portal in the portal list, and queries the state of all overlay sockets running on that
portal. For some overlay protocols, the query may request additional statistics. A query
message may look as follows:

<GetRequest Sender="128.143.136.78:1500:1501" Dest="128.143.136.78:3563:3562"

 MsgID="4" TimeStamp="1104775368977" >

<Stats index="0" xpath="/Portal/Appl/NumOfSockets"/>

<Stats index="1" xpath="/Portal/Appl/SocketTable/SocketTableEntry[0]/Running"/>

<Stats index="2" xpath="/Portal/Appl/SocketTable/SocketTableEntry[0]/Node/LogicalAddress"/>

<Stats index="3" xpath="/Portal/Appl/SocketTable/SocketTableEntry[0]/Node/PhysicalAddress"/>

<Stats index="4" xpath="/Portal/Appl/SocketTable/SocketTableEntry[0]/Node/NumOfNeighbors"/>

<Stats index="5" xpath="/Portal/Appl/SocketTable/SocketTableEntry[0]/Config/Public/OverlayID"/>

<Stats index="6" xpath="/Portal/Appl/SocketTable/SocketTableEntry[0]/Node/NeighborTable"/>

<Stats index="7" xpath="/Portal/Appl/SocketTable/SocketTableEntry[1]/Running"/>

<Stats index="8" xpath="/Portal/Appl/SocketTable/SocketTableEntry[1]/Node/LogicalAddress"/>

<Stats index="9" xpath="/Portal/Appl/SocketTable/SocketTableEntry[1]/Node/PhysicalAddress"/>

<Stats index="10" xpath="/Portal/Appl/SocketTable/SocketTableEntry[1]/Node/NumOfNeighbors"/>

<Stats index="11" xpath="/Portal/Appl/SocketTable/SocketTableEntry[1]/Config/Public/OverlayID"/>

<Stats index="12" xpath="/Portal/Appl/SocketTable/SocketTableEntry[1]/Node/NeighborTable"/>

</GetRequest >

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 54

The first statistic element queries information about the application. All other statistic
elements request statistics from a total of two overlay sockets. When the remote
applications return reply message, the RunControlGUI analyzes the messages and
updates the display of the overlay network in the user interface.

3.5. REFERENCES

[citeMcLaughlin] Brett McLaughlin, Java & XML, 2nd Edition: Solutions to Real-
World Problems, O'Reilly, 2nd edition, 2001.

[citeGriffith] Arthur Griffith, Java, XML, and the JAXP, Wiley, 2002.

• F. Strauss and T. Klie. Towards XML oriented internet management. Integrated
Network Management, 2003 IFIP/IEEE Eighth International Symposium, pp. 505 –
518. March 2003.

• Mi-Jung Choi, James W. Hong, and Hong-Taek Ju. XML-Based Network
Management for IP Networks. ETRI Journal, Volume 25, Number 6, December
2003.

• Read: http://www.juniper.net/solutions/literature/white_papers/200017.pdf

• XML Network Management Interface. By Weijing Chen and Keith Allen (SBC
Labs). IETF Netconf Working Group, Internet Draft. Reference: 'draft-weijing-
netconf-interface-00'. June 2003, expires December 2003.

• http://xml.coverpages.org/Enns-XMLCONF-Vienna.pdf

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 55

APPENDIX I: METHODS TO ACCESS STATISTICS

public void AccessStatistics (String XPathexpr) {

 Document doc = XmlUtil.createDocument();

 XPath xpath = XmlUtil.createXPath(XPathexpr);

 Element[] resultElements = null;

 try {

 resultElements = this.getStats(doc, xpath);

 } catch (HyperCastStatsException e) {

 System.err.println("Query fails:" + e.getMessage());

 }

 if (resultElements != null) {

 for (int i=0; i<resultElements.length; i++) {

 Document resultDoc = XmlUtil.createDocument();

 resultDoc.appendChild(resultDoc.importNode(resultElements[i], true));

 try {

 XmlUtil.writeXml(resultDoc, System.out);

 } catch (IOException e) {

 System.err.println("Can’t write XML file:" + e.getMessage());

 }

 }

 }

}

public void ModifyStatistics (String XPathPosition, String XPathElement,

 String ValueElement) {

 Document doc = XmlUtil.createDocument();

 XPath xpath = XmlUtil.createXPath(XPathPosition);

 Element element = XmlUtil.getXmlValue(doc, XPathElement, ValueElement);

 // Modify the statistic

 Element[] resultElements = null;

 try {

 resultElements = this.setStats(doc,xpath,element);

 } catch (HyperCastStatsException e) {

 System.out.println("Query fails:" + e.getMessage());

 }

 // Display the result of the new statistic

 if (resultElements != null) {

 for (int i=0; i<resultElements.length; i++) {

 Document resultDoc = XmlUtil.createDocument();

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 56

 resultDoc.appendChild(resultDoc.importNode(resultElements[i], true));

 try {

 XmlUtil.writeXml(resultDoc, System.out);

 } catch (IOException e) {

 System.err.println("Can’t write XML file:" + e.getMessage());

 }

 }

 }

}

public void AccessReadSchema (String XPathexpr) {

 Document doc = XmlUtil.createDocument();

 XPath xpath = XmlUtil.createXPath(XPathexpr);

 Element[] resultElements = null;

 try {

 resultElements = this.getReadSchema(doc, xpath);

 } catch (HyperCastStatsException e) {

 System.err.println("Query fails:" + e.getMessage());

 }

 if (resultElements != null) {

 for (int i=0; i<resultElements.length; i++) {

 Document resultDoc = XmlUtil.createDocument();

 resultDoc.appendChild(resultDoc.importNode(resultElements[i], true));

 try {

 XmlUtil.writeXml(resultDoc, System.out);

 } catch (IOException e) {

 System.err.println("Can’t write XML file:" + e.getMessage());

 }

 }

 }

}

public void AccessWriteSchema (String XPathexpr) {

 Document doc = XmlUtil.createDocument();

 XPath xpath = XmlUtil.createXPath(XPathexpr);

 Element[] resultElements = null;

 try {

 resultElements = this.getWriteSchema(doc, xpath);

 } catch (HyperCastStatsException e) {

 System.err.println("Query fails:" + e.getMessage());

 }

 if (resultElements != null) {

 for (int i=0; i<resultElements.length; i++) {

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 57

 Document resultDoc = XmlUtil.createDocument();

 resultDoc.appendChild(resultDoc.importNode(resultElements[i], true));

 try {

 XmlUtil.writeXml(resultDoc, System.out);

 } catch (IOException e) {

 System.err.println("Can’t write XML file:" + e.getMessage());

 }

 }

}

}

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 58

APPENDIX I: OPTIONS FOR RUNCONTROL AND RUNSERVER

This appendix lists all options available for the applications RunControl,
RunControlGUI, and RunServer.

java -cp jarfiles commandline.RunControlCLI -mc file1 [-qr retries]

java -cp jarfiles gui.RunControlGUI -mc file1 [-qr retries]

-cp jarfiles A list of the JAR archives that contain the Java programs needed to run
the RunControl application. RunControl requires the executables of
HyperCast (hypercast3.0.jar or similar), the archive that contains the
RunControl application (runcontrol.jar or similar), and the Apache
Xalan-Java XSLT processor (xalan.jar), e.g.,
 “hypercast3.0.jar; runcontrol3.0.jar;xalan.jar”

-mc file1 The configuration file for the monitor.

-qt timeout The timeout values in milliseconds for transmitting request messages by
the monitor protocol.

-qr retries Maximum number of retransmissions for a query transmitted by
RunControl.

java –cp jarfiles runserver.RunServer [-ns NumSock] [-start] -pc file1 -sc file2

-cp jarfiles A list of the JAR archives that contain the Java programs needed to run
the RunServer application. RunServer requires the executables of
HyperCast (hypercast3.0.jar or similar), the archive that contains the
RunServer application (runcontrol.jar or similar), and the Apache Xalan-
Java XSLT processor (xalan.jar).), e.g.,
“hypercast3.0.jar; runcontrol3.0.jar;xalan.jar”

-ns NumSock Number of overlay sockets that will be created by RunServer.

-start Determines if the overlay sockets immediately join the overlay network
after they are created. By default, the overlay sockets created by
RunServer do not start the overlay network.

-pc file1 Specifies the configuration file for the portal.
-sc socket Specifies the configuration file for the overlay sockets of RunServer.

–help Displays the options available for starting RunServer.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 59

APPENDIX II: COMMANDS OF RUNCONTROL

Here we discuss the commands that can be typed at the command prompt of
RunControl. The commands start a measurement experiment, collect data, and modify
parameters of an experiment in execution.

date

Prints the current date and time.

echo text

Displays the string text that is typed as an argument.

clear_portal_list

Removes all portal entries and resets the portal list. For the portal list, this
method has the same effect as restarting the monitor.

compact_portal_list

Removes all portals that are inactive and re-computes the indices of the portals.
Since the monitor application uses the index in the portal list as the address of a
portal, calling this method may change the address of a portal.

exit

Terminates the RunControl application.

get_value [monitor | portalindex] XPathExpression

Accesses a statistic at a RunServer application or the monitor. The command has
two mandatory arguments. The first argument specifies a RunServer application
by the index in the portal list of the monitor (Run list_portals to get the list.). If
the argument is set to monitor, the command accesses a statistics of the monitor
in the RunControl application. The second argument specifies the requested
statistic in terms of a XPath expression.

get_readschema [monitor | portalindex] [Xpathexpression] [stdout | fname]

get_writeschema [monitor | portalindex] [Xpathexpression] [stdout | fname]

Retrieves a schema of readable or writable statistics from a RunServer
application. The first argument specifies a remote RunServer application through
the index of the corresponding portal. If the argument is set to monitor, the
command accesses the monitor in the RunControl application. The second
argument is an XPath expression that identifies the requested schema. The third
argument specifies if the output should be written to the monitor (stdout) or to a
file with name fname.

help [command]

Without an argument, the command displays a complete list of available
commands. When help is called with a command name as argument, a
description of the command is displayed.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 60

kill_remote_servers

Terminates all remote RunServers.

list_portals [all]

Displays the contents of the portal list in the monitor of RunControl. By default,
only active portals are displayed. If this command is run with the argument all,
both active and inactive portals are shown.

list_sockets [verbose | row i]

Lists information about the number and the state of overlay sockets in the remote
RunServer application. The command lists the number of sockets that have been
created at the RunServers (created sockets), the number of sockets that have
joined the overlay network (started sockets), and the number of overlay sockets
that have not yet started (available sockets). Without an argument, the
commands lists aggregate values for all remote RunServers. With the argument
verbose, the command additionally displays the status at each remote RunServer.
With the argument row i, the command displays the state only at the ith
RunServer.

mtime

Displays the number of milliseconds since January 1, 1970.

pause text

Displays the typed text and waits until the user presses the return key.

quit

Terminates the RunControl application.

resync_sockets

Requests that all currently running overlay sockets are stopped. The command
has, in most cases, the same effect as the command stop_sockets all, but there are
differences. The sync_sockets command contacts all RunServers in the portal list
and requests that all overlay sockets leave the overlay network. (Differently,
stop_sockets all contacts only RunServers that have started overlay sockets
according to the state information at the RunControl program. Therefore, when
the state information at RunControl is not consistent with the actual state of the
remote overlay sockets, the sync_sockets command can help to recover to a
consistent state.)

run script

Reads the file script and executes the lines in the file as RunControl commands.

silent_mode [on | off]

Turns the silent mode of the monitor and the portals on and off. The silent mode
on portals is set by sending a SetRequest message that sets the corresponding
statistic. If the silent mode is turned on, a monitor or portal does not send
advertisements. Also, a monitor in silent mode does not set the status of any portal
in its portal list to inactive. By default, the silent mode is set to off.

set_value [monitor | portalindex] [Xpathexpression] [newValue | -f fname]

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 61

Modifies a statistic at a RunServer application or at the monitor. The command
has three mandatory arguments. The first argument specifies a RunServer by the
index in the portal list or lists the word monitor access a statistic in the monitor.
If the argument is set to monitor, the command accesses the monitor in the
RunControl application. The second argument specifies the requested statistic in
terms of a XPath expression. The third argument is the new value of the statistic.
For statistics that use a built-in type of XML schema, e.g., integers, strings, etc.,
the new value of the statistic can be typed in as a text string. Otherwise, the new
value of the statistic is provided as a well-formed XML document stored in file
fname.

sleep [n]

Does not show a command prompt for n seconds.

start_sockets [n | all] [uniform] [rate R]

Requests that new overlay sockets at the remote RunServers join the overlay
network. The request is issued by setting the statistic Running of an overlay
socket to true. The total number of started overlay sockets cannot exceed the
total number of sockets that are created at remote RunServers. If a request would
exceed the maximum permitted number of overlay sockets, the maximum
number overlay sockets is started and a message is displayed indicating that the
request exceeds the total number.

The command can take several arguments. All arguments are optional. A number
indicates the number of overlay sockets. The argument all requests to start the
maximum number of overlay sockets. By default, the command starts the
maximum number of overlay sockets. An argument uniform indicates that
overlay sockets are started at remote RunServers in a round-robin fashion. If the
argument is not provided, RunControl contacts the first RunServer and allocates
the maximum number of overlay sockets at this RunServer. Then RunControl
contacts the second RunServer and allocates the maximum number of overlay
sockets, and so forth, until the desired number of sockets has been started. The
order in which RunServers is contacted is determined by the order of portals in
the portal list of the monitor. The third argument (rate R) specifies the maximum
rate at which overlay sockets are started. Here, R is a number that indicates the
maximum number of overlay sockets that will be requested to start per second. If
a rate is not specified then overlay sockets will be started as quickly as possible.

start_transcript fname

Starts writing monitor protocol messages to the specified file.

stop_sockets [n | all] [uniform] [rate R]

Requests that overlay sockets at the remote RunServers leave the overlay
network. Sockets are stopped by setting the statistic Running in the overlay
socket to false. If the request is larger than the total number of overlay sockets
that are currently started, then all overlay sockets are stopped and a message is
displayed. The arguments n, all, uniform and rate R have the same interpretation
as in the start_sockets command.

stop_transcript

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 62

Stops writing monitor protocol messages to a file and closes the file.

wait_until_stable

This command is only available in overlay sockets that support a boolean
statistics /Socket/Node/Stable (e.g., sockets that run the DT protocol) Currently,
the command assumes that the DT protocol (DTBuddyList, DTServer, or
DTBroadcast) is running. This statistic should be supported in overlay
protocols where a socket can determine if the overlay protocol has reached a
local definition of stability. The command queries all overlay sockets at
RunServer applications and waits until all overlay sockets report that the value of
the statistic is true. At that time, the command displays how long the command
has been running. Should be: At that time, the command displays the time lag
since the last time the command start_socket has been issued.

check_clock_synchronization

This command checks if the clocks of remote RunServers are synchronized with
the local clock. The command sends a query message to the RunServers to query
the CurrentTime statistic, storing the time the query is sent (SendTime) and the
time the reply is received (ReceiveTime). The clock of a remote RunServer is said
to be synchronized if SendTime ≤ CurrentTime at RunServer ≤ ReceiveTime. A
warning message is printed if the clocks of the servers are no synchronized.

get_exact_stable_time (for DT)

Nodes are either in state “STABLE” OR “LEADER STABLE” This
command prints the exact time when the overlay network became stable. The
stable time is defined as the last time when there is any neighborhood change on
any node. The result of this command is in milliseconds. A warning message is
printed if the network is not in stable state.

(This is not clear. Stability and neighborhood change are different concepts?)

get_exact_start_time (for DT)

This command prints the starting time of the overlay network. The starting time of
a network is defined as the time when the last started socket joined the network.
This command queries every running sockets on RunServer for their starting time,
and select the maximum one out of all results as the starting time of the overlay
network.

(This is not clear. The time of the “last started socket” is always defined._What is
missing is a test that all sockets have been started.)

poll_stability (for DT)

This command displays the number of stable sockets at each RunServer.

timeout_values [maximum number of retransmission attempts]

This command displays or sets the parameter for the retransmission of query
messages. There is only one parameter, which is the maximum retransmission
attempts of all messages. That means if a query message has been timeouted and
retransmitted more than this "maximum retransmission attempts", no more

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 63

retransmission would happen. With no parameters, it displays the current value of
maximum retransmission attempts. With parameters, it sets the value.

(This is not clear. Is the max. retransmission of any message since the RunControl
started, or is it the number of retransmissions of the last message?)

set_trigger [portalIndex] [condition Xpath] [operator] [compareValue] [pollingPeriod]

[data Xpath] [Alias]

This command sets up a new trigger. It has seven arguments. The first argument
specify the index of the portal in which the trigger is to be set up. The second
argument specifies the XPath expression for the statistic element that is to be
checked to for the trigger condition. The third argument specifies the operator used
for deciding whether the condition has been satisfied, it can be ==, >=, <= etc. The
fourth argument is the value used for comparison in the condition checking. The
fifth argument specify the polling period for the portal querying the application
statistics The sixth argument is the XPath expression for the data content that is to
be contained in the notification message sent back when the condition is met. The
last argument specifies the alias used to identify this trigger.

remove_trigger [portalIndex] [condition Xpath] [operator] [compareValue]

[pollingPeriod] [data Xpath] [Alias]

This command removes trigger in the portal. The trigger to be removed can be
identified by its alias or its index in the portal's trigger list. Whether the user uses
alias or index, it can only remove trigger set up by this monitor. When using alias,
if this monitor has set up multiple triggers with the same alias, the first trigger will
be removed. The first argument indicates the index of the portal to which the
removal request is sent to. The second argument indicates whether the trigger is to
be identified by alias or index, and if all triggers are to be removed The third
argument specifies the actual alias/index of the trigger, if the second argument is "-
all" , then the third argument is ignored.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 64

APPENDIX III: DISPLAYING MAPS IN RUNCONTROLGUI

The geographical view of RunControlGUI can display the geographical location of
overlay sockets on a map, given that the longitude and latitude information of computer
systems where the overlay socket is running are available. Here we discuss how the
positions of an overlay socket is computed.

All geographical maps use some kind of projection that map all or part of a sphere (the
earth) into grid values on a map. RunControlGUI displays maps that perform a Mercator
projection, a commonly used projection method. The map shown in Figure A.1 depicts a
Mercator projection of a world map. Note that the distance between parallels increases
with the distance from the equator. For maps with a Mercator projection, a coordinate
with longitude φ ∈[-180,180] and latitude λ ∈[-90,90] is mapped to an x and y
coordinate in a coordinate system by the following equations:

x = a1(λ – λ0) + b1

y= a2 (ln (tan φ + sec φ)) + b2

For a1=a2=1 and b1=b2=0, a position is mapped to a coordinate system where the x-axis
is at the equator and the y-axis is at longitude λ0. The parameters a1, a2, b1, and b2 scale
the x and y coordinates to the size of the image file. The parameters are determined from
two reference locations.

Figure A.1. World map as Mercator projection.

The file map.xml specifies the maps that can be displayed by the RunControlGUI. The
map to be displayed is selected from the user interface. Each map is specified as
follows:
<Map type="mercator" name="World map"

width="2245" height="1443"

upleft="-180, 90" downright="180, -90"

ref1_position="2060,1257" ref1_location="151.0,-34.0" ref1="Sydney"

ref2_position="349,672" ref2_location="-123.06, 49.13" ref2="Vancouver">

 visio_worldmap.png

</Map>

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 65

The value of the element is the image file that contains the map, here
visio_worldmap.png. The image file can be a PNG or JPEG file. The attribute type
defines the type of projection. Currently, only maps with a Mercator projection are
supported. The second attribute is the name of the map as it is displayed in the user
interface. The width and height attributes give the pixel size of the map image. The
attributes upleft and downright specify the longitude and latitude of the upper left corner
and the lower right corner of the map. The remaining attributes define two reference
points which determine the scaling parameters a1, a2, b1, and b2. A reference point
consists of a place (e.g., ref1), its pixel position (ref1_position) and its geographical
location (e.g., ref1_location). In the example, the reference points are Sydney and
Vancouver. The geographical location is the longitude and latitude of the reference. The
pixel position is the (x, y) position in the file visio_worldmap.png, where position (0,0)
is the upper left corner of the image (Most image editing programs can display the pixel
position of a location of an image file). To obtain useful parameter values, the two
reference points should be locations that are geographically far apart.

© Jorg Liebeherr, 2005-6. All rights reserved. HyperCast 3.0

5/28/2007 Monitor and Control 66

APPENDIX IV: XMLUTIL: HELPER METHODS TO FOR XML PROCESSING

The XMLUtil class in the hypercast.util package provides a few helper methods that
simplify the handling of XML documents and XPath expressions. The following list
specifies some of the static methods of this class. We use the following abbreviations:

Document: org.w3c.dom.Document

Element: org.w3c.dom.Element

Node: org.w3c.dom.Node

XPAth: org.apache.xpath.XPath

static Document createDocument()

static Document createDocument(byte[] array)

static Document createDocument(File xmlFile)

static Document createDocument(InputStream xmlFileStream, String fileName)

static Document createDocument(String xmlFilename)

static Document createDocumentFromString(String xmlDocString)

All these methods create a new Document object. Without an argument an empty
document is created. from given XML File instance. There is one method to
create a document from a byte array, three methods to create a Document from a
file and two methods to create a document from a string.

static Element[] createSchemaElement(Document doc, String name, String type,

string restrictionBase, String patternValue)

 Returns the element which represents a statistic in the schema document.

static XPath createXPath(String xpathStr)

Reformats a string containing an XPath as an object of type
org.apache.xpath.XPath

static Node findChildNode(Node node, String name)

Finds a child node by name.

static void writeXml(Document saveDoc, OutputStream output)

 Write an XML document to an output stream.

