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CHAPTER 5  Security Architecture  
 

ABSTRACT 
This document summarizes the design of the security 
architecture in Hypercast3.0, including key management, 
authentication, and integrity and confidentiality of messages.  
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5.1 OVERVIEW  

The security architecture in HyperCast attempts to satisfy integrity and confidentiality 
requirements of information processing in overlay networks. The architecture realizes 
practical security solutions for potentially very large and very dynamic overlay networks 
that do not require or assume permanent availability of a network infrastructure. The 
security goals are an assurance of backward secrecy (a new member of the network 
cannot access data transmitted before the member joined) and forward secrecy (a 
member cannot access data that is transmitted after it left the network) for application 
data. The building blocks of the architecture are as follows: 

• Authentication: Authentication is managed through certificates signed by a trusted 
third party or designated certificate authority. An exchange of certificates is required 
when an overlay socket receives a protocol message from another overlay socket for 
the first time. HyperCast assumes that certificates are formatted following the X.509 
specification. In HyperCast, all authenticated overlay sockets are trusted.  

• Key Management: This refers to creation and exchange of secret keys at overlay 
sockets. HyperCast supports two key management. In one scheme, overlay sockets 
share a single symmetric group key for encrypting and signing messages. This is 
commonly done in secure group communications for overlay networks or network-
layer multicast. To ensure forward and backward secrecy, group keys must be 
updated and distributed each time the group membership changes. This is referred to 
as re-keying. HyperCast does not provide a protocol for re-keying and leaves this 
task to the application. HyperCast has an alternative to group keys, called 
neighborhood key method, where each overlay socket has its own secret key, called 
the neighborhood key, which is shared only with authenticated neighbors in the 
overlay network. The neighborhood key method avoids network wide re-keying 
operations.  

• Message Keys: In a scheme such as the neighborhood key method, where secrets 
are exchanged only between neighbors of the overlay network, encrypted message 
payloads cannot be deciphered by non-neighbors. This creates a problem when a 
message is forwarded. Clearly, decrypting and re-encrypting a message at each hop is 
very time-consuming and not practical in large networks. To reduce the overhead 
incurred at each overlay socket HyperCast employs separate keys for each message. 
Here, when an overlay socket wants to transmit a message, it generates a new 
symmetric key for this message, called a message key, and encrypts or signs the 
payload of the message with the message key. Then, the message key is encrypted 
with the neighborhood key and appended to the message. When overlay sockets 
share their neighborhood keys with their neighbors in the overlay network, only the 
message key must be decrypted and re-encrypted at each hop, without modifying the 
encrypted message payload.  

• Integrity: Protection against unauthorized manipulation of protocol and overlay 
messages is achieved by adding signed hashes to a message. There are three types of 
signed hashes in HyperCast: one for a protocol message, one for the header of an 
overlay message, and one for the payload of an overlay message.  

• Confidentiality: When confidentiality is desired, the entire payload of the message is 
encrypted with a group key or a message key. Headers of overlay messages and 
protocol messages are never encrypted. When message keys are used, they are 
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encrypted with a neighborhood key. When an encrypted overlay message is received 
by an overlay socket, it only decrypts the message if it is a destination of the 
message. Messages are decrypted just before they are delivered to the application 
program, and after they have been forwarded to the next hop other specified 
receivers. When the confidentiality is selected, all signed hashes are computed as well 
to ensure integrity. 

5.2 SECURITY LEVELS 

HyperCast has three security levels: plaintext, protocol integrity, integrity, and 
confidentiality. Plaintext means that no security features are activated. Here protocol 
messages and overlay messages are transmitted in plaintext and the sender of a message 
is not authenticated. All other levels require an authentication before overlay sockets 
exchange messages. With protocol integrity, all protocol messages are digitally signed 
with a message authentication code (MAC), and application messages are transmitted as 
plaintext messages without computing a MAC. With integrity, both protocol messages 
and overlay messages are digitally signed. Signed hashes for headers of overlay messages 
are verified and computed at each hop. Signed hashes for the payload of an overlay 
message are computed only by the source of the message, and verified only at the 
destination of the message. At the confidentiality level, the payload of each overlay 
messages is encrypted. The encryption is done at the source of a message and the 
decryption occurs at the destination(s) of the message. The confidentiality level also 
computes the same hashes as is done in the integrity level.  

Table 1 summarizes the security operations for overlay messages and protocol messages 
that are performed at the available security levels.  

Security Level Authentication Operations 
applied to 
protocol 
messages 

Operations applied to 
overlay messages 

Plaintext No None None 

Protocol Integrity Yes Signed hash None 

Integrity Yes Signed hash Signed hash for header 
Signed hash for payload 

Confidentiality Yes Signed hash Encrypted payload 
Signed hash for header 
Signed hash for payload 

Table 1. Security levels.  

Note: There is an orthogonal mechanism available to ensure security, where overlay 
messages and protocol messages are transmitted over Secure Socket Layers (SSL) 
connections. An SSL connection is a secure communication channel that provides 
message confidentiality by encrypting all information exchanged using a session key, that 
is negotiated with the public key of the requestor of the SSL tunnel. The configuration 
of SSL security is different from the configuration of the previously discussed security 
methods, and is done entirely by configuring adapters that transmit messages over SSL 
tunnels. SLL tunnels for protocol messages and overlay messages are configured 
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independently. SSL security is established for overlay messages by selecting the socket 
adapter in the configuration file to be of type SocketAdptSLL, and for protocol messages 
by selecting the node adapter to be of type NodeAdptSSL. If an overlay socket transmits 
data over one of these adapters, it first establishes an SSL tunnel and then transmits the 
data over that tunnel.  

5.3 TRUST ESTABLISHMENT 

The establishment of trust is a key characteristic of a security architecture. Trust is the 
enabling of confidence that something will or will not occur in a predictable or expected 
manner, and is supported by mechanisms for identification, authentication, encryption, 
authorization, and availability [Andert02]. A key characteristic of peer-to-peer systems is 
that peer applications help with forwarding or storing information on behalf of other peer 
applications. This makes the peer network vulnerable to malicious or non-cooperative 
peers in several ways. A non-cooperative peer that receives an application message that 
is destined to some other peer, may, instead of forwarding the message to a neighbor 
drop the message. A malicious user may alter the content of messages, may disrupt the 
overlay network topology by sending false protocol messages, or may stage a denial of 
service attack. For these reasons, trust establishment in peer networks is probably more 
important than in an infrastructure network. 

Trust establishment in an infrastructure network such as the Internet can be obtained 
through a PKI where a certificate authority (CA) initiates all trust relationships.  Digital 
certificates issued by a CA that authenticate identities can be passed to a key 
management and encryption schemes, e.g., as described in the previous section. The 
difficulty of building trust increases dramatically without access to trusted third parties 
or intermediaries.  

A variety of approaches have been tried for the establishment of trust in peer networks., 
including advance dissemination of private keys for all overlay socket pairs, threshold 
cryptography approaches, and many more, each offering a particular trade-off with 
respect to overhead, scalability, availability, and the ability to perform trust revocation. 
Some peer networks adopt a concept as introduced by PGP [Gar94], where a peer in the 
network knows the public keys of some other peers (with which it has a trust 
relationship) and relies on them to certify the public keys of other peers. By representing 
all trust relationship as a graph, one obtains what is called a web-of-trust 
[Datta03][Chen00]. A peer accepts a signed public key of a peer if it can find a path in 
the web that leads to this peer. The drawback of the web-of-trust is that trustworthiness 
is determined by the weakest trust relationship in the web. As a result, the trust 
established between peers becomes weaker when the size of the web grows. Another set 
of trust schemes in peer networks determines the trustworthiness of a peer by evaluation 
of its past behavior, e.g., feedback from other peers [Aberer01][Cornelli02][Kamwar03] 
Here, the different measures of trustworthiness are heuristically mapped into a cost 
metric. In a completely different approach, some peer networks attempt to mitigate the 
damage inflicted by malicious or non-cooperative peers that have joined an overlay 
network [Castro02][Wallach02].  Measures against non-cooperative, malicious, or faulty 
users are discussed in [Wallach02], and incentive systems that reward cooperative 
behavior are discussed in [Buragohain03][Chun04][Feldman04][Kamvar03]. While 
research in this area has provided many insights and continues to be important, the large 
variety of non-cooperative or malicious behaviors may not yield a general solution that 
detects and isolates undesirable behaviors after a peer has gained access to the peer 
network. A promising approach for trust establishment in a peer network is a  distributed 
authentication scheme that is stronger than the web-of-trust. Distributed authentication 
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has been extensively studied in the context of distributed systems [Reiter96][Zhou??] 
and ad-hoc networks [Asokan00][Hubaux03] [Luo05][Wang03] [Yi03][Yi02][Zhou99]. 
A distributed CA can be constructed using threshold cryptography 
[Luo05][Yi03][Yi02][Zhou99]. In (K, N) threshold cryptography [Shamir79], a secret 
number D is added to a randomly selected polynomial of degree K-1. The resulting 
polynomial is evaluated at N positions. Then, D can be computed by obtaining K out of 
N values. To build a distributed CA, the private key of the CA is distributed with (K, N) 
threshold cryptography, yielding N partial CA’s. A new user is authenticated when K 
out of N partial CA’s have signed the certificate of the new user. Possibly, authentication 
scheme based on threshold cryptography will evolve into practical protocols that can be 
adapted to unpredictable information needs and access to other peers.  

HyperCast views non-cooperative and malicious peers as a matter of access control to 
the overlay network. HyperCast provides authentication through the use of digital 
certificates that relies on the exchange of certificates. Authentication is required for all 
overlay sockets whenever the security requirements are set to a level stronger than 
plaintext.   Once a HyperCast overlay socket has passed the authentication by its peers, 
the application is trusted to be cooperative and not malicious.   

5.4 AUTHENTICATION 

Before overlay sockets can establish a secure association, they must authenticate each 
other. HyperCast employs an authentication method based on public key certificates. 
Each overlay socket must have a certificate that has been previously signed by a trusted 
third party, and certificates of trusted third parties. Without online access to certificate 
authorities, trust revocation is not resolved by this method, unless it is enhanced by a 
distributed authentication protocol. An exchange and verification of certificates between 
neighbors in the overlay occurs only when needed in an on-demand fashion. Each 
overlay socket accepts protocol and overlay messages only from authenticated overlay 
sockets. When an overlay socket receives an overlay protocol message from another 
overlay socket for the first time it requests a signed certificate from this overlay socket 
and includes its own certificate in the request. With the neighborhood scheme method, 
once certificates are exchanged, the overlay sockets send each other their neighborhood 
which are used to encrypt or sign messages.  

The exchange of certificates is illustrated in Figure 1 for two overlay sockets A and B. 
When B receives a protocol message from A and the certificate of A is unknown (Step 
1), overlay socket B discards the message, and sends a certificate request (CertRequest) 
message to A (Step 2), which includes B's certificate. When A receives the request, it 
verifies the signature of B's certificate and, if valid, stores the certificate. Verification of 
the signature requires that the private key that signed the certificate in question be the 
private counterpart of the public key known to belong to a trusted third party. Next, in 
Step 3, A sends a certification reply (CertReply) message containing its own certificate. 
In Figure 1, B's authentication at A is completed in Step 2, and A's authentication at B is 
completed in Step 3. Once authenticated, the overlay sockets can process each others 
protocol and overlay messages.  

Until the authentication is completed for a remote overly socket, all protocol messages 
(and also overlay message) received from that socket are dropped. If the authentication 
of the certificate fails, the certificate received from the remote socket is dropped and no 
further action is taken.  
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Figure 1. Authentication. 

5.5 KEY MANAGEMENT 

The purpose of key management in HyperCast is usage of secret keys and the 
distribution of keys to other overlay sockets. Encryption of data and the signing of 
hashes are done with symmetric keys. HyperCast offers two methods for managing keys: 
group keys and neighborhood keys, where the neighborhood key method has three 
variants.  

In the group key methods, there is a single symmetric key, called the group key, that is 
shared by all overlay sockets, and which is used for signing and encrypting methods. The 
session key can be dynamically modified while the socket is running. With shared group 
key security, all tasks that require a key, such as MAC computation and message 
encryption, are performed with the specified group key. To ensure forward and 
backward secrecy, group keys must be updated each time the group membership 
changes. The update of group keys, also known as re-keying, is not handled by the 
overlay socket and must be implemented by the application programs.  

The remainder of this section describes the neighborhood key method, which has been 
developed in the context of the HyperCast project. The neighborhood key method 
avoids network wide re-keying operations, without requiring that message payloads be 
re-encrypted at each hop. Each overlay socket maintains a single symmetric key with all 
authenticated overlay sockets. We call this key a neighborhood key. An overlay socket 
authenticates each overlay socket from which it receives a protocol message. This 
includes the current neighbors in the overlay topology, but potentially also many other 
overlay sockets. For example, overlay sockets that play a role in the rendezvous process 
(rendezvous server, buddy list member), overlay sockets that are probed to become 
potential neighbors, or the receivers of a broadcast overlay message, etc. Whenever the 
set of (current or potential) authenticated overlay sockets changes, i.e., a new neighbor 
appears or an existing neighbor disappears, the overlay socket computes a new 
neighborhood key and sends this new key to all authenticated overlay sockets. In 
compassion to shared group keys where all overlay sockets in the overlay network must 
update (re-key) the shared key whenever the membership in the overlay network 
changes, updating keys in the neighborhood method is a local operations, i.e., each 
overlay socket updates keys only with current neighbors in the overlay network. 
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Neighborhood keys are securely exchanged in a KeyUpdate message, by encrypting the 
key with the public key of the receiver using the RSA algorithm. The public key is 
obtained from the certificate that was exchanged during the authentication. Whenever an 
overlay socket receives a KeyUpdate for an overlay socket for which a key value already 
exists, it merely replaces the key entry to the new value. The transmission of a 
KeyUpdate message to authenticated neighbors is triggered when (1) a new 
authenticated neighbor has appeared; (2) an authenticated neighbor leaves the 
neighborhood or has not sent a message for a long time; (3) an authenticated neighbor 
requests the neighborhood key; (4) the overlay socket has reached the maximum 
sequence number; or (5) the current neighborhood key has exceeded a specified 
maximum lifetime. We discuss these situations now in more detail.  

1. New authenticated overlay socket has appeared:  To ensure backward secrecy, an 
overlay socket must generate and disseminate a new key. In Figure 1, the Key 
Update messages with the new keys are sent immediately after the authentication is 
completed. A sends a KeyUpdate immediately following the CertReply message, and 
A sends a KeyUpdate after it has verified the certificate contained in the CertReply.  

2. Neighbor leaves the neighborhood or authenticated socket is quiescent: When an 
authenticated neighbor leaves the neighborhood or has not sent a message for a long 
time, an overlay socket must generate a new key and transmit it in a KeyUpdate 
message. Overlay sockets that are not neighbors in the overlay topology also trigger 
the creation and dissemination of a new key if no communication has been received 
from these sockets for a longer time. 

3. Authenticated overlay socket requests the neighborhood key: A KeyRequest 
message is transmitted when an integrity check fails on a message. Here, the overlay 
socket assumes that it does not have an updated neighborhood key. The receiver of a 
KeyRequest checks if the requestor is authenticated and then sends a KeyUpdate 
message with the current value of the neighborhood key. No new key is generated in 
this situation.  To prevent a malicious adversary from staging a DoS attack by 
sending forged messages that never pass an integrity test, the frequency of 
transmitted KeyRequest messages is limited. 

4. Wrapping of sequence numbers: Every overlay socket maintains a sequence number 
for outgoing protocol and overlay messages, which is recorded at the receiver of a 
message. A receiver only accepts messages with increasing sequence numbers. The 
sequence number is reset when a new key is generated. When the sequence number 
wraps around, a new key must be generated. In this event, the overlay socket resets 
its sequence numbers to 0 (the first message sent will have value 1) if it updates its 
neighborhood key and sends out a new KeyUpdate message to all of its neighbors. 

5. Expiration of neighborhood keys: An overlay socket must update its neighborhood 
key if the key as exceeded its specified maximum lifetime.  

Other situations when messages are sent: 

• The timestamp permits the receiver of the message to determine if it has a 
current key. When the timestamp does not match the timestamp that is locally 
stored, the overlay socket knows that it does not have a current key. Then, 
the overlay socket sends a KeyRequest message, to request a more recent 
key. In a secure protocol message, the DST header field is set to zeros. 
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We have seen that, whenever the set of authenticated neighbors changes, an overlay 
socket updates its neighborhood key. If messages are encrypted or signed with 
neighborhood keys, only authenticated overlay sockets in the overlay network can 
decrypt or verify transmitted messages. Since the neighborhood key is updated each time 
the neighborhood in the overlay topology changes, a newly joined overlay socket is 
unable to read messages sent before the overlay socket joined, and a departing overlay 
socket cannot read messages that are transmitted after it leaves. In this fashion, the 
neighborhood key method realizes backward and forward secrecy. 

The workload due to updating neighborhood keys can be high. For example, when a new 
overlay socket joins the overlay network it may contact many other overlay sockets 
before it converges to its final position in the overlay network. Since each change to the 
neighborhood requires that the sockets generates and distributes a new neighborhood 
key, the security features may delay the convergence of the overlay protocol. The 
problem is exacerbated during failures in the substrate network when the overlay 
topology must be reconstructed and many sockets join and leave the overlay network at 
the same time. When the time interval between changes to the neighborhood is smaller 
than the time required updating a neighborhood key, the overlay protocol may no longer 
converge to a stable topology. HyperCast provides several variations of the 
Neighborhood scheme method that attempt to reduce the overhead due to key updates in 
the neighborhood key method. These variations are discussed below.  It is also possible 
to relax the requirement of generating new keys each time the neighborhood of a sockets 
changes the overlay topology is unstable, at the cost of weakening forward and 
backward secrecy.  

 

Figure 3. Scenarios with frequent updates of neighborhood keys.  

In Figure 3, we illustrate two scenarios that will incur frequent  key exchange operations 
in the neighborhood key method. In Figure 3(a) we depict an overlay network with three 
nodes the neighborhood in the overlay topology is indicated by thick lines, and a 
rendezvous server. We assume that all nodes in the network periodically contact the 
rendezvous server, indicated by arrows, to verify that the network is not partitioned 
(Having all nodes in an overlay network contact the same rendezvous server is not 
practical for large networks. The depicted scenario is shown to illustrate the problem, 
and not derived from an actual protocol solution.) In the neighborhood key method, the 
rendezvous server exchanges messages with all nodes in the overlay network. Thus, 
whenever the node membership changes, the rendezvous server needs to update and 
distribute its neighborhood key to all current members in the overlay network. This not 
only leads to a prohibitively high load at the rendezvous server. Also, each node in the 
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overlay network must perform protocol operations when the membership of the overlay 
network changes.  

In Figure 3(b) we show a problem that may appear in overlay networks in a mobile ad 
hoc environment. The figure depicts a mobile node (the path is indicated by a thick line) 
that broadcasts protocol messages (indicated by circles around the transmitting node) 
that announce the presence of the mobile node to other nodes in its vicinity. With the 
neighborhood key method, whenever a node receives broadcast messages from a mobile 
node for the first time it must update its neighborhood key. When the number of mobile 
nodes is large and the mobility of nodes is high, the load due to updating keys in terms of 
traffic and computations may be significant.  

Common to both examples above is that nodes may spent a lot of effort to update keys 
with its neighbors due to nodes that are not neighbors in the overlay network topology, 
e.g., a rendezvous server or nodes receiving broadcast messages. Since the primary role 
of the neighborhood key is the encryption or protection of application data, and only 
neighbors in the overlay network exchange application data, the effort spent with 
updating neighborhood keys may be reduced by distinguishing that are neighbors in the 
overlay network from those that are not neighbors in the overlay topology and have 
separate key management for neighbors and non-neighbors. This leads to the following 
variations of the neighborhood key method.  

1. Separate Neighborhood Keys for each Non-neighbor: Here, each overlay socket 
has a neighborhood key for all neighbors in the overlay topology, and a separate key 
for each non-neighbor with which it communicates. The advantage of this method 
becomes evident in the scenario in Figure 3(a). An overlay socket does not need to 
communicate with the rendezvous server when its neighborhood changes in the 
overlay topology. The rendezvous server would need a separate key for each overlay 
socket in the overlay network. However, when an overlay socket joins or leaves, the 
rendezvous server need not update keys with any other node in the network. The 
drawback of this variation is that maintaining separate security associations with 
single overlay sockets precludes the use of broadcast operations in the substrate 
network. 

2. Shared Key for all Non-neighbor (Double-check: It is also possible to send *all* 
protocol messages with a shared key): In this method, each overlay socket has a 
neighborhood key for all neighbors in the overlay topology, and a single shared key 
for protocol messages sent to non-neighbors in the overlay topology. The shared key 
must be known to all overlay sockets in the overlay network. This method addresses 
the scenario of Figure 3(b) when protocol messages are transmitted in the substrate 
network with a broadcast transmission. When the broadcast message is signed with 
the shared key, the authenticity of the broadcast message can be verified without 
requiring the neighborhood key from the mobile node. The drawback of this method 
is that it has the same re-keying requirements as the shared group key scheme. With 
this variation of the neighborhood scheme, however, the shared key scheme is only 
extended to (some) protocol messages. Application payload is still protected with a 
neighborhood key, that is exchanged whenever the set of neighbors in the overlay 
network changes.  In other words, forward and backward secrecy is maintained for 
application data. 

The above schemes do not relax the requirement of a mutual authentication. Overlay 
sockets always drop messages received from unauthenticated sockets and initiate a 
certificate exchange. Also, the variations do not affect the transmission of overlay 
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messages, since only neighbors exchange overlay messages and the variations do not 
change the security scheme for overlay messages.  

5.6 DATA CONFIDENTIALITY  

In HyperCast, confidentiality is provided only for application data, i.e., the payload field 
in overlay message. Encryption of the payload is performed at the source of a message 
and decryption is performed at the destination(s) of the message. Data is encrypted using 
a symmetric key algorithm (AES, Blowfish, DES, DESede) with a specified key length 
(between 0 and 1024 bits). With shared group keys, encryption and decryption is 
straightforward using the shared group key. Payload encryption with the neighborhood 
key method is more complex and discussed in the remainder of this section. 

With the neighborhood key method, when an encrypted message is forwarded in the 
overlay network, the message must be decrypted and re-encrypted at each hop. Clearly, 
this is very time-consuming and not practical in large networks. To reduce the overhead 
incurred at each overlay socket, we employ separate keys for each message. Here, when 
an overlay socket wants to transmit a message, it generates a new symmetric key for this 
message, called a message key, and encrypts the payload of the message with the 
message key. Then, the message key is encrypted with the neighborhood key and 
appended to the message. When an overlay socket receives an encrypted message it first 
decrypts the message key. (Recall that each overlay socket has the neighborhood keys of 
all authenticated neighbors.) If the message must be forwarded to another overlay 
socket, it re-encrypts the message key with its own neighborhood key.  

 
Figure 4. Processing an encrypted application message (M is the message, MKey(M) is the message key 
for message M, NKey(A) and NKey(B) are the neighborhood keys of overlay sockets A and B, 
EMKey(M)(M) is the message encrypted with the message key, ENKey(B) (MKey(M)) is the message key 
encrypted with the neighborhood key of B. 
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In Figure 2(a) we show the encryption of a message that is transmitted by a node A with 
neighborhood key NKey(A). The node generates a message key MKey(M) for a message 
M, encrypts the message with the message key, encrypts the message key with its 
neighborhood key, appends the encrypted message key to the message, and, finally 
forwards the message to a neighbor. In Figure 2(b), we show how node A forwards an 
encrypted message received from a neighbor B. First, A decrypts the message with B's 
neighborhood key, re-encrypts the message key with its own neighborhood key, and then 
forwards the message. Note that the encrypted message payload is not modified in this 
process. Merely, the encrypted message key must be processed. Since a message key is 
short (128 bits with current best practices), the delay incurred by decrypting and re-
encrypting the message key is limited.  

5.7 DATA INTEGRITY  

Integrity is provided by requiring the sender of a message to include a signed checksum 
in the message, called message authentication code (MACs)1. The receiver verifies the 
MAC of the message by computes a checksum over the message and comparing it to the 
checksum that was included in the message. If the checksums are identical the receiver 
assumes that there has not been an unauthorized manipulation of the message. If 
checksums are not identical, i.e., the integrity test fails, the message is assume do be 
compromised and the message is dropped.  

 

Figure 5. MAC computation. (When the security level is stronger than plaintext, each 
overlay message has a security extension header and each protocol message has an 

SecInfoExchange header.) 

As illustrated in Figure 5, HyperCasts uses three types of MACs: one for protocol 
messages, one for headers of an overlay message, and one for the payload of an overlay 
message. The MACs play the following role: 

1. Protocol message MAC: The role of the protocol message MAC is to protect 
against protocol messages that are sent or manipulated by unauthorized users. With 
the protocol message MAC only authenticated overlay sockets can transmit overlay 
message and participate in an overlay topology. The sender of a protocol message 
computes a MAC over the entire protocol message, and adds it to the message. The 
MAC is verified by the receiver of the message.2 3 

                                                
1 Precisely, we use a keyed-hash message authentication code (HMAC), which involves a cryptographic 

hash function in combination with a secret key. 
2 Even with a plaintext security level, most protocol messages have an overlay hash field that is 

computed over specified attributes in the configuration files. The overlay has provides a weak 
integrity check since it can be used to distinguish protocol messages from different overlay networks. 
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2. Overlay message MAC: The overlay MAC protects, among others, against 
unauthorized changes of the route of a packet and the destination address of a 
message. When an overlay socket sends or forwards an overlay message, it computes 
a MAC for the header of the message, including all extension headers, but with 
exception of the payload. The header MAC is verified and recomputed at each hop 
of the message.  

3. Payload MAC: The payload MAC permits to verify the origin of an overlay 
message and can detect unauthorized changes of application data while a message is 
transmitted in the overlay network. The payload MAC is computed at the source of 
an overlay message over the payload field in the message. The MAC is verified at the 
destination(s) of the message, and is neither inspected nor modified at intermediate 
hops that forward the message. This protects against unauthorized changes of 
application data while a message is transmitted in the overlay network.  

The algorithms employed for the hash algorithms are specified in the configuration file 
(HmacMD5, HmacSHA1). The steps for computing and verifying signed hashes are 
similar to the encryption and decryption of a message, and vary dependent on the choice 
of the key management method. With group keys, all MACs are computed with the 
shared group key. We next describe the computation of MACs with the neighborhood 
key method. 

With (all variations of) the neighborhood method, neighborhood keys and message keys 
are used to sign and verify a message. The source of a message first builds a message 
key and computes a MAC of the message payload with the message key. When the 
payload is encrypted, the same message key is used for encryption and for the payload 
MAC. The message key is encrypted with the neighborhood key, and then added to the 
message. When a message is forwarded at an intermediate hop, the message key is 
decrypted and re-encrypted (as shown in Figure 4), but the payload MAC is not 
modified. The overlay message MAC is computed over the entire message with 
exception of the payload field and the field that stores the overlay message MAC. The 
MAC is computed with the neighborhood key, and is verified and recomputed at each 
hop that forwards the message. Both MACs, together with the encrypted message key, 
are transmitted as an extension header of the overlay message. The computation of the 
MAC for protocol messages depends on the version of the neighborhood key method. In 
the basic scheme, the MAC is computed over the entire protocol message with the 
neighborhood key. In other versions, the MAC may be computed with a shared key. 

In our implementation, with the assumption that data confidentiality implies a need for 
integrity, the MACs for the payload and header of overlay messages, and the MAC for 
protocol messages are always computed, when encryption of application payload is 
requested.  

Using the neighborhood key method an integrity check may fail for two reasons: (1) the 
message or header has been altered, or (2) the neighborhood key has changed and the 
verifying node does not have a recent copy of the key. When an overlay socket is 
configured with the neighborhood key method, an overlay socket, upon a failed integrity 
check, it discards the message, but assumes that the failed test is due to an outdated 
version of the neighborhood key. Here, it sends a message to the neighbor from which 
the message was received requesting its neighborhood key. By limiting the rate at which 
these requests are sent, e.g., no more than one request for a key can be outstanding at 

                                                                                                                                         
3 Protocol messages are never forwarded. 
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any time, the key requests sent to neighbors even though a message has been altered 
without authorization can be ignored.  

5.8 CONFIGURING AN OVERLAY SOCKET FOR SECURITY  

 

Figure 6. Attributes for security architecture. 

The parameters of the security configuration of an overlay socket are determined from 
configuration attributes. Recall from Chapter Advance API.3.5 that there is a distinction 
between public and private attributes. Public attributes make up the majority of 
configuration parameters. These attributes are stored in the configuration file of a 
socket. Private attributes contain confidential information, such as a password to access 
a private key or a certificate. They must be configured by the application program that 
creates an overlay socket. All public security attributes have the prefix /Public/Security 
and all private security attributes have the prefix /Private/Security. The type and format 
of public and private attributes are specified in separate XML schema files. The schema 
file for public attributes can assign default values to attributes, but private attributes do 
not have default values. The public and private attributes for the security configuration 
of an overlay socket are shown in Figure 6. 

The private key corresponding to the local certificate is obtained from the specified 
keystore file. This is a file that can be created by Java programs or the keytool command 
line utility (see Chapter Advance API 3.5).  

There are separate schema files that specify the type and format of public and private 
attributes. The schema for public attributes can have default values for attributes, 

Each application program is responsible for maintaining its own certificate, and the 
associated private and public keys. The certificate is managed through a keystore, an 
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encrypted database of private keys and X.509 certificates authenticating the public keys. 
Overlay sockets access private keys and certificates from the keystore. The configuration 
file declares the location of the certificates and the keystore. The following attributes are 
used for accessing and processing certificates:  

The following are the public security attributes  

SecurityLevel  
An overlay socket can be configured with three different security levels: 
plaintext, integrity, and confidentiality. The default value is plaintext.  

CertificateLocation  
Contains the file that contains the X.509 certificate of the application 
program. The certificate is obtained from the information in keystore file. 
The default value is testcert.cer. (Since the certificate can be extracted 
from the keystore file, this attribute can be viewed as being redundant.) 

CACertificateLocation  
Specifies the file that contains the X.509 certificate of the Certificate 
Authority (CA) that granted the certificates. The default values of the file 
is testcert.cer. The CACertificateLocation can be used to obtain 
Certificate Revocation Lists (CRLs) so that sockets can stay up-to-date 
on the validation of certificates. Certificate revocation is not supported in 
the current implementation. 

KeystoreLocation  
The attribute stores the location of the keystore file (default is .keystore). 
The certificate must be in a binary or text DER (Distinguished Encoding 
Rules)-encoded format, such as PKCS#7 or Base-64.  

KeyModeMethod  
This attributes selects the method for constructing and managing the keys 
that hash or encrypt information in an overlay socket. The value 
NeighborhoodKey. The value GroupKeys is based on shared group keys. 
Valid values are: 

� GroupKeys – All overlay sockets are assumed to have the same 
shared group key. Whenever the group key is accessed, e.g., for 
signing, verifying, encrypting, or decrypting messages, the overlay 
socket checks if the value of the attribute has changed.   

� NeighborhoodKey1 (formerly: UniformDynamicKey) – This is the 
default value. Each overlay socket has one neighborhood key that it 
exchanges with all authenticated overlay sockets.  

� NeighborhoodKey2 (formerly: StaticNonNeighborKey) – Each 
overlay socket has one neighborhood key for all overlay sockets that 
are neighbors in the overlay network topologies, and one 
neighborhood key for each overlay socket that has been 
authenticated, but that is not a neighbor in the overlay topology.  
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� NeighborhoodKey3 (formerly: SharedProtocolKey) – This scheme is 
a hybrid of the GroupKeys and the NeighborhoodKey1  method. Each 
overlay socket has a shared group key that is known to all overlay 
sockets. In addition, each overlay socket has a neighborhood key that 
is exchanged with all authenticated overlay sockets and that is 
updated whenever the set of authenticated overlay sockets changes 
(Or is it: “whenever the neighbors in the overlay topology change”? 
Determine if NeighborHoodKey3 makes a distinction between 
neighbors and non-neighbors.). All protocol messages are signed with 
the group key. All overlay messages are signed and encrypted with 
the neighborhood key. The advantage of this scheme is that an 
overlay socket can verify incoming signed protocol messages even 
when it does not have an updated neighborhood key.  

CertificateRequestTimeout 
Minimum time that must elapse between transmissions of two 
CertRequest messagess. The default value is set to 30 seconds.  

KeyRequestTimeout 
Maximum waiting time for the reply to a KeyRequest message before a 
KeyRequest message is retransmitted. The default value is set to 10 
seconds. 

MaxAgeOfAuthNode 
The maximum age of an entry in the key vault about an authenticated 
overlay socket after the last protocol message received from this overlay 
socket.  

MaxAgeOfKey 
The maximum age of a neighborhood key before it is updated with a 
KeyUpdate Message. 

KeyUpdatePeriod (�Deleted, or?What is the difference to the MaxAgeofKey)  
The time interval between the transmission of  KeyUpdate messages.  

MacAlgorithm  
Specifies the algorithm used to compute message authentication codes. 
The values of the attribute and the corresponding algorithms are given in 
Table 2. 

CryptAlgorithm  
Specifies the symmetric cryptographic algorithm for encrypting and 
decrypting the payload of overlay messages. The values of the attribute 
and the corresponding algorithms are given in Table 3. The selection of 
the algorithm restricts the value of the SymmetricKeyLength.  

SymmetricKeyLength  
The length of the key for the cryptographic algorithm. The value must be 
in the range from 0 to 1024, with 128 as the default value. As given in 
Table 3, each cryptographic algorithm only permits a certain range of 
values. (What is the role of Table 4? Is this Java specific?) 
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CertificateType  
The certificate specification that is used for authentication of overlay 
sockets. The only permitted value is X.509.  

 

Table 1. Security policy. (The default value is underlined.) 

Security Level  Level of overlay 
messages 

Level of protocol 
messages 

Plaintext Plaintext Plaintext 
Protocol Integrity Plaintext Integrity 
Integrity Integrity Integrity 
Confidentiality Confidentiality Integrity 

 
Table 2. Values for the attribute MacAlgorithm. (The default value is underlined.) 

HmacMD5 The HMAC-MD5 keyed-hashing algorithm as defined in RFC 
2104: "HMAC: Keyed-Hashing for Message Authentication". 

HmacSHA1 The HMAC-SHA1 keyed-hashing algorithm as defined in RFC 
2104: "HMAC: Keyed-Hashing for Message Authentication". 

 

Table 3. Values for the attributes CryptAlgorithm. (The default value is underlined.) 

AES Advanced Encryption Standard as specified by NIST in a draft 
FIPS. Based on the Rijndael algorithm by Joan Daemen and 
Vincent Rijmen.   
SymmetricKeyLength must be set to 128, 192, or 256 bits. 

Blowfish The block cipher designed by Bruce Schneier. 
SymmetricKeyLength must be a multiple of 8, and can only range 
from 32 to 448. 

DES The Digital Encryption Standard as described in FIPS PUB 46-2. 
SymmetricKeyLength must be equal to 56. 

DESede Triple DES Encryption (DES-EDE).  
SymmetricKeyLength must be equal to 112 or 168. 

 

Table 4. Key size parameters and keys sizes for various algorithms. (JL: How come that 
“key size parameter” and “size of created keys” have  different values. Where does the 

table come from?) 

Key 
algorithm 

Key size parameter 
(in bits) 

Size of the created 
key (in bits) 

AES 128 128  

Blowish 128 128  

DES 56 64  

DESede 112 or 168 192  
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The following are the private attributes for the security configuration of an overlay 
socket. All attributes have the prefix /Private/Security. 

KeyStorePassword 
Password to access the keystore file as specified by the KeystoreLocation 
attribute.  

PrivateKeyAlias 
The private key is accessed with an alias and protected with a password. 
The alias and password are set when a new public/private key pair is 
generated.  

PrivateKeyPassword 
The password for the private key that is accessed with the value of the 
PrivateKeyAlias attribute.   

GroupKey 
Specifies the symmetric shared group key of an overlay network. All 
overlay sockets must have the same value of the attribute. The attribute 
Note: Each time the group key is accessed, the value of the GroupKey 
attribute must be read, since it may have changed since the last access. 
(This is an example of a special class of attributes, which should not be 
stored internally. Most attributes are read only during configuration of the 
overlay socket. Maybe there should be a separate class of attributes, 
identified by an XML attribute, that specifies if an attribute should be 
handled in this fashion.)  

Since private attributes do not have default values and are not stored in configuration 
files, they must be explicitly set by the application program. In the Java implementation 
of HyperCast, this is done by invoking: 

config.setPrivateTextAttribute(XPath xpathOfPrivateAttribute, String value)  

Here config is a configuration object of type HypercastConfig of the overlay socket, 
xpathOfPrivateAttribute is an XPath expression that is created from the private security 
attributes, and value is the value assigned to the attribute as a string. 

For example, the group key can be generated from a string with the following line of 
code: 

//Set the group key into private attribute document 
ConfObj.setPrivateTextAttribute(XmlUtil.createXPath("/Private/GroupKey"), “MyKey”); 
 
(Check: what if the string MyKey is very long? Is there truncation? Check out the 
following  
groupKey = new SecretKeySpec(groupKeyString.getBytes(), confidentialityAlgorithm); 
what does SecretKeySpec do if getBytes returns many bytes? ) 

5.9 SECURE PROTOCOL MESSAGES  

In an overlay socket with elevated security levels, i.e., levels that are different from 
plaintext, all protocol messages created in the overlay socket are encapsulated as 
security information exchange (SecInfoExchange) messages. In addition to wrapping 
protocol messages of overlay protocols, SecInfoExchange messages are also employed 
for the exchange of certificates (CertRequest, CertReply) and keys (KeyRequest, 
KeyUpdate). Messages of type KeyRequest and KeyUpdate are used only in the context 
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of the neighborhood key method. In the following we describe the message format of 
SecInfoExchange messages and provide additional information on the processing of 
these messages. 

5.9.1 MESSAGE FORMAT 

In this section we discuss the format of SecInfoExchange messages. SecInfoExchange 
messages are defined as a distinct overlay protocol. In particular, the protocol number 
0xf0 designates SecInfoExchange messages. The messages follow the convention of all 
protocol messages that (1) the first byte identifies the protocol, (2) the next two bytes 
define the total length of the message, and (3) the next byte specifies the protocol 
specific message type. All SecInfoExchange message have a common header fields as 
shown in Figure 7. These fields are referred to as the SecInfoExchange header. The 
remainder of the message is different dependent on the message type. 

 

Figure 7. Format of SecInfoExchange message. 

 

Protocol (1 byte):   
The protocol number of all SecInfoExchange messages is set to 0xf0.  

Length (2 bytes):   
The length of message following the length field, i.e., the actual length of 
the message larger by 3 bytes.  

Type (1 byte):  
There are five different message types:   
  0x01  Certification Request (CertRequest)   
  0x02 Certification Reply (CertReply)  
  0x03 Key Request (KeyRequest)   
  0x04 Key Update (KeyUpdate)   
  0x05  Encapsulated Protocol Message (ProtoMsg) 

Sequence Number (4 bytes):  
The sequence numbers is set to 1 in the first message and incremented 
each time before a message is transmitted. Messages from the same 
overlay socket that do not have increasing sequence numbers are 
discarded. With the neighborhood key method, sequence numbers are 
prevented from wrapping. If a sequence number has reached the 
maximum value, a new neighborhood key must be created and sent to 
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neighbors in a KeyUpdate message. Sending KeyUpdate triggers a reset 
of the sequence number counters.  

Overlay Hash (4 bytes):  
A hash value that is computed from the HashAttributes, which is a list of 
attributes written as XPath expressions. The HashAttributes may contain 
the overlay identifier (/Public/OverlayID), the name of the overlay 
protocol (/Public/Node), or other attributes. To compute the overlay 
hash, the values of the listed attributes are obtained from the 
configuration file,4 concatenated using the UTF-8 character encoding 
scheme, converted into a byte array, and a hash function is applied. The 
hash function, which can operate on variable-length byte arrays, is defined 
as follows: 

Input:  Byte array A[ ], containing UTF-8 encoded hash attributes  
Output:  a 4-byte unsigned integer result 
procedure OverlayIDHash (byte A[] ) 
begin 
  Result := 0; 
  for ( int i := 0 ; i < length of A[ ] ; i++ ) { 
      byte upperByte := (byte) ( (result >> 24) & 0xFF ); 
      int  leftShiftValue := ((upperByte ^ A[i]) & 0x07) + 1; 
      result := ((result << leftShiftValue) ^ ((upperByte ^ A[i]) & 0xFF)); 
  } 
  return result; 
end   

Source Address Pair (LA Size + PA Size bytes):  
The logical address and the physical address of the  
sender of this message. LA Size and PA Size are, respectively, the size of 
the logical address and the physical address. The size of the addresses are 
known from the configuration file. 

Destination Address Pair (LA Size + PA Size bytes):  
The logical address and the physical address of the  
destination of this message. For messages of type ProtoMsg, the fields of 
the destination address are set to zero. 

The format of the additional fields for the SecInfoExchange message types shown in 
Figure 8. 

                                                
4 If the XPath expression identifies a simple XML element, the lookup returns the value of the attribute. 

Otherwise, the lookup returns the name of the first element contained in this element.  
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Figure 8. Format of SecInfoExchange messages. 

The sender of a CertRequest and CertReply message include their own certificate 
following the SecInfoExchange header. The KeyRequest message only consists of the 
header. The KeyUpdate message is only transmitted when the neighborhood key method 
is employed. Here, the sender of the message sends its neighborhood key in encrypted 
form, and also a timestamp when key was created.  

A secure protocol message contains the protocol message MAC, its length, a key 
timestamp. The timestamp permits the receiver of the message to determine if it has a 
current key. When the timestamp does not match the timestamp that is locally stored, the 
overlay socket knows that it does not have a current key. Then, the overlay socket sends 
a KeyRequest message, to request a more recent key.  

Below we explain the fields appearing in the SecInfoExchange.  

Certificate (variable):   
The encoded form of a X.509 certificate in this message. X.509 
certificates are encoded as ASN.1 DER. The length of the field is derived 
from the length field of the SecInfoExchange header. 

KeyTimeStamp (8 bytes):   
The time when the neighborhood key was created at the sender.  The 
time is the difference, measured in milliseconds, between the timestamp 
and midnight, January 1, 1970 UTC. 

Key (variable):   
The encrypted neighborhood key contained in this message. The local key 
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is encrypted with the RSA algorithm using the private key that 
corresponds to the public in the local certificate. The length of the field is 
derived from the length field of the SecInfoExchange header. 

Protocol Message (variable):  
A valid protocol message with a protocol message header.  

5.9.2 PROCESSING SECINFOEXCHANGE MESSAGES 

Next we describe remaining details of the protocol that governs the transmission and 
processing of SecInfoExchange messages. Most of the operations of the protocol were 
discussed in Sections 5.3 and 5.5.  Figure 7 shows the processing of an incoming 
SecInfoExchange message that contains a protocol message. First, there is lookup for 
the certificate of the sender. If the certificate is not available, an authentication process is 
initiated and the message is dropped. Initializing a certificate authentication includes the 
transmission of a CertRequest message to the remote overlay socket, and the addition of 
an entry for the remote overlay socket in the neighbor table. Authentication can only be 
triggered by the receipt of a SecInfoExchange message that encapsulates a protocol 
message. When an overlay socket receivers a CertRequest message, it verifies if there is 
a pending CertRequest that it sent to the sender of the message. In this case, there are 
two authentication processes ongoing between the same pair of overlay sockets. To 
prevent this from happening, the overlay socket discards the incoming CertRequest 
message when the logical address of the sender is larger than its own.  

There is no retransmission provided for certificate requests. Each time a protocol 
message is received from an unauthorized neighbor, a CertRequest is sent. However, a 
minimum time given by CertRequestTimeout must elapse between two requests to the 
same destination. (JL: 6/11, Is CertRequestTimeout provided?)  

In the next step, the overlay socket accesses the key used to perform the integrity check. 
If the key is not available, the message is dropped. If the NeighborhoodKey method is 
running, the current key is requested in a KeyRequest message. If, on the other hand, the 
key is available, the socket performs an integrity check. If the check fails, the message is 
dropped. In the context of the Neighborhood method, the node also requests a recent 
version of the key from the sender of the message. After a successful integrity check, the 
protocol message following the SecInfoExchange header is passed to the overlay node.  
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Figure 9. Processing an incoming SecInfoExchange.  

An overlay socket removes entries, including keys and certificates, about authenticated 
overlay sockets if it has not received a message from this overlay socket for an extended 
period of time. An overlay socket maintains the time expired since the last message was 
received from an authenticated overlay socket, and resets the time to zero whenever a 
new message arrives. When the age exceeds a maximum value, given by the attribute 
MaxAgeAuthNode, the entry is removed. Periodically, an overlay socket checks all its 
authenticated neighbors if they need to be removed. The period is set equal to the 
maximum age.  

With the neighborhood key method, a key can be used at most a time given by the 
attribute MaxAgeOfKey. The maximum lifetime of a key is enforced by a timer, calledthe 
RekeyTimer that is associated with the neighborhood key(s), called the RekeyTimer. 
When the timer expires,  the socket generates a new key and sends it to other sockets in 
an UpdateKey message. 

The transmission of a CertRequest message is triggered by the arrival of a protocol 
message from an unauthenticated overlay socket, i.e., an overlay socket for which no 
certificate is available. If a protocol message arrives and a certification process is 
ongoing, the overlay socket will send another CertRequest message. However, the 
minimum time, given by the attribute CertRequestTimeout, must elapse between two 
CertRequest transmissions to the same destination. (JL, 6/11: CertRequestTimeout is not 
provided, but I think it was there earlier. If it was deleted, what was the reason?).  

Overlay sockets that run the neighborhood key method transmit KeyRequest messages 
when one of the following events occurs: (1) A protocol message is received from an 
overlay socket, for which an the certificate is available, but not the key; (2) A protocol 
or overlay message is received from an overlay socket that fails the integrity check; or 
(3) A timeout occurs because a KeyRequest has outstanding for more than 
KeyRequestTimeout milliseconds. The third event is triggered by a timer, called the 
KeyRequestRetransmitTimer. When a KeyRequest message is retransmitted in this 
fashion, the timer is restarted. 
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To reduce the number of KeyRequest message transmissions, an overlay socket does not 
remove the key for another socket when a message from this socket fails the integrity 
check. Instead the key entry is marked as invalid. An invalid key entry is still used to 
perform integrity checks for incoming messages. When an incoming message passes the 
integrity check for an invalid key, the invalid marking of the entry is removed. The 
timeouts in the third event above are ignored when the corresponding key entry is not 
marked as invalid. In this fashion, a DOS attack is avoided where a malicious user sends 
faked messages with a spoofed source address, and the receiver of the messages 
permanently removes the key for the overlay socket with the spoofed address. 
Retransmissions to an overlay socket are repeated only as long as an entry about that 
socket exists.  

JL (11/6): Is there a maximum times of retransmissions for CertRequest and KeyRequest 
after which an overlay socket gives up?  

In Figure 9 we show the steps for computing the protocol message MAC for an 
outgoing protocol message. The MAC is computed either with a group key or a 
neighborhood key. The MAC is calculated over the entire SecInfoExchange message, 
where the field of the MAC is removed. Once the MAC is computed, it is written into 
the field reserved for the protocol message MAC.  

 

Figure 10. MAC calculation for a secure protocol message. 

 

5.10 SECURE OVERLAY MESSAGES 

All overlay messages in an overlay socket with the security level set to protocol 
integrity, integrity, or confidentiality contain a security extension, also called security 
header. Overlay messages with a security extension header are also called secure overlay 
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messages. The security extension is specified in the preceding header by a next header 
field with value 0x21. The security extension contains, among others, the MACs for the 
header and the payload and, if the neighborhood key method is enable, an encrypted 
message key. The security extension header is shown in Figure 11. (What happens if 
there is no payload extension?) 

 

Figure 11. Security extension header in a secure overlay message. 

The format of a security header is shown in the Figure 12. The contents of the fields is as 
follows: 

 

Figure 12. Format of the security extension.  

Next Header (1 byte):   
Specifies the type of extension following this header.  

Length (4 bytes):   
The length of the security header in bytes following the Length field, i.e., 
not include the Next Header and Length fields. 

Sequence Number (4 bytes):   
Specifies the sequence number of the message. The field is used in the 
same was as described for the SecInfoExchange header. The sender of a 
message increments the sequence number before each message 
transmission. With the neighborhood method, when the number of 
messages, both protocol and overlay messages, exceeds the maximum 
allowed number, then a new neighborhood key is generated and 
transmitted in a KeyUpdate message, and the sequence number is set to 
zero. 

Encrypted Message Key (0-32 bytes):   
Contains the encrypted message key. This field is not used when the 
group key method is executed, i.e., the length of the field is zero. The 
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length of the encryption key is determined from the configuration 
attributes. (JL (6/11): Verify that message key is not included in 
message for group key method.) 

SPI (4 bytes):   
The field SPI (Security Parameter Index) can contain a security 
association identifier, which is a random value identifying the security 
association for this message. The field is currently not used. 

LA length (1 byte):   
The length of the logical address of the overlay socket.  

LA of Sender (variable):   
The logical address of the neighbor that forwarded this message. The 
field is used to look up certificates and keys for the neighbor.  

Header MAC Length (1 byte):   
Length of the MAC for the header of the overlay message in bytes. 

Header MAC (≥ 16 bytes):   
Contains the MAC for the overlay headers. Precisely, the MAC is 
computed over the byte array of the entire message, with the Header 
MAC field and the payload field removed.  

Payload MAC Length (1 byte):   
Indicates the length of Payload MAC field in bytes. 

Payload MAC (≥ 16 bytes):   
Contains the MAC for the payload. If the payload is encrypted, this is the 
MAC of the encrypted payload. (What happens to the field if there is 
no payload?) 

An overlay socket must compute the extension header in the following order: (1) 
Encrypt the payload field of the payload header; (2) Compute the payload MAC; and (3) 
Compute the Header MAC. When encryption is required, the payload MAC is computed 
over the encrypted payload field. The header MAC is computed over the entire message, 
with exception of the MAC header field and the payload field in the payload extension 
header.  

With the group key method the group key is used for the payload encryption and the 
computation of both MACs. Here, the message key field is not used. With neighborhood 
keys, the message key is used for payload encryption and the payload MAC. The 
neighborhood key is used to encrypt the message key and to compute the header MAC.   

For an incoming secure overlay message, an overlay socket verifies the sequence number 
and the header MAC. If either of these checks fails, the message is dropped without 
further processing. Otherwise, with the neighborhood key scheme, the message key is 
decrypted. When an overlay socket forwards a secure overlay message, it recomputes 
the header MAC and the sequence number, re-encrypts the message key in the security 
header (if present), and updates the LA Sender field with its own logical address.  The 
header MAC is recomputed either with the group key or the neighborhood key of the 
local overlay socket. The encrypted message payload, the payload MAC, and the 
message key are not modified when the message is forwarded. The forwarding of 
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messages with security headers can be viewed as an operation that replaces a security 
header.  

When a secure message arrives at an overlay socket that is a destination of the message, 
a message is processed like any incoming message. Then the payload MAC is verified 
either with the group key or the message key. If not successful, the message is dropped. 
Otherwise, the payload is decrypted with the group key or the message, and delivered to 
the application. Incoming multicast and flood messages are delivered to the application, 
but may also be forwarded to other overlay sockets. Here, it is advisable that the 
message is forwarded before the payload is decrypted, otherwise the processing time for 
decrypting the payload at intermediate hops increases the latency of a packet.  

When messages are transmitted with an enhanced delivery semantics (see Chapter 
MessageStore) they may be stored in the message store of the overlay socket, and may 
be forwarded at a later time, e.g., to retransmit a message when no acknowledgment has 
been received. When a message is stored in the message key, it is important that the 
decrypted message key is stored together with the message.  

5.11 SOFTWARE DESIGN 

The majority of the security architecture is realized by two components of the overlay 
socket: a key vault and a security processor. These components are instantiated only if 
the security level is set to protocol integrity, integrity, or confidentiality. Hooks to access 
the key vault and the security processor are added to various functions in the overlay 
socket. Most components in the overlay socket do not know whether the security 
components are activated. Specifically, there is no security-specific API defined for the 
overlay socket. All security features of an overlay socket are activated by attributes in 
the configuration file. Refer to Chapter “Overlay Socket API (Advanced)” for the 
information on security configuration. 

 

Figure 13. Overlay socket with key vault and security processor.  
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The key vault manages certificates and keys of the local overlay socket and remote 
overlay sockets that communicate with the local socket, and also stores the information 
about the currently used cryptographic algorithms. The key vault must be accessed by all 
overlay socket components that need to access keys or certificates. For example, the 
socket adapter that performs an integrity check the key vault is accessed to check if the 
sender has been authenticated, to access the algorithm and the key needed to perform an 
integrity check.    

The security processor is a wrapper for the overlay socket adapter that provides a layer 
between the overlay node and the node adapter. The security processor is responsible for 
adding and removing the security encapsulation headers. All protocol messages created 
by the overlay node are passed to the security processor where they are converted into 
SecInfoExchange messages and sent out by the overlay socket adapter. 
SecInfoExchange messages encapsulate regular protocol message. In an overlay socket 
with a security processor, all incoming protocol messages are received as 
SecInfoExchange messages, reconstructed as regular (plaintext) protocol messages by 
the security processor, and then passed to the overlay node for processing. 

5.11.1 KEY VAULT 

 

Figure 14. The key vault. 

The key vault is a component created by and contained in the overlay socket to manage 
various security properties. It is the central place for managing certificates and keys. An 
overlay socket needs to have a key vault only when the security level is set to protocol 
integrity, integrity, or confidentiality. The key vault is configured with security attributes 
defined in the configuration file of the overlay socket and with attributes that must be 
provided by the application program. 

The key vault maintains all security information of the overlay socket, including the 
security policy, the algorithms for encryption and hashing, all local keys and their sizes, 
as well as the local certificate, and the private key associate with the certificate. 
Information about remote overlay sockets is stored in two lookup tables, the key table 
and the certificate table. Both tables are indexed by their logical addresses. The tables 
store, respectively, keys and certificates of remote overlay sockets. When the group key 
method is enabled, the key table is not used.  
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The certificate table and key table store information about remote overlay sockets with 
which the local socket exchanges protocol messages. These remote overlay sockets fall 
into two groups: (1) Sockets that are current neighbors in the overlay topology, and (2) 
overlay sockets that are non-neighbors. An example of a non-neighbor is a newly joining 
overlay socket that announces itself to all overlay sockets, but does not become a 
neighbor of all sockets that receive the message. Another example are overlay sockets 
that are involved in the rendezvous process, e.g., buddies or rendezvous servers. For 
some security configurations, the overlay socket employs different authentication 
methods for neighbors and non-neighbors. For this reason, the key vault maintains 
separate sub-tables for certificates and keys of neighbors and non-neighbors.  

Periodically, the key vault tables are searched for expired entries that need to be deleted. 
This period is given by the attribute KeyVaultCleanUp. A timer controlled by the 
security processor initiates the clean up of expired entries. 

The key vault is used extensively by the security processor and functions that process 
protocol and overlay messages. The security processor accesses the key vault to check 
and update the local certificate and key, and to verify the existence and validity of 
certificates and keys of remote overlay sockets. If the desired certificate or key is not 
available in the key vault, the security processor initiates a certificate or key exchange 
with the remote overlay socket. The functions in the overlay socket that process 
protocol and overlay messages rely on the key vault for information on the security 
policy, access to local and remote keys and certificates, and to access and creation of 
new keys.  

 

5.11.2 SECURITY PROCESSOR 

The security processor provides authentication and key management, as well as handling 
of secure protocol messages. For any incoming secure protocol message, the security 
processor checks the presence and validity of the certificate and key for the sender of the 
message. If necessary, and as discussed earlier in this chapter, the security processor 
initiates a certificates or key exchange. All SecInfoExchange messages for authentication 
and key exchange (CertRequest, CertReply, KeyRequest, KeyUpdate) are created and 
handled by security processor independent of the activated overlay protocol. 

The security processor hides the presence of security features form the overlay node. An 
overlay node is not aware of security and exchanges plaintext protocol messages with 
other overlay nodes. When security is specified, all protocol messages are protected by 
an signed hash, the Protocol Message MAC, which is computed in the security 
processor.  

As indicated in Figure 13, the security processor supports the same interfaces as the 
node adapter. In fact, to an overlay node, the security processor serves as the node 
adapter, and to the node adapter, the security processor works as the overlay node. 
Neither the overlay node nor the node adapter is aware of the existence of the security 
processor. Protocol messages are wrapped as SecInfoExchange messages by the security 
processor before transmission. At the receiver side, the SecInfoExchange messages are 
converted into plaintext protocol messages by the security processor and passed to the 
overlay node to process.  

Operations in the security processor are triggered by the transmission of protocol 
messages by the overlay node, changes to the neighborhood table in the overlay node, 
the arrival of SecInfoExchange messages from the node adapter, and timeouts of timers 
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that were previously set by the security processor. The handling of changes to the 
neighborhood tables requires special considerations. Recall that upon a change to the 
neighborhood in an overlay node the security processor may need to update and 
distribute its neighborhood key. Since the change to the neighborhood table is internal to 
the overlay node and does not necessarily result in the transmission of protocol 
messages, the security processor catches the NeighborhoodChanged event which is 
defined through the HyperCast event notification system (see Chapter “Overlay Socket 
API (Advanced)”) by providing an event handling routine for the 
NeighborhoodChanged event.  

Figure 16 shows the structure of the class SecurityProcessor that implements the 
security processor.The security processor can be viewed as a layer that bridges the 
overlay node and the node adapter. To an overlay node, the security processor works as 
the node adapter which implements the I_MulticastAdapter interface. To the node 
adapter, the security processor serves as the overlay node that implements the 

I_AdapterCallback interface. Neither the overlay node nor the node adapter are aware 
of the existence of the security processor. Figure 15 shows the structure of class 
SecurityProcessor. 

 

 

Figure 15. The class structure of SecurityProcessor 

The class SecInfoExchange_Message implements the I_Message interface with the 
standard methods to process protocol and overlay messages. Figure 16 shows the 
structure of SecInfoExchange_Message class. 

 

 

Figure 16. SecInfoExchange_Message Class. 

 

Figure 17 and 18 show the flow of outgoing and incoming secure protocol messages. An 
outgoing protocol message created in the overlay node is wrapped by the security 
processor into a SecInfoExchange message, and sent out through the node adapter. 
When the security processor receives a protocol message from the overlay node, it 
creates a SecInfoExchange header. Before the message is transmitted, the 
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SecInfoExchange header is transformed into a byte array and concatenated with the byte 
array of the protocol message. The result is sent by the node adapter. 

An incoming secure protocol message is received in the node adapter as a byte array, 
which is reconstructed into a SecInfoExchange message by the security processor ((1) in 
Figure 18). This is done by calling the restoreMessage method of an SecInfoExchange 
message. This method restores the SecInfoExchange header information and verifies the 
Protocol Message MAC.  The reconstructed SecInfoExchange message is passed to the 
messageArrivedFromAdapter method of the security processor where the byte array is 
restored into a plaintext protocol message via the restoreMessage method of the 
protocol message ((3) in Figure 18). Finally, the method messageArrivedFromAdapter 
of the  overlay node is invoked to process the message ((4) in Figure 18). 

Similarly, when the security processor needs to send a CertRequest or KeyRequest 
message, it creates a SecInfoExchange message and passes it to the node adapter. When 
a CertReply or KeyUpdate message is received by the node adapter, the node adapter 
invokes the restoreMessage method, which in turn calls the restoreMessage of the 
SecInfoExchange message. The reconstructed SecInfoExchange message is passed to 
the method messageArrivedFromAdapter in of the security processor where the 
SecInfoExchange message is processed. 

 

Figure 17. Processing an outgoing secure protocol message. 
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Figure 18. Processing an incoming secure protocol message. 

 

5.11.3 SECURE OVERLAY MESSAGES 

We now turn to the implementation aspects of secure overlay messages. Unencrypted 
overlay message payloads are implemented by the PayloadExtension class. When the 
security level is set to confidentiality, the encryption and decryption of the payload is 
handled by an instance of the EncryptedPayloadExtension class. Figure 18 shows the 
inheritance structure of the class.  

 

Figure 19. EncryptedPayloadExtension Class. 
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Encryption and decryption of message payloads is transparent to the class that 
implements the overlay message, and, thereby, to the application. An overlay message 
treats an EncryptedPayloadExtension as a normal Extension instance. When the 
methods toByteArray() or getPayload() are called for this type of extension, the 
encryption or decryption is started. To reduce the time spent on encrypting or decrypting 
data, payload encryption and decryption is only done when an overlay message is 
converted into a byte array, the encryption on the payload is executed, and decryption is 
done only when the plaintext payload is needed.  

Another optimization is that the overlay socket avoids encryption or decryption the 
payload of a message more than once, even if a message is retransmitted multiple times. 
This is done by storing a plaintext copy and an encrypted copy of an encrypted message 
in the EncryptedPayloadExtension object. Encryption of a message is performed only 
when the encrypted copy does not exist and decryption is done only when the plaintext 
copy of the payload is not available. 

Figure 20. Processing an encrypted overlay message. 
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