
Page 1 of 23

The Cluster Protocol
Wittawat Tantisiriroj, Jorg Liebeherr, MNG Group

 (updated: January 2008)

This is a draft and not a final version.
© 2008. All rights reserved. All material is copyrighted by the authors.

Table of Contents
1. Introduction...1
2. Overview of the Protocol..2

2.1. Head Information and Head Selection..5
2.2. Hybrid nodes...6

3. States and State Transitions ..7
4. Attributes ..14

4.1. Example of a member node configuration..14
4.2. Example of a head node configuration...16

5. Tables ...17
5.1. HeadCache Table ..17
5.2. Neighborhood Table ..17

6. Message Format ..18
6.1. HeadDiscovery Message ..18
6.2. HeadOffer Message ...18
6.3. ClusterRequest Message..19
6.4. ClusterConfirm Message ..19
6.5. ClusterReject Message...19
6.6. Hello Message ...19
6.7. Goodbye Message ...20
6.8. HeadReferral Message...20
6.9. Rejoin Message ...21
6.10. HeadInfo Field...21

7. Timers...21
8. Example ..22
9. Statistics..22

1. Introduction
This document describes a protocol, called Cluster protocol or CT protocol, that organizes sets of nodes
of an overlay network in a star topology, called a cluster. The node in the center of a cluster is called
cluster head and the nodes at the periphery are called cluster members. Figure 1 depicts a network with
three clusters. Each node is the member of only one cluster. Application data is exchanged only between
nodes in the same cluster.1

The Cluster protocol is suitable for environments where devices have different capabilities with respect to

power, data rate, computing resources, or have different roles in an application scenario. For example, in
a sensor network, low-power sensor nodes may form clusters with a higher-powered gateway device in

1 There are additional protocols, e.g., the Backbone-Cluster protocol, where cluster heads join another
(backbone) overlay topology. The backbone network enables the exchange of application data between
nodes in different clusters.

Page 2 of 23

as the cluster head. In peer-to-peer streaming application, client applications may form a cluster with a
content delivery server becoming a cluster head. The design goal of the CT protocol is to provide a
protocol solution that is suitable for a wide variety of networking scenarios where cluster formation can
be exploited. The CT protocol can run in wired and wireless networks. The range of applications that the
protocol is trying to support ranges from peer-to-peer networks over the Internet to sensor networks.
The criteria for the formation of clusters can consider geographical proximity, data rate, and user defined
metrics.

Figure 1. Cluster topology. (Cluster heads and members are labeled with H and M, respectively.)

The configuration of a node determines whether a node plays the role of a cluster head or a cluster
member. Some nodes can become either a cluster head or a cluster member, although not at the same

time. These nodes are called hybrid nodes. Whenever possible, a hybrid node runs as a cluster member.
In situations where some cluster members cannot find a head, the hybrid switches its role and runs as a
cluster head. Hybrid nodes balance the availability of cluster heads. If the density of a cluster heads is
high, most hybrid nodes run as cluster members and utilize the resources made available by cluster
heads. If the density of cluster heads is low and cluster members cannot find a cluster head, hybrid
nodes switch can help with the creation of new clusters.

The goal of the Cluster Protocol is to match each cluster member with one cluster head. In a network
with hybrid nodes, a second goal is to minimize the total number of clusters. Each cluster head makes
available a limited set of resources to its cluster members. If these resources are exhausted, a cluster
head does not accept new cluster members. Cluster members have preferences and restrictions on the
properties of cluster heads that they connect to, in terms of distance to the cluster head, available

bandwidth, and others. The protocol matches cluster members to a cluster heads, such that all
requirements of cluster members are met, and preferences are accommodated as much as possible.

2. Overview of the Protocol

The clusters formed by the Cluster Protocol consist of logical connections between a cluster head and its
cluster members. The formation of a cluster is driven by cluster members, who search for available
cluster heads and request membership in a cluster. Cluster members operate independently of other
cluster members when searching for a cluster head.

Page 3 of 23

The logical address of a cluster member or head is a randomly selected number. The logical addresses in
a cluster must be unique. If a node detects a duplicate address, i.e., some other node has the same
logical address, it must leave the overlay network, select a new logical address, and re-join the network.

Figure 2. Basic interaction in Cluster Protocol.

Cluster heads and members exchange protocol messages over a substrate network by broadcast or
unicast transmissions. The Cluster Protocol uses broadcast operations2 if they are available, but it does
not require them. The main interactions of the Cluster Protocol are shown in Figure 2.

We can think of the interactions of a member with a head as occurring in two phases. In the first phase,
a cluster member that does not have information about any head attempts to locate a cluster head. This
phase is referred to as rendezvous process. In the second phase, a cluster member joins and maintains
connectivity with a cluster head.

A cluster member in the rendezvous phase tries to identify cluster heads by sending a HeadDiscovery
message. Information about possible cluster heads can be obtained from a configuration file or a cache
file.3 A cluster member contacts each cluster head in these files by sending a HeadDiscovery message via
unicast. In addition, if the substrate network supports broadcast transmissions, a cluster member
broadcasts a HeadDiscovery message. A cluster head that receives a HeadDiscovery message responds
with a HeadOffer message, which contains information about the cluster head. The HeadOffer message is

transmitted by unicast. A cluster head sends a HeadOffer message even if it does not have room for an
additional member. When a cluster member receives a HeadOffer it enters the second phase of

2 The scope of the broadcast messages can be limited. In ad-hoc wireless network the scope of a broadcast
transmission is limited by the transmission range of the sending node. If the substrate network is an IP network, the
scope can be limited using a local broadcast address, or by specifying a limited scope in the TTL field of IP multicast
messages.
3 The configuration file is the XML file for the configuration of a HyperCast overlay socket. The cache file is created
by a cluster member that leaves an overlay network. It contains the addresses of the clusters in the head cache of
the member.

Page 4 of 23

interactions, where requests to join a cluster head by sending a ClusterRequest message. If the head can
accommodate a new member, it responds with a ClusterConfirm message. The ClusterConfirm message
confirms the logical link between a cluster head and member. Head and member are now neighbors in a
cluster. Once the logical link is established, both the cluster member and cluster head send to each other
periodically Hello messages that confirm the member-head relationship. If a cluster head cannot take a
new member it sends a ClusterReject message followed by a HeadReferral message. The ClusterReject
message declines the request to join the cluster. The HeadReferral contains a list of other cluster heads
that can be contacted by the cluster member. The rejection and the referral messages are separated
since referrals are used in other contexts, i.e., whenever heads wants to disseminate information about
other cluster heads.

When a node departs from a cluster, it sends a Goodbye message to its neighbors. A cluster member
sends a Goodbye message to its head, and a cluster head sends a Goodbye message to all its members.
After sending a Goodbye message, a cluster member responds to messages from the cluster head for
some time. Whenever the node receives a message from the cluster, responds with a Goodbye message.
This makes sure that the cluster head receives a Goodbye message.

If a node has not received a Hello message for a long time from a neighbor, it assumes that the neighbor
is no longer present. Eventually, state information about this neighbor is removed. Therefore, when a
node fails and simply stops transmitting messages, state information about this node will eventually
expire.

Both cluster members and cluster heads keep a list of cluster heads, called the head cache, and use
incoming protocol messages to maintain the cache. Members use the cache to identify a new cluster
head. Cluster heads use the list when they send referrals to other nodes. Entries in the head cache have
the following form (Address, HeadInfo, Age), where Address is the physical address of the cluster head,
HeadInfo is state information about the cluster head, and Age is the elapsed time since the entry was
created or last updated. Each cluster head keeps an entry on its own state in the top position of the
cache. Later, we describe the state information in HeadInfo in detail and how it is used by cluster

members. Entries in the cache are deleted if they have reached a maximum age. Generally, the size of
the data cache will be limited. When the cache is full the oldest entry is preempted. There are several
ways in which entries are added to the cache. When a node is created, the cache is initialized with
information from a configuration file. After that, the cache is updated using the content of incoming

HeadOffer and HeadReferral messages.

When a cluster head receives a HeadReferral (or HeadOffer) message, it updates its cache with the
information contained in the message. When a cluster head sends a HeadOffer message it includes the
Head information about itself. When a cluster head sends a HeadReferral, it includes the head cache
information. Each cluster head periodically transmits HeadReferrals to all cluster heads in its head cache
and to all members.4 In this fashion, information about cluster heads is disseminated in the same cluster
and across multiple clusters.

Remarks:

• A member broadcast HeadDiscovery message only if it does not have a head satisfying its criteria.
A member can send a HeadDiscovery as a unicast message if it wants to acquire information
about a specific head, e.g., it wants to get a logical address of a head.

• When a cluster member loses its cluster head and rejoins the cluster, it does not immediately join

the rendezvous phase by sending a discovery message. Instead, the member contacts each
cluster head in the referral list and attempts to join the corresponding cluster.

4 A referral message is sent to all cluster members every MemberReferralInterval seconds and to the
cluster heads in the head cache every HeadCacheReferralInterval milliseconds.

Page 5 of 23

• When a node leaves an overlay, the physical addresses of the cluster heads in the head cache is
saved in a cache file. When the node joins the overlay again, it loads a list of heads from the
cache file. Note that the cache file only contains the physical address, but not the information in
HeadInfo. A node that reads the cache file sends unicast HeadDiscovery messages to obtain
HeadInfo inforation and the logical address.

• Since Referral messages can be significantly longer than all other messages, the protocol
attempts to send referrals only when necessary. For example, one could conceive of a variation
of the protocol where a cluster head transmits a referral in response to a HeadDiscovery message.
However, since a HeadDiscovery message may be broadcast, this could result in many heads
sending referrals, possibly overwhelming the member that sent the HeadDiscovery message.

2.1. Head Information and Head Selection
In the Cluster Protocol, it is the cluster members that determine which cluster head to join and when to
join it. (An alternative approach would be to leave the management of a cluster to the cluster heads, and
have cluster heads issue invitations to potential cluster members.) A cluster member may decide to
switch to a different cluster head if the new head satisfies the needs of the member better than the
current head. Each cluster head is responsible for maintaining its own head information. The information
is initialized from configuration information, and can be updated dynamically. 5A member uses the
HeadInfo information about cluster heads in the head cache to decide when to contact a cluster head.

The HeadInfo information about a cluster includes:

• Available members – The number of members that the cluster head will accept.
• Location – The geographical location of the cluster head in a specified coordinate system.
• Rate – The data rate that this cluster head offers to each member in kilobits per second;
• Metric – An application–defined metric value that specifies a property about the cluster head.

The metric can be used to encode information about hardware properties, roles in application
scenarios, or the availability of resources. The metric is such that higher value of the metric are
considered `better’.

A member node checks the HeadInfo information of a node against a set of criteria from its configuration
file. The criteria are as follows:

• MinimumAvailableMember (Default: 1): The number of available slots advertised by the cluster
head must exceed the number of this parameter. The minimum value is 1.

• MaxDistance (Default: 100): The distance between the advertised location of the head and the
current location of the member must not exceed the given maximum distance. A negative value
indicates that no limit is specified.

• MinimumRate (Default: 0): The advertised data rate must exceed the minimum rate value.
• MinimumValue (Default: 9): The value gives the smallest acceptable value of the metric.

The Clustering Protocol supports two policies for selecting a cluster head, called NextFit and BestFit. With
NextFit, a cluster member can join any cluster head that satisfies the above criteria. With BestFit, a
cluster member attempts to find the best cluster head with respect to specified criteria. A node can select
one of the following criteria: Location, Rate, and Metric. By selecting Location, a cluster member tries to
find the cluster head that is closest to its current position. With the Rate criteria, a cluster member tries
to join the cluster head that offers the maximum data rate. If Metric is specified, a cluster member seeks
a cluster head that maximizes the cluster metric. To prevent that cluster members change their cluster

5 The head information is a mutable configuration attribute, i.e., a configuration parameter that can be
modified after the creation of the overlay node. Mutable attributes must be verified each time they are
accessed in the system. (Note: mutable statistics are currently not widely implemented. Another example
is the group key attribute in the security architecture).

Page 6 of 23

head too often, the new cluster head must improve the distance, the data rate, or the metric value by
more than a given threshold value.

When a node contacts a new cluster head, it selects a head from the head cache. The rules for selecting
a cluster head from the cache are as follows. For each head cache entry, a member records the number
of attempts that this node has been contacted with a ClusterRequest message (The value is reset to 0 if a
member receive Cluster Confirm message from this node). An entry is ignored if the number of attempts
to contact this node exceeds HeadTimeout/HeartbeatTime (default is 3). A node first identifies an entry
with the smallest number of attempts. If more than one entry remains, a node discards entries in the
order of preference. The lowest preference is for a hybrid node running as a member. Next in the
preference order is a hybrid node running as a head. A cluster head has the highest preference. If
selection policy is NextFit, the node selects any of the remaining entries. If selection policy is BestFit, the
node selects the best cluster head among the remaining entries with respect to the specified criteria.

The decisions to join or change a cluster are completely left to the cluster members. A cluster head
should accept any request to join the cluster that can be accommodated. Also, cluster heads cannot
selectively drop cluster members.

2.2. Hybrid nodes
Hybrid nodes (or hybrids) can operate as either cluster members or cluster heads. Whenever possible, a
hybrid node will run as a cluster member and join a cluster head. When all nodes are hybrid nodes, the
cluster protocol will result in a small number of cluster heads. Ideally, the number of clusters is minimal
in the sense that there is no other assignment of hybrids into member and heads that has fewer cluster
heads.6

The default state of a hybrid node is that it runs as a cluster head. When a hybrid node is initialized, it
starts out as a cluster head. Also, if a hybrid node cannot communicate with any other node, it will
eventually become a cluster head. If a hybrid node in cluster head mode that does not have members,
and receives a HeadOffer from some cluster head, it switches to member mode and attempts to join the
sender of the HeadOffer as a cluster member. Likewise, if a hybrid node (either a head or a member)
receives a ClusterRequest message, it must accept this member and remain a cluster head until all
members have left the cluster.

Note: A hybrid node running as a member can be forced to switch to a cluster head
Suppose there is one head called H1 which can accept four members and one hybrid called B1 which can
also accept five members. First, all members and the hybrid node become members of H1. When a new
member, say M4, joins the network, M4 can only find a cluster head if B1 switches to a head.
M4 receives head offer from H and B1.....H4 cannot accept more members …. So: M4 contacts B1 ….
Once it receives request B1 switches to Head

6 This problem can be related to the minimum cover set problem in computer science theory.

Comment: should M4 be able to
force B1 to switch to head?

Comment: Yes, otherwise M4 will be
disconnected.
This feature is implemented as of Oct
30, 2006.

Page 7 of 23

B1HM2

M3

M1

M4

• A hybrid node sends HeadOffers, only if it is in one of the following states: Member, Head
Without Member, and Head With Member.

• A hybrid node sends Referrals, only when it is in one of the following states: Head Without

Member and Head With Member.

When multiple hybrid nodes in cluster head mode can communicate directly with each other, some of the
nodes will be permitted to run as members, while others must remain cluster heads. Without additional
mechanisms it is feasible that hybrid nodes flip back and forth between a member and a cluster head
modes. Since it is desirable that the nodes quickly converge to an agreement, the cluster protocol
implements a backoff mechanism, where nodes defer the transmission of HeadOffer messages.

When a hybrid node running as a head receives a HeadOffer message from another hybrid node that is
also running as a head within OfferCollisionWindow milliseconds after it sent its own HeadOffer message,
it ignores the HeadOffer message, sets a variable OfferCollisionCounter to one. Now, the hybrid node
randomly schedules the next transmission time of the HeadOffer message. If T was the time its last
HeadOffer transmission, the next HeadOffer transmission is scheduled at a random time in the interval

[T+ OfferCollisionWindow, T+ OfferCollisionWindow + 2OfferCollisionCounter x HeartbeatTime].

If there is another HeadOffer received within OfferCollisionWindow milliseconds after the transmission,
the OfferCollisionWindow is incremented and another HeadOffer transmission is scheduled. A HeadOffer
is viewed as successful if a node does not receive a Headoffer during a collision window after the
transmission of an HeadOffer. In this case, the OfferCollisionCounter is reset to zero.

Each hybrid node must periodically sent HeadOffer and Referral messages even if it is running as a
cluster member. In this way, information about the hybrid nodes is disseminated. The HeadInfo
information included in these messages identifies whether a node is a hybrid node or a head node. For
hybrid nodes, the information also specifies if this node is currently in member mode or in cluster head

mode.

3. States and State Transitions

In this section, we specify the finite state machines of the cluster protocol. Table 1 summarizes the states
of the protocol.

Table 1. State description.

State Name State Definition

Stopped The node is not running

Page 8 of 23

Member Candidate
Without Head

A cluster member in a rendezvous phase. The node
transmits HeadDiscovery messages, and listens to
HeadOffer messages.

Member Candidate With
Head

A cluster member that has knowledge of cluster heads,
but is not a member of a cluster.
A node in this state attempts to join a cluster by sending
ClusterRequest messages.

Member A cluster member that is a member of a cluster head.

The node exchanges Hello messages with its cluster
head.

Head Without Member The node is a cluster head without a member.

Head With Member The node is a cluster head with at least one member.

Figure 3. State transition diagram of a member.
(From each state, there is an additional edge with label Leave overlay to state Stopped.)

Figure 4. State transition diagram of a cluster head.
(From each state, there is an additional edge with label Leave overlay to state Stopped.)

Figures 3 and 4 show the state transition diagram for member nodes and cluster nodes. The figures do
not show that a node can return to state Stopped from any state by leaving the overlay network. As
shown in Figure 3, a new member node initially becomes a member candidate. A candidate tries to learn
about new cluster heads and build up information in the head cache. Initially, a candidate does not have
a head (Member Candidate without Head). Here, the node issues HeadDiscovery messages. Once a node
learns about cluster heads by receiving HeadOffer or Referral messages, it becomes a Member Candidate
with Head. This state, the node goes through its head cache and makes attempts to join one of the
heads. When a head rejects a request, it will also send a referral message, which may add new
information to the head cache. However, if the head cache is exhausted and no head has accepted the
new member, the node must return to Member Candidate without Head and find new cluster heads. If a
cluster head responds to a ClusterRequest with a ClusterConfirm message, the node is now a member of

Page 9 of 23

a cluster. The node will remain in this state unless it finds a better cluster head, the cluster head leaves,
or the application terminates.

The state transition diagram of a cluster head, shown in Figure 4, is quite simple. It merely distinguishes
between a head that has no members and a head that has members. Even these two states could be
summarized, as the behavior of a cluster node is identical in both states. (We distinguish the states since
hybrid nodes behave differently in this state).

Figure 5. State transition diagram of a hybrid.
(From each state, there is an additional edge with label Leave overlay to state Stopped.)

Figure 5 depicts the state transition diagram for hybrid nodes. The diagram can be viewed as a
superposition of the diagrams for members and nodes, with a few crucial differences. First, when a node
starts, it initially starts out as a head. When a hybrid node is a head, but does not have a member, it can
switch to the member mode, when it learns about a head and can join the head. Note that this is not
possible after a hybrid node has accepted a member.

• A change from Head Without Member to Member Candidate With Head happens when a hybrid
node found a head.

• A change from Member to Head With Member occurs when a hybrid running as a member
receives a ClusterRequest and subsequently accepts a member. Note that a hybrid node in
member mode behaves differently than a member node, i.e., it sends HeadOffer messages and it
responds to ClusterRequest messages.

• When a hybrid in member node and receives a ClusterRequest it can accept the request and
switch into the mode of a cluster head. It is not allowed that a Member Candidate accepts a
member. This avoids a situation where hybrid nodes flip back and forth between a member and a
cluster head modes. Comment: Add example to show the

situation where hybrid nodes flip back
and forth between a member and a
cluster head modes

Page 10 of 23

Note that a hybrid node never stays in state Member candidate without head . A hybrid node will become
a Head Without Member immediately after it becomes Member candidate without head. In other words,
for hybrid nodes, the state Member candidate without head could be deleted. We maintain the state for
better comparison with the other state diagrams.

Need a description of the timers

Page 11 of 23

State: Any
Event Action

Receives a message
from a node m with a
source logical address
identical to its own
logical address

Randomly select a new logical address and send a Rejoin message to
m

Rejoin message received
from m

Randomly select a new logical address

Heartbeat Timer expires Remove an expired entry in a head cache.

For each entry in a head cache
 If an head information field for a head h is missing because a

 head h is added from a cache file or a configuration file
 Send a HeadDiscovery message to the head h

State: Stopped

Event Action

Join Overlay Load head cache from a cache file and the configuration file
If NodeType == Member
 � Member Candidate Without Head
else
 � Head Without Member

State: Member Candidate Without Head
Event Action

Initial tasks -

Heartbeat Timer expires If NodeType == Hybrid
 � Head Without Member

If there is a head entry in head cache
 Select a head in head cache as a new head based on preferences
discussed in Section 2.1

 � Member Candidate With Head
Else
 Broadcast HeadDiscovery message m to all nodes if broadcast
operation is avaiable.

HeadOffer message
received from h

Update information and timestamp of the head entry of h in the head
cache

HeadReferral message
received from h

Update information and timestamp of the head cache with all entries
in the Referral list

Hello message received
from h

Send Goodbye message to h

ClusterRequest message
received from m

Send Goodbye message to m

Leave Group � Stopped

State: Member Candidate With Head
Event Action

Initial tasks -

Comment: Sync from code. There is
no CacheEntryTimeout timer, but the
expired entries are removed every
Heartbeat.

Page 12 of 23

Heartbeat Timer expires If current head is expired
 Select a head h in the head cache as a head candidate
 If no head found
 If My Mode = Hybrid
 � Head Without Member
 Else
 � Member Candidate Without Head

Send ClusterRequest message m to the head h
Increment attempt counter of the entry of head h in the head cache

HeadOffer message
received from h

Update information and timestamp of the head entry of h in the head
cache

HeadReferral message
received from h

Update information and timestamp of the head cache with all entries
in the Referral list

ClusterConfirm message
received from h

If h is its current head
 � Member
Else
 Send Goodbye message to m

ClusterReject message
received from h

Set Attempts field of the entry of head h in a head cache to
(HeadTimeout/HeartbeatTime)+1 (default: 4).
� Member Candidate Without Head

ClusterRequest message

received from m

Send Goodbye message to m

Hello message received
from h

If h is not its current head
 Send Goodbye message to h

Goodbye message
received from h

Remove h from a head cache
If h is its current head
 � Member Candidate Without Head

Leave Group � Stopped

State: Member
Event Action

Initial tasks Set HeadTimeout Timer

Heartbeat Timer expires If SelectionPolicy is BestFit
 Select a best head h in head cache as a head
 If h is better than current head
 � Member Candidate With Head

If NodeType == Hybrid
 Broadcast HeadOffer message m to all nodes

If its current head is expired

 Set Attempts field of the entry of head h in a head cache to
(HeadTimeout/HeartbeatTime)+1 (default: 4).
 � Member Candidate Without Head

HeadOffer message
received from h

Update information and timestamp of the head entry of h in the head
cache

HeadReferral message

received from h

Update information and timestamp of the head cache with all entries

in the Referral list

ClusterRequest message
received from m

If NodeType == Hybrid
 Send ClusterComfirm message to m

 � Head With Members

Comment: Sync from code. Send
Goodbye message unless h is its
current head

Comment: Sync from code. There is
no HeadTimeout timer, but the
expired head is removed every
Heartbeat.

Comment: Even in BestFit policy, a
member will not switch head until
next Heartbeat time

Comment: Same as above

Page 13 of 23

Else
 Send Goodbye message to m

Hello message received
from h

If h is its current head
 Reset HeadTimeout Timer
 Send Hello Message to h
Else
 Send Goodbye message to m

Goodbye message

received from h

Remove h from a head cache

If h is its current head
 � Member Candidate Without Head

Leave Group Send Goodbye Message to it current head

� Stopped

State: Head Without Member
Event Action

HeadOffer message

received from h

If MyMode == Head or h.NodeType != HybridMember

 Update information and timestamp of the head entry of h in a
head cache
Else
 If h.NodeType == Head

 � Member Candidate With Head
 Else if h is Hybrid (Head)
 If ListeningPeriod Timer is not set
 � Member Candidate With Head
 Else

 Set a Collision Flag to true

HeadReferral message
received from h

If MyMode == Head or h.NodeType != HybridMember
 Update information and timestamp of the head cache with all

entries in the Referral list
Else
 If NodeType of any head in Referral is Head
 � Member Candidate With Head
 Else if h is Hybrid (Head)
 If ListeningPeriod Timer is not set
 � Member Candidate With Head
 Else
 Set a Collision Flag to true

(for Jorg: recheck once the other pieces are clarified.)

Leave Group � Stopped

State: Head With Member
Event Action

HeadOffer message
received from h

Update information and timestamp of the head entry of h in a head
cache

HeadReferral message

received from h

Update information and timestamp of the head cache with all entries

in the Referral list

Leave Overlay Send Goodbye message to all of its member
� Stopped

State: Head Without Member, Head With Member

Event Action

Comment: A member will send a

goodbye to an invalid head

Comment: Needs to be defined?
What happens when the conflict flag
is set?

Comment: See ListeningPeriod
Timer expires.

Comment: Need to work on it. The
part is quite simple, so we should be
able to describe it simpler than what
we have now.

Page 14 of 23

Heartbeat Timer expires Remove an expired member
If its Neighborhood table is empty
 � Head Without Member

Send Hello message to all members
If NodeType == Head
 Broadcast HeadOffer message m to all nodes
Else

 If no HeadOfferSend Timer is scheduled
 Set a HeadOfferSend Timer to expire after a randomly
 selected time between 0 to HeadOfferPeriod ms

HeadOfferSend Timer
expires

Set the Collision Flag to false
Broadcast HeadOffer message m to all nodes
Set a ListeningPeriod Timer to expire after OfferCollisionWindow ms

ListeningPeriod Timer
expires

If the Collision Flag is false
 Reset HeadOfferPeriod to HeartbeatTime
Else
 Double HeadOfferPeriod
 Set a HeadOfferSend Timer to expire after a randomly
 selected time between 0 to HeadOfferPeriod ms

HeadInfoExchange Timer
expires

Send HeadReferral message to all of heads in its head cache.

ReferralPush Timer
expires

Send HeadReferral message to all of its members

Hello message received
from m

If m is its member
 Update timestamp of member m
Else
 Send Goodbye Message to m

Goodbye message
received from m

Delete m from member table

HeadDiscovery message
received from m

If it can accept a new member
 Send HeadOffer message to m
Else
 Send a small size HeadReferral message to m

ClusterRequest message
received from m

If detect duplication of logical address
 Send Rejoin message to m
If it can accept a new member
 Send ClusterConfirm message to m
 If State is Head Without Member
 � Head With Member
Else
 Send ClusterReject message to m
 Send HeadReferral message to m

4. Attributes

4.1. Example of a member node configuration

 <Node>
 <CT>
 <HeartbeatTime>1000</HeartbeatTime>

Comment: Sync from code. There is
no WaitingForMember timer, but the
expired entries are removed every
Heartbeat.

Comment: Will be clarified with
other comments.

Comment: See above

Comment:
If LimitedReferralSize is > 0, a full
head will send a referral message
with LimitedReferralSize entry when it
receives a HeadDiscovery message

Page 15 of 23

 <MemberTimeout>3000</MemberTimeout>
 <HeadTimeout>3000</HeadTimeout>
 <MemberReferralInterval>5000</MemberReferralInterval>
 <HeadCacheReferralInterval>1000</HeadCacheReferralInterval>
 <CacheEntryTimeout>10000</CacheEntryTimeout>
 <OfferCollisionWindow>500</OfferCollisionWindow>
 <Verification>neighborcheck</Verification>
 <StatName>Node</StatName>
 <ReferralEnable>true</ReferralEnable>
 <LimitedReferralSize>1</LimitedReferralSize>
 <CacheFile>.Cachefile</CacheFile>
 <HeadCacheSize>10</HeadCacheSize>

 <HeadNum>1</HeadNum>
 <Head>
 <UnderlayAddress>
 <INETV4AndOnePort>127.0.0.1:9800</INETV4AndOnePort>

 </UnderlayAddress>
 </Head>
 <NodeType>
 <Member>
 <Criteria>
 <Member>
 <MinimumAvailableMember>1</MinimumAvailableMember>

 </Member>
 <Location>
 <Coordinate>500,500</Coordinate>
 <MaxDistance>100</MaxDistance>
 </Location>
 <Bandwidth>
 <MinimumRate>0</MinimumRate>

 </Bandwidth>
 <Metric>
 <MinimumValue>9</MinimumValue>
 </Metric>
 </Criteria>
 <SelectionPolicy>
 <NextFit/>
 </SelectionPolicy>
 </Member>
 </NodeType>
 </CT>
 </Node>

Various Selection Policies Example
1) Next Fit
 <SelectionPolicy>
 <NextFit/>
 </SelectionPolicy>

2) Location

 <SelectionPolicy>
 <BestFit>
 <Location>

Comment: See section 7. timers for
the details

Comment: See October 25,
discussion
Where does coordinate belong to?

Page 16 of 23

 <ThresholdDistance>5</ThresholdDistance>
 </Location>
 </BestFit>
 </SelectionPolicy>

3) Bandwidth
 <SelectionPolicy>
 <BestFit>
 <Bandwidth>
 <ThresholdRate>10</ThresholdRate>
 </Bandwidth>
 </BestFit>

 </SelectionPolicy>

4) Metric
 <SelectionPolicy>

 <BestFit>
 <Metric>
 <ThresholdValue>1</ThresholdValue>
 </Metric>
 </BestFit>
 </SelectionPolicy>

4.2. Example of a head node configuration

 <Node>
 <CT>
 <HeartbeatTime>1000</HeartbeatTime>
 <MemberTimeout>3000</MemberTimeout>
 <HeadTimeout>3000</HeadTimeout>
 <MemberReferralInterval>5000</MemberReferralInterval>
 <HeadCacheReferralInterval>1000</HeadCacheReferralInterval>
 <CacheEntryTimeout>10000</CacheEntryTimeout>
 <OfferCollisionWindow >500</OfferCollisionWindow >
 <Verification>neighborcheck</Verification>
 <StatName>Node</StatName>
 <ReferralEnable>true</ReferralEnable>

 <LimitedReferralSize>1</LimitedReferralSize>
 <CacheFile>.Cachefile</CacheFile>
 <HeadCacheSize>10</HeadCacheSize>
 <HeadNum>1</HeadNum>
 <Head>
 <UnderlayAddress>
 <INETV4AndOnePort>127.0.0.1:9800</INETV4AndOnePort>

 </UnderlayAddress>
 </Head>
 <NodeType>
 <Head>

 <Criteria>
 <Member>
 <MaximumMember>20</MaximumMember>
 </Member>

Comment:
If ReferralEnable is not true, all
referral messages are disable.

If LimitedReferralSize is > 0, a full
head will send a referral message
with LimitedReferralSize entry when it
receives a HeadDiscovery message

Page 17 of 23

 <Location>
 <Coordinate>500,500</Coordinate>
 </Location>
 <Bandwidth>
 <OfferRate>56</OfferRate>
 </Bandwidth>
 <Metric>
 <OfferValue>9</OfferValue>
 </Metric>
 </Criteria>
 </Head>
 </NodeType>

 </CT>
 </Node>

Note:
The distance between two points is approximately calculated by spherical law of cosines under an
assumption that the earth is a perfect sphere. Distance = Radius of sphere * arcos [sin(latitude1) *
sin(latitude2) + cos(latitude1) * cos(latitude2) * cos(longitude2 - longitude 1)]. In this implementation,
Radius of the earth is approximated to 3963.0 miles. The unit of distance is mile and the unit of latitude
and longitude are radians.

5. Tables

5.1. HeadCache Table
Physical
Address

Logical

Address

Node

Type

Timestamp Available

Members

Current

Members

Location Offered

Rate

Metric Attempts

… … … … … … …

Physical Address: variable size (PASize), the physical address of a cluster head node.
Logical Address: variable size (LASize), the logical address of a cluster head node.
Head Node Type: byte = 1 byte, the Node Types of head are either Head [1], Hybrid (Head) [2], or

Hybrid (Member) [3]
Timestamp: long = 8 bytes, the last time this entry has been updated.
Available Member: int = 4 byte, the number of members that this cluster head node can accept
currently.
Location: (float, float) = 8 bytes, the location of this cluster head node in a specified format.
Offered rate: int = 4 bytes, the data rate that this cluster head offers to each member in kilobits per
second (kbps).

Metric: byte = 1 bytes, the value representing a user defined metric of this cluster head node.
Attempts: byte = 1 byte, the number of attempts to request from this cluster head and it is set to 0 if
the request is accepted.

5.2. Neighborhood Table
Logical
Address

Physical
Address

Timestamp

… … …

Logical Address: variable size (LASize), the logical address of a neighbor.
Physical Address: variable size (PASize), the physical address of a neighbor.
Timestamp: long = 8 bytes, the last time this entry has been updated.

Comment: Jorg, please check
whether you understand it or not

Page 18 of 23

6. Message Format
This section list the detailed message formats used in the Clustering Protocol. The common format for all
protocol messages is shown in Figure 6.

Figure 6. Format of Cluster protocol messages.

Type: The types of Clustering Protocol message are:

Table 2. Protocol Message Types.

Message NodeType NodeType
Field

HeadDiscovery 0

HeadOffer 1

ClusterRequest 2

ClusterConfirm 3

ClusterReject 4

Hello 5

Goodbye 6

HeadReferral 7

Rejoin 8

Overlay Hash: A 4-byte long hash value which is derived from the values of all attributes specified in
HashAttributes of the configuration file.
Src PA: The physical address of the sender of this message
Src ID: The logical address of the sender of this message
Dest PA: The physical address of the destination of this message
Dest ID: The logical address of the destination of this message

Dest PA and Dest ID fields are omitted in the rendezvous messages HeadDiscovery and HeadOffer.

6.1. HeadDiscovery Message

Figure 7. HeadDiscovery message.

The HeadDiscovery Message is sent by a cluster member to request the information from existent cluster
heads. The message is transmitted by broadcast or unicast, where the address is obtained from the

configuration file, from attributes HeadNum and Head attributes.

6.2. HeadOffer Message

Page 19 of 23

Figure 8. HeadOffer message.

The HeadOffer Message is sent by a cluster head to provide its information, i.e., NodeType, Location,

Rate, and Metric, etc., to both cluster members and cluster head. A cluster head sends a HeadOffer
periodically and in response to a HeadDiscovery message. Also, hybrid nodes (even if they are not
running as cluster heads) issue periodic HeadOffers.

HeadInfo: Contains information about a cluster head. The field is discussed below in Section 6.10

6.3. ClusterRequest Message

Figure 9. ClusterRequest message.

The ClusterRequest message is sent by a cluster member to a cluster head to request membership in a
cluster.

6.4. ClusterConfirm Message

Figure 10. ClusterConfirm message.

The ClusterConfirm message is sent by a cluster head to accept the request to join a cluster. The
message is sent in response to a ClusterReqest message.

6.5. ClusterReject Message

Figure 11: ClusterReject message.

The ClusterReject is sent by a cluster head to reject the request to join the cluster. The message is sent
in response to a ClusterReqest message when a cluster head cannot accept a new member.

6.6. Hello Message

Page 20 of 23

Figure 12. Hello message.

Cluster head and its members exchange Hello messages periodically.

6.7. Goodbye Message

Figure 13. Goodbye message.

The Goodbye message is sent by either a leaving cluster head or by a cluster member to inform that they
are no longer neighbors. When a cluster member or cluster head leaves, it sends a Goodbye.
Subsequently, it responds to each received messages (e.g., Hello) with a Goodbye.

This message can be used by a cluster head to control its membership, i.e., reduce the number of
members.

6.8. HeadReferral Message

Figure 14. HeadReferral message.

The HeadReferral Message is sent by a cluster head to either cluster member or cluster heads (in its head
cache) to exchange information about other cluster heads. The sending cluster heads include its
HeadInfo content about itself into the referral when it sends a referral. The sending cluster head includes
itself in the HeadReferral message. However, its own HeadInfo is not put in any specific position.

Page 21 of 23

6.9. Rejoin Message

Figure 15. Rejoin message.

The Rejoin Message is sent by a cluster head to force a node to rejoin the overlay network. The message
should only be used when a cluster head discovers that there are nodes with duplicate addresses. In this
case, the cluster sends a rejoin message to one of the duplicates. When a node receives a duplicate
message, it leaves the overlay, and re-joins the overlay. In the process of re-joining it selects a new

identifier, which will in all likelihood remove the duplicate.

6.10. HeadInfo Field

Figure 16. Format of the HeadInfo Field.

The HeadOffer and Referral messages contain information about cluster heads, which is formatted as a
HeadInfo fields. The content of the HeadInfo field is written into the HeadCache Table.

NodeType: The type of the node that is described in the field. The available types are given in Table

Table 3. NodeType in HeadInfo field.

Head NodeType Head NodeType
Field

HeadOnly 1

Hybrid (Head) 2

Hybrid (Member) 3

Timestamp7: The last time this entry has been updated.
Available Member: The number of members that this cluster head node can accept.
Current Members: The number of current members at this cluster head.
Location8: The geographical location of the cluster head node using a specified coordinate

system. The coordinate system is specified in the configuration file.
Rate: The bandwidth rate that this cluster head offers to each member in kilobits per

second (kbps).
Metric: The value for the application-defined metric for this cluster head.

7. Timers

HeartbeatTime

7 “The difference, measured in milliseconds, between the current time and midnight, January 1, 1970
UTC” from Sun Java API Specifications.
8 Two floating-point numbers in the single-precision floating-point format of IEEE 754-1985 specification

Page 22 of 23

Default: 1000 ms
XPath: /Public/Node/CT/HeartbeatTime
Description: The time period between two consecutive Hello Messages, HeadDiscovery Messages, or
HeadOffer Messages

MemberTimeout
Default: 3000 ms
XPath: /Public/Node/CT/MemberTimeout
Description: A cluster member entry will be removed if it has not been updated for this specified timeout
value

HeadTimeout
Default: 3000 ms
XPath: /Public/Node/CT/HeadTimeout
Description: a cluster member will try to request an id from other head if a head entry has not been
updated for this specified timeout value

This timer is reset if a member receives a Hello message from a head. If it does not receive any Hello
message before the timer expires, a member assumes that a head has failed and tries to connect to
another head.

MemberReferralInterval
Default: 5000 ms

XPath: /Public/Node/CT/MemberReferralInterval
Description: the time period between two consecutive HeadReferral Messages that a head send to its
current members

HeadCacheReferralInterval
Default: 1000 ms
XPath: /Public/Node/CT/HeadCacheReferralInterval

Description: the time period between two consecutive HeadReferral Messages that a head send to its
current heads in the head list

CacheEntryTimeout
Default: 10000 ms
XPath: /Public/Node/CT/CacheEntryTimeout
Description: an entry in a cache will be removed if it has not been updated for this specified timeout
value.

OfferCollisionWindow
Default: 500 ms
Path: /Public/Node/CT/OfferCollisionWindow
Description: a Hybrid (Head) will ignore all HeadOffer messages from other Hybrids during this specified

time period after it sends a Head Offer message.

8. Example

9. Statistics

The Clustering Protocol supports statistics. A list of supported statistics is …

Comment: Let us discuss an

example…..

Comment: Let us discuss ….

Page 23 of 23

Required by M&C

- LogicalAddress (R)
- PhysicalAddress (R)
- NumOfNeighbors (R)
- NeighborTable (R)

Time

- NodeStartTime (R)
- NodeStopTime (R)
- HeartbeatTime (RW)

Contents of Tables : HeadCacheInfo
- Head (R)

o PhysicalAddress (R)
o Option (R)

� HeadType (R)
• Head
• Hybrid(Head)
• Hybrid(Member)

� Timestamp (R)

� Criteria (R)
• AvailableMember (R)
• Location (R)

o Latitude (R)
o Longitude (R)

• OfferBandwidth (R)
• OfferAvailability (R)

� Result (R)

Status

- Head (R) – current head
- State (R)

o Stopped
o Member Candidate Without Head

o Member Candidate With Head
o Member
o Head Without Member
o Head With Member

- Mode (R)
o Head
o Member
o Hybrid

Roots of its components statistics

- Adapter (R)

(R) stands for Read-Only
(RW) stands for Read&Write

Comment: Add detail for each
statistic & think about any useful
statistics

Comment: All statistics are
implemented.

