
© Jorg Liebeherr, 2002. All rights reserved.

 From Hypercast version 2 documentation (2002) 1

CHAPTER 3

Overlay Protocol

This document contains a descirption of the Hypercube (HC) and Delaunay Triangulation (DT)
protocols. The description is from the documentation of Version 2 (2002).

This document also describes an extension to the DT protocol to include Buddylist and Broadcast
Rendezvous mechanisms.

http://www.cs.virginia.edu/%7Emngroup/hypercast/documentation.html

An update of this document is pending.

CHAPTER 3 OVERLAY PROTOCOL 1

3.1 OVERVIEW 1
3.2 HYPERCUBE (HC) OVERLAY PROTOCOL 2
3.2.1 THEORY 3
3.2.2 PROTOCOL OVERVIEW 5
3.2.3 ANCESTORS, HROOT 5
3.2.4 HYPERCUBE TIMERS AND PERIODIC OPERATIONS 6
3.2.5 MESSAGE TYPES 6
3.2.6 PROTOCOL MECHANISMS 7
3.2.7 STATES AND STATE TRANSITIONS 8
3.2.8 PROTOCOL EVENT TABLES 10
3.2.9 MESSAGE PACKET FORMAT 15
3.2.10 EXAMPLE 16
3.2.11 REPAIRING A TEAR 18
3.2.12 EVALUATION AND DISCUSSION 19
3.3 DELAUNAY TRIANGULATIONS 20
3.3.1 DELAUNAY TRIANGULATION AS AN OVERLAY NETWORK TOPOLOGY 20
3.3.2 DELAUNAY TRIANGULATION OVERLAY NETWORK 21
3.3.3 COMPASS ROUTING 22
3.3.4 BUILDING DELAUNAY TRIANGULATIONS WITH LOCAL PROPERTIES 23
3.3.5 OVERVIEW OF THE DT PROTOCOL 24
3.3.6 NEIGHBORS AND NEIGHBOR TEST 24
3.3.7 DT SERVERS AND LEADERS 27
3.3.8 TIMERS 28
3.3.9 MESSAGE TYPES 29
3.3.10 SHIFTING COORDINATES 30
3.3.12 EXAMPLES 33
3.3.11 WHEN A NODE LEAVES THE OVERLAY 36
3.4 EVALUATION 36
3.5 REFERENCES 37
3.4 DT PROTOCOL VERSIONS 48

OVERVIEW ERROR! BOOKMARK NOT DEFINED.

© Jorg Liebeherr, 2002. All rights reserved.

 From Hypercast version 2 documentation (2002) 2

RENDEZVOUS METHODS 48

RENDEZVOUS SERVER 48
BUDDYLIST 48
BROADCAST 48

COORDINATE SELECTION WITH LANDMARKS 49

DESIGN OVERVIEW 49
SOFTWARE ARCHITECTURE, IN OL SOCKET & LM DESIGN 50

COORDINATE SELECTION USING GEOGRAPHICAL COORDINATES 51

ALGORITHM 51
IMPLEMENTATION 52

2/7/2008 Overlay Protocol 3.1

University of Virginia HyperCast 2.0

This is an unfinished draft. If you have comments or corrections, please mark this
document up and send it to jorg@comm.utoronto.ca. If you send your comments in plain
text, please include the date (see upper left corner), the page number and the paragraph
number. If you find discrepancies between this document and the most recent version of
the HyperCast, please give a detailed description of the problem.

Thank you,

Jörg Liebeherr

Overview

HyperCast builds overlay networks that have a specified topology. Currently,
HyperCast can build two types of overlay network topologies, logical hypercubes and
logical Delaunay triangulations. These protocols are described in more detail in
[BEAM99] and [LIEBE01b].

The overlay protocol of an overlay socket in HyperCast is implemented by a component
which is called overlay node. The overlay node component adds and maintains the
membership of an overlay socket in an overlay network.

Overlay Socket

Messages of
the Overlay
Protocol

Overlay Node

Overlay Node
Interface

Adapter Interface

Node Adapter

Figure 3.1. The overlay node component of an overlay socket.

Across different overlay protocols can vary widely, the overlay nodes for all overlay
protocols share the following properties.

• An overlay node exchanges messages with other overlay nodes in the same
overlay network. The overlay node runs a finite state machine which performs
actions when timers expire and when messages are received.

2/7/2008 Overlay Protocol 3.2

University of Virginia HyperCast 2.0

• The overlay node communiates with a network adapter which transforms
protocol messages int datagrams. The node adapter also maintains the timers of
the overlay protocol.

• Overlay nodes distinguish between logical and physcial addresses. A logical
address identifies a member in the overlay network, and is derived from some
logical address space. Examples of logical addresses are a binary string or
coordinates. A physical address is a transport layer endpoint in the network
over which the overlay network is run. In HyperCast 2.0, the underlying
network is an IP network. Therefore, physical addresses are a tuple (IP address,
port number).

• Each overlay node maintains a neighborhood table which contains a list of its
neighbors in the overlay network. Each entry of a neighborhood table contains:

� The logical address of the neighbor,

� The physical address of the neighbor,

� The time elapsed since the node last received a message from the
neighbor.

Any protocol that builds an overlay network must provide mechanisms that enable nodes which
are not members of the overlay to communicate with nodes in the overlay. These mechanisms,
referred to as rendezvous mechanisms, are applied when new nodes join an overlay, and when
when the overlay network has been partitioned and must be repaired. One can think of three
rendezvous methods in an overlay network:

1. Multicast: non-members have a broadcast mechanism that is available to them (e.g. IP
Multicast). They use this to announce themselves to members of the overlay network.

2. Buddy List: non-members maintain a list of members that are likely to be in the overlay
network (a “buddy list”). They use this list to contact members.

3. Server: non-members contact a well-known server that establishes communication
between members and non-members of an overlay network.

In HyperCast 2.0, the hypercube overlay network performs a rendezvous with multicast
messages, and the Delaunay triangulation performs a rendezvous with the help of a server.

All overlay protocols that are used in HyperCast must be able to perform the following
computation:

Given the logical address of some overlay node R, each overlay node with
logical address A must be able to compute the logical address of A’s parent and
child nodes in an embedded tree which has R as the root.

With this ability nodes can perform unicast and multicast forwarding functions without
the need for a routing protocol.

Overlay protocols in HyperCast are soft-state protocols. In soft-state protocols, all
remote state information is periodically refreshed. If the remote state information is not
refreshed, then it is invalidated. Timers are used to trigger the operations which
recalculate and refresh the state information.

2/7/2008 Overlay Protocol 3.3

University of Virginia HyperCast 2.0

Hypercube (HC) Overlay Protocoli

In the Hypercube (HC) overlay protocol, members of the overlay are organized as the
nodes of a logical n-dimensional hypercube.

An n-dimensional hypercube is a graph with 2n nodes. Each node is labeled by a bit
string kn…k1, where ki ∈ {0, 1}. Nodes in a hypercube are connected by an edge if and
only if their bit strings differ in exactly one position. A hypercube of dimension n = 3 is
shown in Figure 3.2.

The HC protocol works with incomplete hypercubes. In other words, the number of
overlay members does not need to be a power of two.

3.1.1 Theory

Each node is identified by a label (e.g. "010"), which indicates the position of the node in
the logical hypercube. In a hypercube, each node has only log(N) neighbors, where N is
the total number of nodes. Also, the longest path in the hypercube is log(N).

110

010

000 001

011

111

100 101

Figure 3.2. 3-dimensional hypercube with node labels.

It is relatively easy to embed trees in a hypercube topology. Recall that data transmission
in the HyperCast overlays is done with trees that are embedded in the overlay network.
A key idea that leads to the algorithm of building the embedded tree is to use a Gray
code for ordering node labels of a hypercube. Another key idea is to add nodes to the
hypercube in the order that is given by the Gray code. As an example, consider the labels
of the 3-dimensional hypercube in Figure 3.2. If we want to add nodes to the hypercube,
we need to have a rule for the order in which node labels are added. If we were to use
the order of a binary encoding, then the nodes would be added in the following
sequence: 000 → 001 → 010 → 011 → … → 111. However, if we use the order that is
given by a Gray code, then we will add node labels in the following order: 000 → 001
→ 011 → 010 → … → 100. Table 3.1 shows the ordering of labels according to a binary
code and according to a Gray code. Note that consecutive node labels using a Gray code
differ in exactly one bit position.

Table 3.1: Comparison of a Binary code and a Gray code.

Index i
=

0 1 2 3 4 5 6 7

Binary code: Bin(i) 000 001 010 011 100 101 110 111

i Section 3.2 summarizes material from [BEAM99] and [LIEBE98b].

2/7/2008 Overlay Protocol 3.4

University of Virginia HyperCast 2.0

=

Gray code:
G(i)=

000 001 011 010 110 111 101 100

Using a Gray code, we can devise a simple algorithm which embeds a spanning tree in an
incomplete hypercube. The algorithm, given in, implements a spanning tree in a
distributed fashion. A node labeled G(i) calculates the label of its parent node in the tree
with the root labeled G(r) by only using the labels G(i) and G(r) as input. The algorithm
merely flips a single bit. The trees constructed by our algorithm have the following
properties:

• Property 1. The path length between a node and a root is given by the Hamming
distance of their labels.

• Property 2. If N=2n, i.e. if the hypercube is complete, then the embedding results in a
binomial tree.

• Property 3. In an incomplete and compact hypercube, the trees obtained by the
algorithm are completely contained.

In Figure 3, We show the algorithm to calculate the parent of node I with respect to the
embedded tree rooted at node R..

In Figure 4, we show a spanning tree that is generated by the algorithm for a root with
label 111 in an incomplete hypercube with seven nodes.

Figure 3.3. The Algorithm to build the embedded tree. G−1(.) is the inverse function of
G() which assigns a number to a bit label, i.e. G−1(G(k)) = k.

Input: Label of the I-th node in the Gray encoding: G(i) := I =
In…I2I1, and the label of the r-th node (≠ i) in the Gray encoding:
G(r) := R = Rn…R2R1.
Output: Label of the parent node of node I in the embedded tree
rooted at R.
Procedure Parent(I, R)
Begin
 If (G−1(I) < G−1(R)) {
 // Flip the least significant bit where I and R
differ.
 Parent := InIn-1…Ik+1(1 − Ik)Ik-1…I2I1 with k =
mini(Ii ≠ Ri)
 }
 Else { // (G−1(I) > G−1(R))
 // Flip the most significant bit where I and R
differ.
 Parent := InIn-1…Ik+1(1 − Ik)Ik-1…I2I1 with k =
maxi(Ii ≠ Ri)
 }
End

2/7/2008 Overlay Protocol 3.5

University of Virginia HyperCast 2.0

110

010

000 001

011

111

101

(a) Embedded in hypercube

010

011

111

101

001

000

110

(b) Resulting tree

Figure 3.4. Embedded tree with node (111) as root.

3.1.2 Protocol Overview

Each overlay node in the hypercube has both a physical and a logical address. The
physical address consists of the IP address of the host on which a node resides and the
UDP port that is used by the node for HyperCast unicast messages. Each node has a
unique physical address. The logical address of a node is a bit string label which uniquely
indicates the position of the node in the hypercube. Logical addresses in the HyperCast
protocol are represented as 32-bit integers, with one bit reserved to designate an invalid
logical address. Therefore, the protocol allows for hypercubes of up to 231
(approximately two billion) nodes.

The task of the HC protocol is to keep the hypercube overlay network in a stable state.
A stable state is one which is:

• Consistent: No two nodes share the same logical address.

• Compact: In a multicast group with N nodes, the nodes have bit string labels
equal to G(0) through G(N − 1).

• Connected: Every node knows the physical address of each of its neighbors in
the hypercube.

Nodes joining and leaving the hypercube and network faults can cause a hypercube to
violate one or more of the above conditions. This results in an unstable state. The task
of the HyperCast protocol is to continuously return the hypercube to a stable state in an
efficient manner.

The HC protocol that is implemented in HyperCast uses IP multicast when new nodes
join the node. This is done in order to prevent partitions. A node that wishes to
participate in the hypercube first joins an IP Multicast group, referred to as the control
channel. Every node can both send and receive messages on this channel. Obviously, the
traffic on this channel should be kept minimal in order to comply with scalability
requirements.

3.1.3 Ancestors, HRoot

Given any node, its successor in the Gray code ordering is defined to be its ancestor. In a
stable hypercube, every node except the one with the largest logical address has one
ancestor. A node without an ancestor is a Hypercube Root (HRoot). In the HyperCast
protocol, every node keeps track of the logical address that is currently the highest in the

2/7/2008 Overlay Protocol 3.6

University of Virginia HyperCast 2.0

hypercube according to the Gray code ordering. The node that has this logical address is
assumed to be the HRoot. The address of the highest known logical address is used by a
node to determine which of its neighbors should be present in its neighborhood table. If a
node determines that a neighbor should be present in its neighborhood table and that
neighbor is not present, then the node is said to have an incomplete neighborhood. Each
node keeps the following information about the node with the highest logical address:
the logical address, the physical address, the time elapsed since it last received a message
from this node, and the last sequence number that was received from this node.

In an unstable hypercube, multiple nodes may consider themselves to be an HRoot. Also,
different nodes in the hypercube may have different assumptions about which node is the
HRoot. However, in a stable hypercube there is exactly one HRoot.

3.1.4 Hypercube Timers and Periodic Operations

Four time parameters are used in the Hypercube protocol. These parameters and their
uses are defined below. Their default values are also listed.

theartbeat (default = 2s): Nodes send messages to each of their neighbors in the
neighborhood table every theartbeat seconds.

ttimeout (default = 10s): When the time elapsed since a node last received a message from
a neighbor exceeds ttimeout seconds, the neighbor’s entry is said to be stale and the
neighborhood table is said to be incomplete. A missing neighbor is referred to as a tear
in the hypercube. The information about the HRoot also becomes stale after ttimeout.

tmissing (default = 20s): After the entry of one of its neighbors becomes stale, a node
begins multicasting on the control channel to contact the missing neighbor. If the
missing neighbor fails to respond for another tmissing seconds, then the node removes
the entry from the neighborhood table and proceeds under the assumption that the
neighbor has failed.

tjoining (default = 6s): Nodes that are in the process of joining the hypercube send
multicast messages to announce their presence to the entire group. A joining node that
receives a multicast message from another joining node backs off from its attempt to join
the hypercube for a period of time tjoining, before retrying to join. This prevents a large
number of joining nodes from saturating the control channel with multicast messages.

3.1.5 Message Types

There are four message types that are used by the Hypercube protocol. All of these
messages are sent as UDP datagrams. A node transmits a message by either unicasting to
one or all of its neighbors or by multicasting on the control channel. We do not assume
that the transmission of these messages is reliable.

Beacon Message: Beacon messages are multicast messages on the control channel. A
beacon contains the logical/physical address pair of the sender, as well as the logical
address of the currently known HRoot. A node transmits a beacon message only if it
considers itself to be the HRoot, determines that it has an incomplete neighborhood, or
is in the process of joining the hypercube.

Based on the construction of the hypercube, there is always at least one Hroot.
Therefore, at least one node is able to send out beacons on the multicast channel. In a
stable hypercube, there is only one Hroot. Thus, only one node sends out beacons to the
multicast channel. Every node uses the beacon messages that are sent by HRoot or
HRoots to form an estimate of the largest logical address in the hypercube. This

2/7/2008 Overlay Protocol 3.7

University of Virginia HyperCast 2.0

information is sufficient for the node to determine whether it has a complete
neighborhood.

Each beacon message contains a sequence number, SeqNo. This sequence number is
used to resolve conflicts if beacons are received from multiple nodes. The HRoot's
sequence number begins at zero. Whenever the HRoot sends a beacon message, the
SeqNo is incremented by one. Whenever a new HRoot is chosen, the sequence number
is also incremented (SeqNo of new HRoot = SeqNo of current HRoot + 1). Since each
node keeps track of the current HRoot, the sequence number tracks the timeliness of the
information on the HRoot. When information at a node is inconsistent, the information
that is tagged with the lower sequence number is ignored.

The last group of nodes which send beacon messages are joining nodes which
periodically send beacons to advertise their presence to the group.

Ping Message: Every node periodically sends a ping message to all of its neighbors that
are listed in its neighborhood table. A ping informs the receiver that the node is still
present in the hypercube. A ping is a short unicast message. It contains the logical and
physical addresses of both the sender and the receiver of the message. It also contains
the logical address and sequence number of the currently known HRoot. If a node has
not received a ping from a neighbor for an extended period of time (ttimeout), then the
node considers its neighborhood incomplete and begins sending beacons as described
above. If it still has not received a ping from its neighbor after another period of time
(tmissing), then it assumes that its neighbor has failed and removes the neighbor from its
neighborhood list. Ping messages are also used as the only mechanism to assign a new
logical address to the receiver of a ping message.

Leave Message: When a node wishes to leave the hypercube, it sends a leave message to
its neighbors. When its neighbors receive this message, they will remove the node from
their neighborhood tables. Since a leave message is not reliable, a node’s neighbors may
not always receive a leave messages when they should. In this case, the node’s neighbors
will notice its absence when it fails to respond to ping messages. Thus neighbors of a
node that has left will eventually realize that it has left the neighborhood, even when they
do not receive leave messages from it.

Kill Message: A kill message is used to eliminate a node from the hypercube. More
specifically, a kill message is used to eliminate nodes with duplicate logical addresses. A
node which receives a kill message immediately sends a leave message to all its
neighbors and tries to rejoin the hypercube as a new node.

3.1.6 Protocol Mechanisms

The HyperCast protocol implements two mechanisms for maintaining a stable
hypercube. Recall from Subsection 4.1 that a stable hypercube satisfies the criteria of
being consistent, compact, and connected.

Duplicate Elimination (Duel): The Duplicate Elimination (Duel) mechanism enforces
consistency by ensuring that duplicate logical addresses are removed from the
hypercube. If a node detects that another node has the same logical address, it compares
its own physical address with the physical address of the conflicting node. If the node’s
physical address is numerically greater than the conflicting node’s physical address, the
node with the greater physical address issues a kill message to the other node.
Otherwise, it sends leave messages to all of its neighbors and rejoins the hypercube.

2/7/2008 Overlay Protocol 3.8

University of Virginia HyperCast 2.0

Address Minimization (Admin): The Address Minimization (Admin) mechanism is
used to maintain compactness of the hypercube. On a conceptual level, the Admin
mechanism has nodes attempt to assume lower logical addresses whenever opportunities
to do so arise. To see how Admin reconstitutes compactness, recall that a hypercube
which violates compactness must have a tear in the hypercube fabric (i.e. some node has
an incomplete neighborhood table). The Admin mechanism enforces the rule that a node
with a logical address that is higher than the logical address of the tear lowers its logical
addresses to repair the tear.

The Admin mechanism at a node consists of an active and a passive part. The active part
is executed when a node receives a beacon message from the HRoot and realizes that it
is missing a neighbor which has a lower logical address than the HRoot. In such a
situation, the node sends a ping with the missing lower logical address to the HRoot.
The passive part is activated when the HRoot receives a ping message with a destination
logical address that is lower than its current logical address. The HRoot sets its logical
address to the value given in the ping in order to fix the hypercube.

The Admin mechanism also governs the process of nodes joining the hypercube. Initially,
the logical address of a joining node is marked as invalid. The invalid address is larger
than any valid address in the hypercube. Since a joining node sends beacons to announce
its presence to the group, other nodes are able to check to see if they can find a lower
(valid) logical address for the new node in the hypercube. If there is a node with an
incomplete neighborhood, then this node will send a ping to the new node with the
address of the vacant position. The new node assumes the (lower) address given in the
ping message and occupies the vacant address. If there is no tear in the hypercube, then
the new node is placed as a neighbor of the HRoot. More precisely, the HRoot sends a
ping to the new node containing the logical address which corresponds to the successor
of the HRoot in the Gray code ordering. Therefore, a node which joins a stable
hypercube becomes the new HRoot.

The Duel and Admin mechanisms enforce, respectively, the consistency and compactness
of a hypercube. The last criterion for a stable hypercube, connectedness, is maintained by
the following process. Whenever a node A receives a message from a node B with a
logical address that designates it as a neighbor in the hypercube, then the logical/physical
address pair of node B is added into node A’s neighborhood table. If a node’s neighbor
does not send pings for an extended period of time, then the node will assumes that the
neighbor has dropped out of the hypercube. As a result, it will remove that neighbor’s
entry in its neighborhood table. The Admin mechanism will then be used to repair the
tear in the neighborhood table.

3.1.7 States and State Transitions

In the HyperCast protocol, each node in the hypercube can be in one of eleven different
states. Based on events that occur in the hypercube and HyperCast control messages
that they receive, nodes transits between states. In Figure 3.5 we show the state transition
diagram of the HyperCast protocol. The states are indicated as circles. State transitions
are indicated as arcs, which are each labeled with a condition that triggers it. The
possible states of the hypercube nodes are described in Table 2. With the state
definitions, we can give a precise definition of a stable hypercube. A hypercube with N
nodes is stable if all of its nodes have unique logical addresses ranging from G(0) to
G(N-1) (where G(.) indicates the Gray code discussed in Section 3) and all of its nodes
are in the Stable state, except for the node with the logical address G(N-1) which is in
state HRoot/Stable.

2/7/2008 Overlay Protocol 3.9

University of Virginia HyperCast 2.0

Joining

Incomplete

Start
Hypercube

Stable

HRoot/
Stable

HRoot/
Incomplete

Node
becomes

HRoot

New
HRoot

Timeout for
finding

any neighbor

Neighborhood
becomes

incomplete

NIL

Node
becomes

HRoot

Timeout
for finding
an HRoot

Beacon from
Joining Node

received

Any State

Outside

Node wants
to join

Leaving

Node
leaves

New
HRoot

Depart

Neighborhood
becomes
complete

Depart

Joining Joining
Wait

Timeout for
beacons

from
Joining nodes

Timeout while
attempting
to contact
neighbor

Repair

HRoot/
Repair

Node
becomes
HRoot

New
HRoot

Neighborhood
becomes
complete

Has no
ancestor

Timeout while
attempting
tocontact
neighbor

Has ancestor

Timeout
for finding
an HRoot

Neighborhood
becomes
complete

Neighborhood
becomes
completeNeighborhood

becomes
incomplete

Figure 3.5. Node state transition diagram.

Table 3.2: Node state definitions.

2/7/2008 Overlay Protocol 3.10

University of Virginia HyperCast 2.0

Outside: Not yet participating in the group.

Joining: Wishes to join the hypercube, but does not yet
have any information about the rest of the
hypercube. Its logical address is marked as
invalid.

JoiningWait: A Joining node that has received a beacon
from another Joining node within the last
tjoining.

StartHypercube: Has determined that it is the only node in the
multicast group since it has not received any
control messages for a period of time ttimeout.
Starts its own stable hypercube of size one.

Stable: Knows all of its neighbors’ physical addresses.

Incomplete: Either does not know one or more of its
neighbors’ physical addresses, or assumes that
a neighbor has left the hypercube, because it
has not received ping replies from that
neighbor for ttimeout.

Repair: Has been Incomplete for a period of time
tmissing and begins to take actions to attempt to
repair its neighborhood.

HRoot/Stable: Stable node which also believes that it has the
highest logical address in the hypercube.

HRoot/
Incomplete:

Incomplete node which believes that it has the
highest logical address in the entire hypercube.

HRoot/Repair: Repair node which believes that it has the
highest logical address in the hypercube.

Leaving: Node that wishes to leave the hypercube.

3.1.8 Protocol Event Tables

The protocol actions that are taken by the nodes in response to events are presented in
table form below. The “→” symbol means that the node will switch to the indicated
state.

Table 3.3: Event table for Outside state.

Outside Node is not part of the hypercube

Event: Action:

Application wants to join HyperCast group → Joining

Table 3.4: Event table for Joining state.

2/7/2008 Overlay Protocol 3.11

University of Virginia HyperCast 2.0

Joining
Wants to join the hypercube

Logical address is set as invalid

Event: Action:

Periodically, every theartbeat Send beacon message to control channel

No ping received for period ttimeout → StartHypercube

Beacon received from non-Joining node Update known HRoot information

Beacon received from Joining node → JoiningWait

Ping received Set own logical address to ping’s
destination logical address

After ping received, own logical address
equals known HRoot’s logical address

→ HRoot/Incomplete

After ping received, own logical address
does not equal known HRoot’s logical
address

→ Incomplete

Table 3.5: Event table for JoiningWait state.

JoiningWait

Wants to join the hypercube

Has received a beacon from a Joining node

Logical address is set as invalid

Event: Action:

No ping received for period ttimeout → StartHypercube

Beacon received from non-Joining node Update known HRoot information

No beacon received from Joining node for
period tjoining

→ Joining

Ping received Set own logical address to ping’s
destination logical address

After ping received, own logical address
equals known HRoot’s logical address

→ HRoot/Incomplete

After ping received, own logical address
does not equal known HRoot’s logical
address

→ Incomplete

Table 3.6: Event table for StartHypercube state.

2/7/2008 Overlay Protocol 3.12

University of Virginia HyperCast 2.0

StartHypercube Start new hypercube

Event: Action:

 Set own logical address to G(0)

→ HRoot

Table 3.7: Common event table for several states.

Stable

Incomplete

Repair

HRoot/Stable

HRoot/Incomplete

HRoot/Repair

Event: Action:

Periodically, every theartbeat Send ping message to all valid neighbors

Application triggers leave Send leave message to all valid neighbors

→ Leaving

Receive message with source logical
address equal to own logical address and
source physical address less than own

Send kill to message source

Receive message with source logical
address equal to own logical address and
source physical address is greater than own

Send leave to all valid neighbors

→ Leaving

Kill received Verify that source’s physical address is
greater than own physical address

Send leave to all valid neighbors

→ Leaving

Ping received Update neighborhood entry for sender’s
logical address

Update known HRoot information

Beacon received Update known HRoot information

Leave received Remove neighborhood entry for sender’s
logical address

Table 3.8: Event table for Stable state.

2/7/2008 Overlay Protocol 3.13

University of Virginia HyperCast 2.0

Stable

Event: Action:

Neighborhood becomes incomplete due to
lack of pings from a neighbor for period
ttimeout

→ Incomplete

Own logical address is greater than known
HRoot logical address

→ HRoot/Stable

Table 3.9: Event table for Incomplete state.

Incomplete

Event: Action:

Periodically, every theartbeat Send beacon message to control channel

Neighborhood becomes complete → Stable

Own logical address is greater than known
HRoot logical address

→ HRoot/Incomplete

Neighborhood partially empty for timeout
interval tmissing

→ Repair

Neighborhood completely empty → StartHypercube

Table 3.10: Event table for Repair state.

Repair

Event: Action:

Periodically, every theartbeat Send beacon message to control channel

Beacon received from HRoot or Joining
node

Send ping message to beacon source
containing new logical address to fill tear in
neighborhood

Neighborhood becomes complete → Stable

Own logical address is greater than known
HRoot logical address

→ HRoot/Repair

Neighborhood completely empty → StartHypercube

Table 3.11: Event table for HRoot/Stable state.

2/7/2008 Overlay Protocol 3.14

University of Virginia HyperCast 2.0

HRoot/Stable

Event: Action:

Periodically, every theartbeat Send beacon message to control channel

Increment sequence number

Beacon received from Joining node Register Joining node as next higher
neighbor

Increment sequence number

Update known HRoot information to be
new HRoot

Neighborhood becomes unstable due to
lack of pings from a neighbor for period
ttimeout

→ HRoot/Incomplete

Own logical address is less than known
HRoot logical address

→ Stable

Table 3.12: Event table for HRoot/Incomplete state.

HRoot/Incomplete

Event: Action:

Periodically, every theartbeat Send beacon message to control channel

Increment sequence number

Beacon received from Joining node Register Joining node as next higher
neighbor

Increment sequence number

Update known HRoot information to be
new HRoot

Neighborhood becomes complete → HRoot/Stable

Own logical address is less than known
Hroot logical address

→ Incomplete

Neighborhood partially empty for timeout
interval tmissing

→ HRoot/Repair

Neighborhood completely empty → StartHypercube

Table 3.13: Event table for HRoot/Repair state.

2/7/2008 Overlay Protocol 3.15

University of Virginia HyperCast 2.0

HRoot/Repair

Event: Action:

Periodically, every theartbeat Send beacon message to control channel

Increment sequence number

Beacon received from Joining node Send ping message to beacon source
containing new logical address to fill tear in
neighborhood

Neighborhood becomes complete → HRoot/Stable

Own logical address is less than known
Hroot logical address

→ Repair

Neighborhood completely empty → StartHypercube

Table 3.14: Event table for Leaving state.

Leaving

Waits for period ttimeout to ensure that
neighbors receive leave messages in
response to their pings

Proceeds to Outside if leave was initiated
by application, otherwise proceeds to
Joining

Event: Action:

Ping received Send leave to message source

Leave was triggered by application and
ttimeout time has elapsed

→ Outside

Leave was not triggered by application and
ttimeout time has elapsed

→ Joining

3.1.9 Message Packet Format

2/7/2008 Overlay Protocol 3.16

University of Virginia HyperCast 2.0

Basic messages are sent using the following packet format, which is common to all
messages:

Message Type1 byte

Source IP Address4 bytes

Source Port4 bytes

Source Logical Address4 bytes

Dest Port4 bytes

Dest Logical Address4 bytes

Dest IP Address4 bytes

HRoot Logical Address4 bytes

HRoot Sequence Num4 bytes

Data Length4 bytes

Data- bytes

Figure 3.6. Packet format.

The Message Type field is defined as follows:

Table 3.15: Message types.

Message
Type:

Ping Beacon Leave Kill

Field Value: 0 1 2 3

The IP Address fields are filled in the network address’ most significant byte to least
significant byte order. The Port, Logical Address, Sequence Number, and Data Length
fields are also filled in order from the most significant to the least significant byte.

Data is a variable-length field, with its length specified by the Data Length field of the
packet. The Data field is present for future expansion, and it is not currently used in the
protocol.

3.1.10 Example

We next illustrate the operations of the protocol in a simple example. In this example, we
use a small number of nodes and assume that there are no packet losses.

Figure 3.7 shows a hypercube with five nodes, which are represented as circles. We use
arrows to represent unicast messages. Circles around a node indicate a multicast
message. In Figure 3.7-a, we show a stable hypercube. Here, the HRoot, node 110,
multicasts beacons periodically. The beacon is received by all nodes and keeps them
informed of the logical address of the HRoot. Therefore, the nodes know which of their
neighbors should be present in their neighborhood tables. Every node periodically sends
ping messages to its neighbors in the neighborhood table (Figure 3.7-b).

2/7/2008 Overlay Protocol 3.17

University of Virginia HyperCast 2.0

110

010

000 001

011

beacon

(a)

110

010

000 001

011

pin
gpin

g

ping
ping

pingpi
ng

pi
ngpin

g

ping
ping

(b)

Figure 3.7. Stable hypercube.

New

110

010

000 001

011

 (a)

110

010

000 001

011

111

ping (as 111)

 (b)

110

010

000 001

011

111
ping

 (c)

110

010

000 001

011

111

 (d)

110

010

000 001

011

111

pi
ng

 (e)

110

010

000 001

011

111

ping

 (f)

Figure 3.8. Joining node.

In Figure 3.8-a, we show a node in the Joining state. The node is labeled “New” and
wants to join the hypercube. The node periodically sends beacon messages in order to
make its presence known to the group. The HRoot places the Joining node as its
neighbor in the next successive position in the hypercube, according to the Gray code
ordering. Then, it pings the new node with the new logical address (111) (Figure 3.8-b).
The new node takes on the new logical address and replies with a ping back to the
original HRoot (Figure 3.8-c). The new node determines from the ping packet that it is
the HRoot, since its own logical address is the highest known logical address. It begins
sending beacons as an HRoot (Figure 3.8-d). If node 011 receives the beacon from the
new HRoot, then it realizes that 111 should be its neighbor. Thus, node 011 sends a ping
message to 111 (Figure 3.8-e). Once node 111 receives the ping message, it responds
with a ping itself (Figure 3.8-f). At this time, all of the nodes in the hypercube have
complete neighborhood tables and know all their neighbors, so the hypercube is stable.

2/7/2008 Overlay Protocol 3.18

University of Virginia HyperCast 2.0

3.1.11 Repairing a Tear

The process of repairing defects in the hypercube control topology is shown here.

110

010

000

011

111

(a)

110

010

000

011

111

!!

pin
g

ping

pingpi
ng

pin
gpin

g

ping
ping

pingpi
ng

ping
ping

(b)

110

010

000

011

111

(c)

110

010

000

011

111

pi
ng

 (
as

 0
01

)

 (d)

110

010

000

011

111
leave

leave

 (e)

110

010

000

011

001
pi

ng

 (f)

110

010

000 001

011

110

010

000 001

011

ping
ping

110

010

000 001

011

(i)

2/7/2008 Overlay Protocol 3.19

University of Virginia HyperCast 2.0

(g) (h)

Figure 3.9. Repairing a tear.

It is possible for a node to fail unexpectedly (Figure 3.9-a). Nodes that have failed are
detected when their neighbors do not receive ping messages from them for a period of
time ttimeout (Figure 3.9-b). Each of the failed node’s neighbors then periodically sends
beacons to indicate that they have detected a missing neighbor (Figure 3.9-c). Note that
if the failed node returns at this time, the beacons from its neighbors will be used to
reestablish the logical connections in its neighborhood table. After sending beacons for
a period of time tmissing without receiving a reply, each neighbor assumes that the failed
node will not return and a replacement is needed. The Admin mechanism then begins as
one or more neighbors send a ping to the HRoot. This is done in order to lower the
HRoot’s logical address and fill the tear (Figure 3.9-d).

Upon receiving the ping, the HRoot sends leave messages to its neighbors to notify them
that the HRoot will be leaving their neighborhoods (Figure 3.9-e). The HRoot then
assumes the new logical address that was given to it by the failed node’s neighbor. It
replies to the failed node’s neighbor with a ping of its own (Figure 3.9-f). This
completes the logical connection between the two nodes, since both nodes have entries
for each other in their respective neighborhood tables and know each other’s physical
addresses. The relocated HRoot then beacons, since it does not yet know all of its
neighbors (Figure 3.9-g). The neighboring nodes receive each other’s beacons and
respond by sending pings (Figure 3.9-h). This completes the repair procedure and the
hypercube returns to a stable state (Figure 3.9-i).

3.1.12 Evaluation and Discussion

We used the Spin protocol verification tool [HOLZ97] to aid in the development of the
HyperCast Protocol. Spin checks the logical consistency of a protocol specification by
searching for deadlocks, non-progress cycles, and any kind of violation of user-specified
assertions. To verify the HyperCast design in Spin, the entire HyperCast protocol
specification, as well as a system for simulating multiple hypercube nodes was encoded
using the Process Meta Language (PROMELA). In addition to checking for deadlocks
and non-progress cycles, Spin was used to ensure that every execution path resulted in a
stable hypercube.

Due to the unavoidable state space explosion when using a tool such as Spin, we were
only able to analyze hypercubes with at most six nodes. While verification cannot be
used to prove results for large hypercube sizes, we assert that for the purposes of
verification there is little qualitative difference between a hypercube of six nodes and a
hypercube of several thousand nodes. It is unlikely that non-progress cycles and
deadlocks will exist in large hypercubes that do not have analogous fault modes in a six
node hypercube. However, we wish to emphasize that our verification with Spin is not
equivalent to a complete formal verification of the protocol.

The HyperCast protocol has been run on a Linux Cluster with up to 10,000 nodes
[BEAM99][LORIN01]. Overall, the hypercube takes a long time to stabilize if the
number of nodes is large. Since the HC protocol always enforces the rule that the lowest
positions of the hypercube (according to the Gray code ordering) are occupied, the
addition of nodes is serialized. This slows down the process of adding many nodes.

2/7/2008 Overlay Protocol 3.20

University of Virginia HyperCast 2.0

The mapping of the overlay network to an underlying network has been evaluated in
[LIEBE01a].

Delaunay Triangulationsii

A Delaunay triangulation is special type of triangulation: for each circumscribing circle
of a triangle formed by three nodes, no other node of the graph is in the interior of the
circle. Each node in a Delaunay triangulation has (x,y) coordinates which depict a point
in the plane.

An advantage of the Delaunay triangulation is that it can be constructed in a distributed
fashion (see [LIEBE01a]). Therefore, Delaunay triangulations can be built very quickly.
In a triangulation, each node has an average of six neighbors. however, in the worst-case
, a node can has N-1 neighbors where N is the total number of nodes.

If the (x,y) coordinates of a node in the Delaunay triangulation reflect its geographical
location, then nodes in the overlay network are likely to be neighbors if their
geographical locations are close. However, a Delaunay triangulation is not aware of the
layer-3 network infrastructure.

3.1.13 Delaunay Triangulation as an Overlay Network Topology

A Delaunay triangulation for a set of vertices A is a triangulation graph with the defining
property that for each circumscribing circle of a triangle formed by three vertices in A,
no vertex of A is in the interior of the circle. In Figure 3.10, we show a Delaunay
triangulation and the circumscribing circles of some of its triangles. Delaunay
triangulations have been studied extensively in computational geometry and have been
applied in many areas of science and engineering, including communication networks.

Figure 3.10. A Delaunay Triangulation.

3.1.14 Delaunay Triangulation Overlay Network

In order to establish a Delaunay triangulation overlay, each application (node), is
associated with a vertex in the plane with given (x,y) coordinates. The coordinates are
assigned via some external mechanisms (e.g. GPS or user input) and can be selected to
reflect the geographical locations of nodes. Two nodes have a logical link in the overlay,

ii Section 3.2 summarizes material from [LIEBE01b].

2/7/2008 Overlay Protocol 3.21

University of Virginia HyperCast 2.0

i.e. are neighbors, if their corresponding vertices are connected by an edge in the
Delaunay triangulation. The Delaunay triangulation has several properties that make it
attractive as an overlay topology for application-layer multicast. First, it normally has
different, non-overlapping routes between any pair of vertices. The existence of such
different paths can be exploited by an application-layer overlay when nodes fail or are
not responsive. Second, the number of edges at a vertex in a Delaunay triangulation is
generally small. Specifically, since each triangulation of n vertices has at most 3n-3
edges, the average number of edges at each vertex is less than six. Despite the worst-
case in which the number of edges at a vertex is n-1, the maximum number of edges is
usually small. Third, once the topology is established, packet forwarding information is
encoded in the coordinates of a node. Thus, there is no need for a routing protocol.
Finally, the Delaunay triangulation can be established and maintained in a distributed
fashion. We elaborate on the last two properties in the next subsections.

R A

B

C

15°

30°

Figure 3.11. Compass Routing. Node A has two neighbors, B and C. A computes B as
the parent in the tree with root R, since the angle ∠RAB = 15º is smaller than the angle

∠RAC=30º.

R A

D

C

B

Figure 3.12. Compass Routing. Node A determines that it is the parent for node C,
since the angle ∠RCA is smaller than angles ∠RCD and ∠RCB. Likewise, B and D

determine that they are not the parents of node C, since ∠RCA < ∠RCB and ∠RCA <
∠RCD.

3.1.15 Compass Routing

Multicast and unicast forwarding in the Delaunay triangulation is done along the edges of
a spanning tree that is embedded in the Delaunay triangulation overlay. The tree that has
the sender as its root. In the Delaunay triangulation, each node can locally determine its
child nodes with respect to a given tree by using its own coordinates, the coordinates of
its neighbors, and the coordinates of the sender.

2/7/2008 Overlay Protocol 3.22

University of Virginia HyperCast 2.0

Local forwarding decisions at nodes are made by using compass routing [KRANA99].
The basic building block of compass routing is that a node A, for a root node R,
computes a node B as its parent in the tree, if B is the neighbor with the smallest angle
to R. This is illustrated in Figure 3.11. Compass routing is also used for determining a
multicast routing tree, where nodes calculate their child nodes in the multicast routing
tree in a distributed fashion. Specifically, a node A determines that one of its neighbors
C is a child node with respect to a tree with root R. In order to determine this, A uses
the following considerations. Since the overlay topology is a triangulation, the edge AC
is a border of two triangles, say ∇ABC and ∇ACD (see Figure 3.12). A determines that
C is a child node with respect to R, if selecting A leads to a smaller angle from C to R,
than selecting B and D. If each node performs the above steps for determining child
nodes, then the nodes compute a spanning tree with root node R.

a

b

c

d

Figure 3.13. Locally equiangular property. The property holds for triangles ∇abc and
∇abd if the minimum internal angle is at least as large as the minimum internal angle of

triangles ∇acd and ∇cdb.

F

N

A

E

B

C

D

Figure 3.14. Locally equiangular property for a node N and its neighbors in the graph.
Node N can enforce the equiangular property for all quadrilaterals that are formed by N

and its neighbors A, B, C, D, E, and F. Here, N detects that the locally equiangular

property is violated for triangles ∇NBC and ∇NCD. Thus, the edge NC should be

replaced by edge DB .

2/7/2008 Overlay Protocol 3.23

University of Virginia HyperCast 2.0

3.1.16 Building Delaunay Triangulations with Local Properties

Delaunay triangulations can be defined in terms of a locally enforceable property, which
is illustrated in Figure 3.13. A triangulation is said to be locally equiangular if, for every
quadrilateral that is formed by triangles ∇acb and ∇abd (which share a common edge, in

this case it is ab) the minimum internal angle of triangles ∇acb and ∇abd is at least as
large as the minimum internal angle of the triangles ∇acd and ∇cbd. In [SIBS77], it was
shown that a locally equiangular triangulation is a Delaunay triangulation.

In a graph that is a triangulation, each node N can enforce the locally equiangular
property for all quadrilaterals that are formed by N and its neighbors. In Figure 3.14,
node N can detect that the locally equiangular property is violated for triangles ∇NBC

and ∇NCD. It can also detect that the edge NC should be removed and replaced by an

edge DB . Thus, N can remove node C from its list of neighbors.

The protocol described in the next section builds and maintains a Delaunay triangulation
overlay by enforcing the locally equiangular property for each node and its neighbors.

3.1.17 Overview of the DT Protocol

We next describe the network protocol which establishes and maintains a set of
applications in a logical Delaunay triangulation. Essentially, the network protocol
implements a distributed incremental algorithm for building a Delaunay triangulation.

In the following, we will refer to the protocol entities that execute the DT protocol as
nodes. Each node has a logical address and a physical address. The logical address of a
node is represented by (x,y) coordinates in a plane, which identify the position of a
vertex in a Delaunay triangulation. We set the x and y coordinates to lengths of 32 bits
each. The logical address of a node is a configuration parameter. It can be either
assigned to a node or derived from the geographical location of the IP address of a node.
The physical address of a node is a globally unique identifier on the Internet, consisting
of an IP address and a UDP port number.

We will denote the coordinates of a node A as coord(A)=(xA, yA). We define an ordering
of nodes where coord(A) < coord(B), if yA < yA, or yA = yB and xA < xB.

3.1.18 Neighbors and Neighbor Test

We say two nodes are neighbors if the edge connecting the two nodes appears in the
Delaunay Triangulation graph. Each node maintains a neighborhood table which
contains its neighbors in the Delaunay Triangulation overlay.

The protocol operations at a node mainly consists of adding and removing neighbors in
its neighborhood table. To add or remove another node to or from its neighborhood
table, a node needs to know if that node is eligible to be its neighbor in the current
topology. We next describe the neighbor test algorithm we developed for this purpose.
This neighbor test is mainly based on the locally equiangular property described in the
previous subsections.

2/7/2008 Overlay Protocol 3.24

University of Virginia HyperCast 2.0

A

C

M

B

D

CCW

CW

A

D

M

C

B CCW

CW

(a) CW angle < 180 (b) CW angle >=180

 Figure 3.15. CW and CCW neighbors

Before describing this algorithm, we first give the definitions of the clockwise (CW) and
counter-clockwise (CCW) neighbors of a given node, say node A, with respect to
another node, say node B, since these two concepts are very important in the neighbor
test algorithm. A neighbor of node A is said to be CW or CCW neighbor with respect to
node B, if (1) it forms the smallest CW or CCW angle to node B taking node A as the
pivot and (2) the smallest CW or CCW angle is less than 180 degrees. The notions of
CW and CCW neighbors are illustrated in Figure 15, in which we consider node M with
respect to node A.

In Figure 3.15(a), node B is the clockwise neighbor of M with respect to A. While in
Figure 3.15(b), since the CW angle is larger than 180 degrees, node B will not be
regarded as the clockwise neighbor. In this case, we say node M has no CW neighbor
with respect to node A. In both Figure 3.15(a) and (b), node D is the counter-clockwise
neighbor of M with respect to node A.

We now describe the neighbor test algorithm. In the neighbor test, a testing node
determines if another (the tested) node should or should not be its neighbor. The testing
node performs the neighbor test by looking at the coordinates of its current neighbors
and the tested node. The test covers all possible locations of the tested node, relative to
the testing node and the neighbors of the testing node.

In the following description, M denotes the testing node and A denotes the tested node.
Essentially, the neighbor test verifies the locally equiangular property for convex
quadrilaterals from Subsection 2.3. That is, if M has CW and CCW neighbors with
respect to A, and the quadrilateral formed by M, A, and these two neighbors is convex,
A passes the neighbor test at M, if the edge MA maximizes the minimum internal angle.
Otherwise, A does not pass the neighbor test at M.

However, there are several cases to consider where the above test can not be made. In
these cases, A passes the neighbor test at M, if adding A results in a triangulation. The
following is a complete set of all feasible cases:

1. If A has a neighbor D, such that M, A, and D lie on the same line, A passes the
neighbor test, if A is closer to M than D. This is illustrated in
Figure 3.16(a).

2. If M does not have a CW or a CCW neighbor with respect to A, A passes the
neighbor test. This is illustrated in Figure 3.16(b). Note

2/7/2008 Overlay Protocol 3.25

University of Virginia HyperCast 2.0

that this includes the case where M has neither a CW nor a CCW neighbor with respect
to A.

3. If the quadrilateral formed by M, the CW and CCW neighbors, and A degenerates to a
triangle (see Figure 3.16(c)) or it is concave (see
Figure 3.16(d)), A passes the neighbor test at M.

 Figure 3.16. Neighbor test

As described above, M rejects A only in two cases: (1) There is already a neighbor of the
testing node on the same direction as the tested node, and that neighbor is closer to the
testing node. (2) The locally equiangular property is violated in the convex quadrilateral
found out. For all other cases, M will accept A.

We can argue the correctness of the neighbor test as follows. The neighbor test is a
consequence of the locally equiangular property from [SIBSON77], which states that a
triangulation where all convex quadrilaterals are locally equiangular is a delaunay
triangulation. The neighbor test enforces the property from [SIBSON 77] by enforcing
two points: (1) Whenever a convex quadrilateral is formed by M, A, and the CW and
CCW neighbors, then the locally equiangular property is enforced; (2) When no convex
quadrilateral can be formed by M, A, and the CW and CCW neighbors, i.e., the locally
equiangular property is not applicable, then node A passes the neighbor test at M if
adding A as a neighbor forms a triangulation.

Each node periodically sends neighbor messages to nodes in its neighborhood table. A
neighbor messages contains the physical and logical addresses of the sending node, as

M

A

M

A

D

M
C

B

M

(a) There exists neighbor
D, at the same direction as

node A

(b) M has no CW or CCW
neighbor with respect to A

(c) The quadrilateral
degenerates to a triangle

(d) A concave quadrilateral
is formed

B

A

C

B

A

C

A

M

C

B

no CW
neighbor

no CCW
neighbor

M

B

A

C

2/7/2008 Overlay Protocol 3.26

University of Virginia HyperCast 2.0

well as the logical and physical addresses of its CW and CCW neighbors with respect to
the receiver.

When node M receives a neighbor message which contains the addresses of A, CWM(A),
and CWM(A), it updates its neighborhood table as follows:

 Neighbor CW Neighbor CCW Neighbor

Neighborhood table at M: A E = CWM (A) F = CWM(A)

 … … …

Each node that sends a neighbor message to node M and passes M's neighbor test is
added as a neighbor in M's neighborhood table. If a node in the neighborhood table fails
the neighbor test, it is removed from neighborhood tables. If node A knows the logical
and physical addresses of some node X that is not a neighbor of A and if X passes the
neighbor test for A, then X becomes a candidate neighbor at A. Node A can learn about
the existence of other nodes through messages that it receives, which are not neighbor
messages, and from the CW or CCW neighbor columns in its neighborhood table (e.g. E
and F in the above table). If a node has candidate neighbors, it will send them neighbor
messages. If a candidate neighbor responds with a neighbor message, it is elevated to the
status of a neighbor. If two nodes are neighbors of each other, then this represents a link
in the triangulation.

A neighbor can be removed from the neighborhood table for any one of the following
reasons: (1) the neighbor has sent a message indicating that it has left the overlay, (2) no
message has been received from this neighbor for an extended period of time, or (3) the
neighbor has failed a neighbor test.

3.1.19 DT Servers and Leaders

Any protocol that builds an overlay network must provide mechanisms that enable nodes
which are not members of the overlay to communicate with nodes in the overlay. These
mechanisms are applied when new nodes join an overlay and when the overlay network
has been partitioned and must be repaired.

In the DT protocol, a server facilitates the addition of members to the overlay and the
partitioning of overlay networks. A reservation against using a well-known server is that
the server may become a performance bottleneck. However, in our experiments a single
server was sufficient to manage the workload from 10,000 new members joining the
overlay in a short period of time. Another potential problem with well-known servers is
that they provide likely points of failure. We emphasize that variations of the DT
protocol which use broadcast announcements or buddy lists can be derived without
changing the main characteristics of the DT protocol. Also, one can adapt the protocol to
support multiple servers.

The server component of the DT protocol is called the DT server. New nodes join the
overlay network by sending requests to the DT server. The server responds with the
logical and physical addresses of some node that is already in the overlay network. The

2/7/2008 Overlay Protocol 3.27

University of Virginia HyperCast 2.0

new node then sends a message to the node identified by the DT server. Thus, it has
established communication with some node in the overlay network.

The DT server is also engaged in repairing partitions of the overlay network. In the DT
protocol, a node believes that it is a Leader if it does not have a neighbor with a greater
logical address (using the ordering given at the beginning of this section). Each Leader
periodically sends messages to the DT server. If an overlay has a partition, then more
than one node will believe that they are Leaders. If the server receives messages from
multiple Leaders, then it replies with the identity of the Leader with the greatest
coordinates. If a node A believes it is a Leader and learns about a node B with coord(A)
< coord(B), then B will pass A's neighbor test. Consequently, A will add node B as a
candidate neighbor and will no longer believe that it is a Leader.

Each DT server maintains a list (cache) of the logical and physical addresses of other
nodes in the overlay. When the DT server sends the address of a node in the overlay to a
node that is trying to join, the address is taken from the cache. We set the default size of
the cache to 100 nodes. The DT server periodically queries nodes in the cache to verify
that they are still members of the overlay. If a node does not respond to a query, then it
will eventually be removed from the cache. Also, a node is removed from the cache
when the DT server has selected this node six times as the contact node for a node that is
trying to join. If a node that is trying to join contacts the DT server and the cache is not
full, then it will be added to the cache.

3.1.20 Timers

The DT protocol is a soft-state protocol. This means that all remote state information is
periodically refreshed. If it is not refreshed, then it is invalidated. The operations that
recalculate and refresh state are triggered by timers. A node of the DT protocol uses the
following three timers.

• Heartbeat Timer. The heartbeat timer determines when a node sends messages
to its neighbors. The timer runs in two modes, SlowHeartbeat and FastHeartbeat.
A node is in FastHeartbeat mode when it joins the overlay and when it has
candidate neighbors. In all other cases, the node is in SlowHeartbeat mode. The
operation of the heartbeat timer in two modes attempts to trade off the need for
fast convergence of the overlay network when the topologies change and low
bandwidth consumption in a steady state. In our experiments, we set the
heartbeat timer to tSlowHeartbeat= 2 seconds in SlowHeartbeat mode and to
tFastHeartbeat= 0.25 seconds in FastHeartbeat mode.

• Neighbor Timers. Each node deletes neighborhood table entries that are not
refreshed within tNeighbor seconds. Also, a DT server invalidates its cache entries
and the information on the Leader(s) after tNeighbor seconds. We set the value of
the Timeout timer to tNeighbor= 10 seconds.

• Backoff Timer. When a node does not receive a reply from the DT server, it
retransmits its request using an exponential back-off algorithm with a Backoff
timer. Initially, the Backoff timer is set to tFastHeartbeat and doubled after each
repeated transmission. It does this until it reaches tNeighbor= 10 seconds. If there
are alternate DT servers, then the node switches to an alternate DT server when
tNeighbor= 10 seconds.

 The DT server uses the following two timers:

2/7/2008 Overlay Protocol 3.28

University of Virginia HyperCast 2.0

Cache Timer. If the DT server has not received a CachePong message from a node in
its node cache, in response to CachePing message for tCache seconds, the node will be
deleted from the cache. There is, however, one exception. The node cache entry for the
node with the largest coordinates, the Leader, is not deleted, even if the the cache timer
expires. There is one cache timer for each node in the node cache. The default timeout
value of the timer is tCache=10 seconds.

Leader Timer. If the DT server has not received a message from the Leader for tLeader
seconds, another node from the node cache will be selected as Leader. The default
timeout value of the leader timer is tLeader seconds.

3.1.21 Message Types

The DT protocol has eight types of messages, which are sent as UDP datagrams. All DT
protocol messages are sent as unicast messages. We describe the contents of each
message and the operations associated with the transmission and reception of each
message.

• HelloNeighbor and HelloNotNeighbor Messages. These messages are used to
create and refresh neighborhood tables at nodes. Each HelloNeighbor and
HelloNotNeighbor message contains the logical and physical addresses of the sender
and the clockwise and counter-clockwise neighbors of the sender with respect to the
receiver. Each time the Heartbeat timer goes off, a node sends HelloNeighbor
messages to each of its neighbors and to one of its candidate neighbors, if there is a
candidate neighbor. If there are multiple candidate neighbors, then the message is
sent to the candidate neighbor with the closest coordinates.

HelloNotNeighbor messages are sent as immediate replies to HelloNeighbor
messages from nodes that fail the neighbor test. The HelloNotNeighbor message
serves three purposes. First, the information in the message is used by the receiver
to update its neighborhood table. Second, the clockwise and counter-clockwise
neighbors in the HelloNotNeighbor message provide the receiver with additional
information about neighbors in its vicinity. Lastly, HelloNotNeighbor messages are
used to resolve situations where two nodes have the same logical address.

• Goodbye Message. When a node leaves the overlay, it sends Goodbye messages to
the DT server and to all of its neighbors. If a node receives a Goodbye message,
then it removes the sender of the Goodbye message from its neighborhood table. The
DT server removes the sender of a Goodbye message from its cache. A node that
has sent Goodbye messages can continue to send Goodbye messages in response to
messages that it receives, until the process that runs the node is terminated by the
application.

• ServerRequest and ServerReply Messages. ServerRequest and ServerReply
messages are, respectively, queries to and replies from the DT server.
ServerRequest messages are sent by nodes that are trying to join and by Leaders. A
Leader sends a ServerRequest message every tFastHeartbeat seconds. ServerRequest
messages are retransmitted if no ServerReply is received, using the exponential
backoff outlined above.

Each ServerRequest message contains the logical and physical addresses of the
sender. The ServerReply message contains the logical and physical addresses of

2/7/2008 Overlay Protocol 3.29

University of Virginia HyperCast 2.0

some node in the overlay. More specifically, a ServerReply sent to node X contains
the logical and physical addresses of some node Y, with X ≤ Y.

Newly joining nodes use addresses in the ServerResponse message to find a node
that is already in the overlay. Leaders use the addresses in the ServerResponse
message to determine if the overlay has a partition.

• NewNode Message. The NewNode message contains the logical and physical
addresses of a new node. When a new node N obtains the address of some node in
the overlay D from the DT server, then N will send a NewNode message to D. If N
passes the neighbor test at D, then N becomes a candidate neighbor at D, and D
responds to N with a HelloNeighbor message. Otherwise, D passes the NewNode
message to one its neighbors whose coordinates are closer to those of N. Thus the
NewNode message is routed through the overlay toward the coordinates of the new
node, until the NewNode message reaches a node where the new node passes a
neighbor test.

• CachePing and CachePong Messages. CachePing and CachePong messages are
used to refresh the contents of the cache at the DT server. Every tSlowHeartbeat seconds,
the DT server sends a CachePing message to each node in the cache. A node that
receives a CachePing message immediately replies with a CachePong message.

3.1.22 Shifting Coordinates

Since the logical address of a node is a configuration parameter, it is possible for two
nodes to have the same coordinates. It is also possible for the coordinates of four nodes
to lie in a circle (created by three nodes). In the former case, the Delaunay triangulation
is not defined. In the latter case, the Delaunay triangulation overlay is not unique. Here,
the DT protocol forces one of the nodes to change its coordinates by a small amount.
This ensures that the Delaunay triangulation of the nodes is unique.

Whenever a node receives a message from a node with the same coordinates, the
receiver shifts its coordinates by a small amount. The receiver also removes all
neighbors that fail the neighbor test with the new coordinates. If a node A receives a
message from a node B and a node in A's neighborhood table has the same coordinates
as B, then A will send a HelloNotNeighbor message to B. Since the HelloNotNeighbor
message contains A's neighbor with B's logical address, B sends the node with the
duplicate logical address a HelloNeighbor message. The receiver of this HelloNeighbor
message notices that the message was sent by a node with the same coordinates and
changes its logical address.

If a node A receives a HelloNeighbor or HelloNotNeighbor message from a node N
such that the sender N, the receiver A, the CW and CCW neighbors of A with respect to
N, CWN(A) and C CWN(A), contained in the message lie on a circle, then A will shift
its coordinates before processing the message.

Each time a node receives a HelloNeighbor or HelloNotNeighbor message from a
neighbor, it checks whether or not the neighbor's logical address has changed. If the
logical address has changed, then the node removes the neighbor's entry from its
neighborhood table and then processes the message. In most cases, the node with the
shifted coordinates will be added again as a neighbor.

3.3.11 States and State Transitions of the DT Protocol

2/7/2008 Overlay Protocol 3.30

University of Virginia HyperCast 2.0

We next discuss the states and state transitions of the DT protocol. The discussion
summarizes our earlier description of the protocol. The DT protocol has two different
finite state machines, one for a node and one of the DT server. A detailed description of
the state transitions will be presented in tabular form in this section.

3.3.11.1 Node States

The state of a node is derived from the neighborhood table and the presence of candidate
neighbors. There are no variables that memorize the states of a nodes. A node is in one
of five states: Stopped, Leader without Neighbor, Leader with Neighbor, Not Leader,
and Leaving. Recall that a node is a Leader if the node that has no neighbor with greater
coordinates than its own. By definition, a node with no neighbors is a Leader. The states
Leader with Neighbor and Leade without Neighbor are distinguished, for the following
reason. When a newly joining node starts up or when a node has no neighbors, it
believes itself to be a Leader, and it generate NewNode Messages. A node with
neighbors does not send NewNode Messages. The definitions of the three states are
given in Table 16.

 State Name State Definition

Stopped The node is not running

Leaving The node is going to leave the group

Leader without Neighbor The node that has no neighbors

Leader With Neighbor The node that has neighbors, and no neighbor has greater
coordinates than its own

Not Leader The node has a neighbor with coordinates greater than its
own

 Table 3.16. Node State Definitions.

For nodes in states Leader with Neighbor and Not Leader, we define three sub-states:
Stable With Candidate Neighbor, Stable Without Candidate Neighbor, and Not Stable.
We say a node X is stable when all nodes that appear in the CW and CCW neighbor
columns of node X’s neighborhood table also appear in the neighbor column. We say a
node M has a candidate neighbor, say node N, if (1) N appears in the CW or CCW
column of M’s neighborhood table, or it is contained in a NewNode message received by
M, and (2) N is not in the neighbor column of M’s neighborhood table, and (3) N passes
the neighbor test at M. The definitions

of the three sub-states are given in Table 3.17.

Sub-state Name State Definition

Stable Without Candidate The node is stable and has no candidate neighbors

2/7/2008 Overlay Protocol 3.31

University of Virginia HyperCast 2.0

Neighbor

Stable With Candidate Neighbor The node is stable and has candidate neighbors

Not Stable The node is not stable

 Table 3.17.Node Sub-state Definitions.

A new node starts in state Stopped. When it is in state With Neighbor Leader and Not
Leader, the node also has a sub-state. The transition diagram of states and sub-states is
shown in Figure 17.

Leader
without

Neighbor

Leader with
Neighbor

Not
Leader

Leaving

Stopped

Neighbor added
(with smaller
coordinates)

All neighbors
leave or
timeout

Neighbor added
(with larger
coordinates)

All neighbors
leave or
timeout

Application
starts

A new neighbor with
greater coordinates is

added

After removing some neighbor,
this node has largest

coordinates

Send
Goodbye

Send
Goodbye

Send
Goodbye

Application
exits

Stable Without
Candidate
Neighbor

Stable With
Candidate
Neighbor

Not
Stable

Node contained in
NewNode

passes neighbor test
After handling the

candidate neighbor,
node remains

stable

Node
becomes
not stableNode

becomes
stable,

and is without
candidate
neighbor

Node
becomes
not stable

We say a node X is stable when all
nodes that appear in the CW and
CCW neighbor columns of node
X's neighborhood also appear in
the neighbor column; Otherwise
node X is not stable.

 Figure 3.17. State and Sub-state transition diagrams

2/7/2008 Overlay Protocol 3.32

University of Virginia HyperCast 2.0

3.3.11.2 DT Server States

The functions performed by the DT server are minimal. It is used as rendezvous point
when new nodes join the overlay network and when the overlay Newark must be
repaired after a partition. The DT server has only two states: Has Leader and Without
Leader. Recall that the DT server maintains a cache of nodes. The node with the highest
logical address is identified by the DT server as the Leader of the overlay network. If the
node cache is empty, the DT server has no information about nodes in the overlay
network. This state is referred to as Without Leader. If the node cache is not empty, the
DT server can identify the Leader of the overlay network. This state is referred to as Has
Leader. The definitions of the two states are given in Table 3.18.

State Name State Definition

Has Leader The node cache contains at least one node

Without Leader The node cache is empty

 Table 3.18: DT Server State Definitions.

The state transition diagram of the DT server is shown in Figure 3.18. The DT Server
starts in state Without Leader. When the first joining node sends a ServerRequest
message to the DT server, this node is added to the node cache, and the DT server will
enter state Has Leader.

W ith o u t
L e a d e r

H a s L e a d e r

 N o d e C a c h e
is n o t e m p ty

 N o d e C a c h e
is e m p ty

Figure 3.18. DT Server State Transition Diagram.

3.3.12 Examples

In an overlay network that has been stable for an extended period of time, there are three
types of events: (1) all nodes send HelloNeighbor messages to their neighbors every
tSlowHeartbeat seconds; (2) the Leader exchanges ServerRequest and ServerReply messages
with the DT server every tFastHeartbeat seconds; (3) the server exchanges CachePing and
CachePong messages with the nodes in its cache every tSlowHeartbeat seconds.

In the following diagrams, we illustrate the dynamics of the DT protocol. We illustrate
the case when a node joins and the case when a node leaves the Delaunay triangulation.

2/7/2008 Overlay Protocol 3.33

University of Virginia HyperCast 2.0

A
0,6

10,8

C
12,0

B
5,2

E
4,9

D
10,8

N
8,4

new
node

Server

S
e

rverR
ep

ly

S
erverR

e
qu

est

Y
14,9

X
16,9

 (a)

A
0,6

10,8

C
12,0

B
5,2

E
4,9

D
10,8

N
8,4

Server

Y
14,9

NewNode

new
node

NewNode

NewNode
X

16,9

(b)

A
0,6

10,8

B
5,2

D
10,8

C
12,0

E
4,9

H
el

lo
N

ei
gh

bo
r

Hello

Neighbor

N
8,4

(c)

A
0,6

10,8
D

10,8

N
8,4

E
4,9

H
el

lo
N

ei
gh

bo
r

Hello

Neighbor

Hello Neighbor

B
5,2

Hello Neighbor

H
el lo N

eig
hbor

C
12,0

H
el l o

 N
e ig

h
b o

rHello Neighbor

(d)

A
0,6

10,8
D

10,8

Hello Neighbor

B
5,2

N
8,4

Hello Neighbor

C
12,0

H
ello

 N
eig

hb
or

Hello Neighbor

Hello Neighbor

Hell
o N

eig
hbor

E
4,9

H
el lo

 N
e ig

h b
o

r

(e)

A
0,6

10,8
D

10,8

Hello Neighbor

B
5,2

N
8,4

E
4,9

Hello Neighbor

C
12,0

H
el

lo
N

ei
gh

bo
r

Hello

Neighbor

(f)

Figure 3.19. Joining node. Node N with coordinates coord(N)=(8,4) joins the overlay
network. Note that in (a) and (b), we have omitted some edges from the Delaunay
triangulation for the sake of simplicity. Also, nodes X and Y are omitted in (c)-(f).

2/7/2008 Overlay Protocol 3.34

University of Virginia HyperCast 2.0

A
0,6

10,8
D

10,8

C
12,0

N
8,4

E
4,9

Goodbye

Goodbye

B
5,2

G
oo

db
ye

Goodbye

G
o

od
b

y e

To DT server

(a)

H
ello

N
eig

hb
o

r

A
0,6

10,8
D

10,8

H
ello N

eighbor

B
5,2

N
8,4

Hello Neighbor

C
12,0

H
ello

N
eig

hb
or

Hello
Neighbor

Hello
 N

eighbor

E
4,9

H
ello

N
e ig

h
b

o
r

HelloNeighbor

HelloNeighbor

Hello
Neighbor

H
ello

N
eig

h
b

o
r

Hello
Neighbor

Hello

Neighbor

H
el

lo
N

ei
gh

bo
r

(b)

A
0,6

10,8
D

10,8G
oodbye

B
5,2

N
8,4

Goodbye

C
12,0

E
4,9

Goodbye

G
oo

db
ye

(c)

A
0,6

10,8
D

10,8

C
12,0

N
8,4

E
4,9

B
5,2

Hello Neighbor

H
ello

 N
eig

h
b

o
r

Hello Neighbor

H
ello

 N
eig

hb
o

r

Hello Neighbor

Hel
lo

 N
ei

gh
bo

r

Hel
lo

 N
ei

ghb
or

(d)

Figure 3.20. Node N with coordinates coord(N)=(8,4) leaves the overlay network.

In Figure 3.19 illustrate the steps of the DT protocol when a new node N with
coord(N)=(8,4) joins an overlay network. As shown in Figure 3.19(a), N first sends a
ServerRequest to the DT server. Then, N receives a ServerReply which contains the
logical and physical addresses of some node X with coord(X) > coord(N). Next, N sends
a NewNode message to X (Figure 3.19(b)). X performs a neighbor test for N, which
fails. Therefore, X forwards the NewNode message to a neighbor Y, which is closer to N
than X. Assuming that N fails the neighbor test at Y, Y forwards the NewNode message
to D, which is closer to N than Y. At node D, N passes the neighbor test. Therefore, D
makes N a candidate neighbor and sends a HelloNeighbor message to N. Thus, N has
found its first neighbor.

Since the HelloNeighbor from D in Figure 3.19(b) contains B = CWN(D) and C= CCWN
(D), nodes B and C become candidate neighbors at N. At the next timeout of the
Heartbeat timer, N sends a HelloNeighbor to its neighbor D and its closest candidate
neighbor B (Figure 3.19(c)). As soon as these HelloNeighbor messages are received at B
and D, these nodes will drop each other from their neighborhood tables. In other words,
the link in the overlay between nodes B and D will be removed.

In Figure 3.19(d), we assume that the Heartbeat timer expires at both B and D. Note that
the sequence of events in this example is different if the Heartbeat timers expire in a
different order. The nodes send HelloNeighbor messages to all their neighbors. When N

2/7/2008 Overlay Protocol 3.35

University of Virginia HyperCast 2.0

receives the message from B, it promotes B from a candidate neighbor to a neighbor.
The messages from B to E and from D to C contain N as a CW or CCW neighbor.
Hence, N becomes a candidate neighbor at both C and E.

Assuming that the next Heartbeat timeout occurs at nodes C and E, these nodes send
HelloNeighbor messages to all their neighbors and to their candidate neighbor N (Figure
3.19 (e)). When N receives the messages from C and E, it adds these nodes as
neighbors. Now, N has a correct view of its neighborhood.

At the next Heartbeat timeout at N, shown in Figure 3.19(f), N sends HelloNeighbor
messages to nodes B, C, D, and E. When the respective HelloNeighbor messages arrive
at C and E, these nodes promote node N from candidate neighbor to neighbor. This
completes the procedure for adding node N to the overlay network. Subsequently, each
node sends HelloNeighbor messages to its neighbors at each Heartbeat timeout.

3.1.23 When a Node Leaves the Overlay

In Figure 3.20 we illustrate the steps involved in node N leaving the overlay. When N
decides to leave the overlay, it sends Goodbye messages to all of its neighbors and to the
DT server (Figure 3.20(a)). When the server receives the Goodbye message, it removes
N from the cache. When N’s neighbors receive the Goodbye message, they remove N
from their neighborhood tables.

Although N is deleted from the neighborhood tables of nodes B, C, D, and E, these
nodes have other neighbor entries where N is listed as a CW or CCW neighbor. For
example, since N= CWE(B) and N = CCWE(D), node N appears as CW neighbor of B
and as CCW neighbor of D in E's neighborhood table. Therefore, N is now a candidate
neighbor at all of these nodes. Thus, these nodes will send HelloNeighbor messages to N
at the Heartbeat timeout.

Let us now assume that all nodes send HelloNeighbor messages to their neighbors and
their candidate neighbor N (Figure 3.20(b)). When N receives the messages, it will
respond with Goodbye messages, as shown in Figure 20(c). The HelloNeighbor
messages that are sent in Figure 3.20(b) contain the updated values of the CW and CCW
neighbors of the nodes. For instance, B's message to E lists C (and no longer N) as the
CW neighbor of B with respect to E, so C= CWE(B). As a result, after Figure 3.20(b),
node N no longer exists as a CW or CCW neighbor in the neighborhood tables of any
node. Furthermore, nodes B, C, D, and E, know about each other either as neighbors or
as a CW or CCW neighbor of some neighborhood table entry. When the neighbor tests
are executed, C will fail the neighbor tests at node E and vice versa.

On the other hand, D passes the neighbor test at node B and B passes the test at node D.
Hence, nodes B and D add each other as candidate neighbors and send HelloNeighbor
messages to each other (Figure 3.20(d)). Once these messages are received, both B and D
have established each other as neighbors and as a result the overlay network has been
repaired.

Evaluation

We have evaluated the performance characteristics of the DT protocol in measurement
experiments on a cluster of Linux PCs. The experiments included up to 100 PCs and
overlay networks with up to 10,000 nodes. The measurement experiments are reported
in [LIEBE01b].

2/7/2008 Overlay Protocol 3.36

University of Virginia HyperCast 2.0

We do not have a formal proof that the protocol always generates a Delaunay
triangulation. However, we have verified that the network topologies that are generated
by the protocol are Delaunay triangulations.

References

[BEAM99] T. K. Beam. HyperCast:A Protocol for Maintaining a Logical Hypercube-
Based Network Topolog. M.S. Thesis, University of Virginia, May 1999.

[HOLZ97] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering. Vol. 23, No. 5, May 1997.

[KRANA99] E. Kranakis, H. Singh, and J.Urrutia. Compass routing on geometric
networks. In Proceedings of the 11th Canadian Conference on Computational
Geometry (CCCG'99), 1999.

[LIEBE98a] J. Liebeherr and B. S. Sethi. “Towards Super-Scalable Multicast”.
Technical Report, Polytechnic University, CATT 98-121. January 1998.

[LIEBE98b] J. Liebeherr and B. S. Sethi. “A Scalable Control Topology for Multicast
Communications”. Proceedings of IEEE Infocom 1998.

[LIEBE99] J. Liebeherr and T. K. Beam. HyperCast: A protocol for maintaining
multicast group members in a logical hypercube topology. In Proceedings First
International Workshop on Networked Group Communication (NGC '99), Lecture
Notes in Computer Science, Volume 1736, pages 72-89, 1999.

[LIEBE01a]] J. Liebeherr and M. Nahas. Application-layer Multicast with Delaunay
Triangulations. Proceedings of IEEE Globecom 2001, Global Internet Symposium.

[LIEBE01b] J. Liebeherr, M. Nahas, and W. Si. Large-scale Application-Layer
Multicast with Delaunay Triangulations. Manuscript, September 2001.

[LORIN01] K. Lorintz, HyperCast: A Super-Scalable Many-to-Many Multicast Protocol
for Distributed Internet Applications, Undergraduate Thesis, School of Engineering and
Applied Science, University of Virginia. May 2001.

[SIBS77] R. Sibson. Locally equiangular triangulations. The Computer Journal,
21(3):243--245, 1977.

2/7/2008 Overlay Protocol 3.37

University of Virginia HyperCast 2.0

Appendix A: Actions of the DT protocol

The following tables show the actions taken by the nodes in each state when events like
message arrivals, timer expirations happen. We do not have separate tables for the three
sub-states; the description of the actions in the sub-states are included in the With
Neighbor Leader and Not Leader tables. We use the following notations and
terminology:

ServerReply(x): Indicates a ServerReply message which contains node x.

NewNode(w): Indicates New Node message which contains node w.

� : Indicates a state transition.

return : Processing for this event is complete. Skip the remainder.

this : Refers to the local node.

A.1 Transition Table for Node

The following are transitions at node v.

State: Stopped

Event Action

Application starts � Leader Without Neigbhor

States: Leader with Neighbor, Leadwer without Neighbor, Not Leader

Event Action

Application exits Send Goodbye to all neighbors

Send Goodbye to server

Ã� Leaving

CachePing received Reply with CachePong message

NewNode(w) received IF w passes neighbor test at v

 /* w is a candidate neighbor */

 Send HelloNeighbor to w

 Set timeout value of Heartbeat Timer to Fastheartbeat

ELSE

 Forward message to a neighbor which is closer to w

State: Leader With Neighbor, Not Leader

2/7/2008 Overlay Protocol 3.38

University of Virginia HyperCast 2.0

Event Action

Heartbeat Timer expires Send HelloNeighbor to all neighbors

IF node is not stable

 Send HelloNeighbor to closest candidate neighbor

 Set timeout value of Heartbeat Timer to Fastheartbeat

ELSE

 Set timeout value of Heartbeat Timer to Slowheartbeat

State: Leader Without Neighbor

Event Action

Backoff Timer expires IF NeighborBackoff tt ≥ and an alternate DT server exists

 Switch to alternate DT server

 Set Backofft to eatFastHeartbt

 Send ServerRequest to alternate DT server

ELSE

 Send ServerRequest to DT server

 Set BackoffBackoff tt 2=

 Start Backoff Timer

Receives ServerReply(w) Set eatFastHeartbBackoff tt =

IF thisw ≠

 Send NewNode(this) to w.

HelloNeighbor arrives
from node w

While wthis CoordCoord =

 Node shift its coordinates

IF w passes neighbor test

 Add w as neighbor in neighborhood table

 Start Neighbor Timer for w with Neighbort

 IF thisw CoordCoord >

 � Not Leader

 Else

 Set eatFastHeartbBackoff tt =

 � Leader with Neighbor

State: Leader With Neighbor

2/7/2008 Overlay Protocol 3.39

University of Virginia HyperCast 2.0

Event Action

Backoff Timer expires IF NeighborBackoff tt ≥ and an alternate DT server exists

 Switch to alternate DT server

 Set Backofft to eatFastHeartbt

 Send ServerRequest to alternate DT server

ELSE

 Send ServerRequest to DT server

 Set BackoffBackoff tt 2=

 Start Backoff Timer

Receives ServerReply(w) Set eatFastHeartbBackoff tt =

IF thisw ≠

 Send NewNode(this) to w.

Neighbor Timer for w
expires or Goodbye
arrives from w

IF w is neighbor

 Remove w from neighborhood table

 Set timeout value of Heartbeat Timer to Fastheartbeat

IF no neighbors in neighborhood table

 � Leader without neighbors

HelloNeighbor or
HelloNotNeighbor
arrives from node w

Ã

IF w is a neighbor

 IF w has changed its coordinates

 Remove w from neighbor table

 Return

 Update neighborhood entry for w

 Start Neighbor Timer for w

 IF node is stable

 Set Heartbeat Timer to Slowheartbeat

 Else

 Set Heartbeat Timer to Fastheartbeat

Else /* w is not a neighbor */

 IF another neighbor wv ≠ exists such that

wv CoordCoord =

 Send HelloNotNeighbor to w

 Else

 While wthis CoordCoord = , or for any neighbor v,

2/7/2008 Overlay Protocol 3.40

University of Virginia HyperCast 2.0

vthis CoordCoord =

 Node shift its coordinates

 IF w passes neighbor test

 Add w as neighbor in neighborhood table

 Set Neighbor Timer for w

 Remove all neighbors that fail neighbor test

 While there are four nodes with coordinates on a
circle

 Node shifts its coordinates

 While there exists neighbor v
with vthis CoordCoord =

 Node shifts its coordinates

 Remove all neighbors that fail neighbor test

 Else if message is HelloNeighbor and w fails neighbor test

 Send HelloNotNeighbor to w

 IF there exists neighbor v with thisv CoordCoord >

 Clear the Backoff Timer(if the timer was set)

 � Not Leader

State: Not Leader

Event Action

Backoff Timer expires IF NeighborBackoff tt ≥ and an alternate DT server exists

 Switch to alternate DT server

 Set Backofft to eatFastHeartbt

 Send ServerRequest to alternate DT server

Else

 Send ServerRequest to DT server

 Set BackoffBackoff tt 2=

 Start Backoff Timer

Receives ServerReply(w) Set eatFastHeartbBackoff tt =

IF thisw ≠

 Send NewNode(this) to w.

Neighbor Timer for w IF w is neighbor

2/7/2008 Overlay Protocol 3.41

University of Virginia HyperCast 2.0

expires or Goodbye
arrives from w

 Remove w from neighborhood table

 Set timeout value of Heartbeat Timer to Fastheartbeat

IF no neighbors in neighborhood table

 � Leader without neighbors

HelloNeighbor or
HelloNotNeighbor
arrives from node w

Ã

IF w is a neighbor

 IF w has changed its coordinates

 Remove w from neighbor table

 Return

 Update neighborhood entry for w

 Start Neighbor Timer for w

 IF node is stable

 Set Heartbeat Timer to Slowheartbeat

 Else

 Set Heartbeat Timer to Fastheartbeat

Else /* w is not a neighbor */

 IF another neighbor wv ≠ exists such that

wv CoordCoord =

 Send HelloNotNeighbor to w

 Else

 While wthis CoordCoord = , or for any neighbor v,

vthis CoordCoord =

 Node shift its coordinates

 IF w passes neighbor test

 Add w as neighbor in neighborhood table

 Set Neighbor Timer for w

 Remove all neighbors that fail neighbor test

 While there are four nodes with coordinates on a
circle

 Node shifts its coordinates

 While there exists neighbor v
with vthis CoordCoord =

 Node shifts its coordinates

 Remove all neighbors that fail neighbor test

 Else if message is HelloNeighbor and w fails neighbor test

2/7/2008 Overlay Protocol 3.42

University of Virginia HyperCast 2.0

 Send HelloNotNeighbor to w

State: Leaving

Event Action

Application exits � Stopped

Goodbye arrives from w Ã

Do nothing.

A message (not
Goodbye arrives from w)

Send Goodbye to w

A.2 Transition Table for DT Server

The actions of the server in its two states are shown in the following two tables.

State: Without Leader

Event Action

Server receives

ServerRequest from v

Add node v to node cache

Start Cache Timer for v

Set Leader:=v

ä Start Leader Timer

Send ServerReply(v) to node v

� Has Leader

State: Has Leader

Event Action

Server receives

ServerRequest from v

IF Leader = v or v is in node cache

 IF v has changed its coordinates

 Update v’s stored coordinates

ELSE IF Leaderv CoordCoord >

 Set Leader := v

 Start Leader Timer

2/7/2008 Overlay Protocol 3.43

University of Virginia HyperCast 2.0

 IF node cache is full

 Remove one node cache entry

 Add node v to node cache

ELSE

 IF node cache is not full

 Add v to node cache

 Start Cache Entry Timer

 IF Leader = v

 Send ServerReply(v) to node v

ELSE

 Selcet w from node cache with vw CoordCoord >

 Send ServerReply(w) to v

 IF Leader != w and w has been used in 6 ServerReplys

 Remove w from cache

Goodbye received from
v or Cache Entry Timer
for v expires or Leader
Timer for v expires

IF v is in node cache

 Remove v from node cache

IF Leader = v and cache is not empty

 Select new Leader = y, where y is the node in the node
cache

 with largest coordinates

ELSE

 IF Leader = v and cache is empty

 � Without Leader

Heartbeat Timer expires Ã

Send CachePing messages to every node in node cache

CachePong received

From v

Restart Cache Entry timer for v

2/7/2008 Overlay Protocol 3.44

University of Virginia HyperCast 2.0

Appendix B. DT Protocol Message Format

All DT protocol messages have the same format with the same set of fields. However,
the same fields may be interpreted differently dependent on the message type. The
message format is shown in Figure 21.

OverlayID
Hash

ADDR2ADDR1DSTSRCType

14 bytes 14 bytes 14 bytes 14 bytes4 bytes1 byte

Figure 21. Message format of DT protocol

The type of the DT protocol message is indicated by a 1-byte long Type field.

Message Type Type Field

HelloNeighbor 0

HelloNotNeighbor 1

Goodbye 2

ServerRequest 3

ServerReply 4

NewNode 5

CachePing 6

CachePong 7

The OverlayIDHash is a 4-byte long hash value which is derived from the OverlayID. If
the OverlayID is composed of only ASCII characters, we apply the hash function to the
byte array of these ASCII characters. If the OverlayID contains non-ASCII characters,
we require that the character encoding scheme is UTF-8, then we apply the hash
function to the raw byte array of the UTF-8 encoding. The hash function, which can
operate on variable-length byte arrays, is as follows:

Input: byte array, denoted by “A[]”

Output: a 4-byte unsigned integer, denoted as “result”

Operators:

Op1 >> Op2: “Op1” is bit-wise right shifted “Op2” times.

Op1 << Op2: “Op1” is bit-wise left shifted “Op2” times.

Op1 & Op2: bit-wise AND of “Op1” and “Op2”.

2/7/2008 Overlay Protocol 3.45

University of Virginia HyperCast 2.0

Op1 ^ Op2: bit-wise XOR of “Op1” and “Op2”.

Procedure OverlayIDHash (byte A[])

Begin

 Result := 0;

 For (int i := 0 ; i < length of A[] ; i++) {

 Byte upperByte := (byte) ((result >> 24) & 0xFF);

 int leftShiftValue := ((upperByte ^ A[i]) & 0x07) + 1;

 result := ((result << leftShiftValue) ^ ((upperByte ^ A[i]) & 0xFF));

 }

 return result;

end

 Table 3.19 The SRC, DST, ADDR1, and ADDR2 fields each contain the
logical and physical addresses of a node.

A logical address consists of the (x,y) coordinates of the Delaunay triangulation, where x
and y are each a 4-byte unsigned integer. A physical address consists of an IP address
and a port number, where the IP address is 4 bytes long and the port number is 2 bytes
long. So, the entire length of an address field with a logical and a physical address is 14

bytes. The exact format is shown in Figure22.

port
number

IP addressy-coordinate of
logical address

x-coordinate of
logical address

4 bytes 4 bytes 4 bytes 2 bytes

 Figure 22. Format of a logical address/physical address.

• HelloNeighbor/HelloNotNeighbor: SRC and DST contain the addresses of the
sending and receiving node. ADRR1 and ADDR2, respectively, are the address
of the CW and CCW neighbors of the sender with respect to the destination. If
the sender has no CW or CCW neighbors, the corresponding fields are set to
zero.

• Goodbye: If the message is sent to the DT server, DST is set to all zeros.
Otherwise, DST contains the address of the receiving node. The fields ADDR1
and ADDR2 are set to zero.

• ServerRequest: SRC contains the address of the sending node. The fields DST,
ADDR1, and ADDR2 are set to zero.

• ServerReply: The IP address and port number portion of the SRC field are set
to the IP address and the port number of the DT server. The logical address part
of field SRC is set to zero (Note that the DT server does not have a logical
address). DST is the address of the node that sent the corresponding
ServerRequest. The field ADDR1 has the address of a node with a larger logical
address (coordinates) than the logical address (coordinates) in the DST field. If

2/7/2008 Overlay Protocol 3.46

University of Virginia HyperCast 2.0

the DT server does not know about a node with a larger logical address, i.e., the
DT server believes that the node described in the DST field is a Leader, then the
ADDR1 field is set to be equal to the DST field. The field ADDR2 is set to zero.

• NewNode: The fields SRC and DST contain the sender and receiver,
respectively, of the message. Whenever, the NewNode message is forwarded to
another node, the fields SRC and DST are updated. ADDR1 contains the node
who initially sends the NewNode message, i.e., the “new node”. ADDR2 is set to
zero.

• CachePing: The SRC contains the IP and port number of the DT server, with
the logical address part of the address set to zero. The DST field contains the
address of the receiving node. The ADDR1 and ADDR2 fields are set to zero.

• CachePong: SRC contains the address of the sending node. DST is IP address
and port number of the DT server, as contained in the CachePing message. The
fields ADDR1 and ADDR2 are set to zero.

2/7/2008 Overlay Protocol 3.47

University of Virginia HyperCast 2.0

DT protocol versions

The following is an update of on the HyperCast protocol changes from 2004.

The Landmark option was implemented, but has been deleted.
The DT protocol uses (x,y) coordinates (where x,y are integer numbers) as logical

addresses. There exist multiple DT protocol versions due to the usage of different methods
through which the logical address can be assigned, and rendezvous mechanisms. This document
describes all of the existing variants of the DT protocol.

In HCAST2.0 (HyperCast Version 2), for coordinate assignment, three methods are
available: static assignment, coordinates derived from IP address, and random assignment. The
methods are determined by selecting the attribute DT2-0.Coords.

x,y: specify the coordinates of the node.
USE_IP: coordinates of the node are derived from IP address.
RANDOMxxxx (xxxx is a number such as 1000): coordinates of the node are
randomly selected from a xxxx by xxxx grid.

HC3.0 (HyperCast Version 3.0) provides two additional methods to assign coordinates:

USE_LM: coordinates of the node are determined by measuring the delays to a predefined set of
nodes called Landmarks.

USE_GEO: coordinates of the node are derived from longitude and latitude.

3.1.24 Rendezvous methods

Generally, a new node can use one of the following methods to rendezvous with an existing
DT overlay: a dedicated server (rendezvous server), a list of potential members (buddylist) and
announcement via multicast or local broadcast (broadcast). In HCAST2.0, only the rendezvous
server is supported. In HCAST3.0, all three rendezvous methods are supported.

• Rendezvous server

With the server rendezvous, a dedicated server which is not part of the overlay is employed for
node joining objective. The rendezvous server caches a list of existing overlay nodes. When a
new node joins the overlay, it first sends a request to the rendezvous server, which provides
information to contact with the overlay.

• Buddylist

With a buddylist rendezvous, a newly joining node has (by configuration) a list of possible
members, called the buddylist. The new node joins the overlay by trying to contact the nodes in
the buddylist. The node in the buddylist provides information for contacting the overlay.

• Broadcast

A broadcast rendezvous server assumes the existence of a broadcast channel, e.g., IP multicast
or local broadcast. A new node sends join request to and receives reply from this channel. By this

2/7/2008 Overlay Protocol 3.48

University of Virginia HyperCast 2.0

way, the new node can establish the connection with the existing nodes, and the existing overlay.
In HCAST3.0, IP multicast is used to provide the functions of the broadcast channel.

3.1.25 Coordinate selection with LANDMARKS

Design Overview

The method for determining a node’s coordinates by employing Landmarks is based on the work
of Global Network Positioning (GNP) by Eugene Ng. GNP models the Internet as a Euclidean
coordinate system. A number of landmark hosts are placed on the Internet as the reference points.
The operations can be divided into two phases:

• First, these landmarks measure the delays between each other and determine their
coordinates by solving an optimization problem that minimizes the difference between
measured and estimated delays.

• Second, after the coordinates of the landmarks are determined, the coordinates and
landmarks’ addresses information (IP address & port number) are published to a well-
known website or an overlay management server (in the case of Hypercast), so that the
information can be widely accessed. In the second phase, a node who needs to determine
its logical coordinates makes delay measurements to the landmarks and calculates its
coordinates via a triangulation.

Figure 1. GNP system

As shown in Figure 1, the two key parts are the landmarks and the targets, the hosts that need
logical coordinates. In the implementation, the landmark is implemented as a daemon process
running on a number of pre-selected long-live hosts. The other alternative to this daemon process
is to probe the well-known port of the landmarks. This can simplify the whole design because the
design and implementation of the daemon process can be saved. However, this approach has two
disadvantages. First, not all the hosts support those well-known ports and actually many publicly
accessible hosts disable those ports for security reasons. Second, to obtain all the pair-wise
delays between all the landmarks, it is inevitable to obtain accounts of those landmark hosts.
Therefore, the complexity and cost of this approach cannot be lowered considerably, compared to
the daemon process approach. The target is implemented as a configurable and pluggable

2/7/2008 Overlay Protocol 3.49

University of Virginia HyperCast 2.0

component so that it can be seamlessly integrated into the existing Hypercast software. The
communications between landmarks themselves and between landmarks and targets use message
format explained in details in section 3.

To make the configuration of GNP consistent with the current Hypercast configuration, we
extend the configuration file and ensure modifications are backward compatible. Below lists the
Landmark related properties for single node case. The lines in the configuration file are shown in
dark-blue bold font and the explanation is shown in Italic font.

DT3-0.Coords = USE_LM

To use GNP to determine an overlay node’s logical coordinates, one more option for the attribute
DT3-0.Coords is added.

DT3-0.LandmarkNum = 3

Indicate the number of landmarks used in an overlay

DT3-0.Landmark0 = 128.143.69.149:3456

The physical address (IP+UDP port number) of the first landmark

DT3-0.Landmark1 = 128.143.137.16:3456

The physical address (IP+UDP port number) of the second landmark

DT3-0.Landmark2 = 128.143.137.15:3456

The physical address (IP+UDP port number) of the third landmark

DT3-0.Landmark0.Coordinates = 108.37761,102.059715

The logical coordinates of the first landmark

DT3-0.Landmark1.Coordinates = 108.91815,106.42619

The logical coordinates of the second landmark

DT3-0.Landmark2.Coordinates = 104.11766,102.20526

The logical coordinates of the third landmark

Software Architecture, in OL Socket & LM Design

2/7/2008 Overlay Protocol 3.50

University of Virginia HyperCast 2.0

Figure 2. GNP component in OL_Socket

As the figure shows, GNP component (target) is a configurable part inside DT_Node. Three
options are considered during the design phrase. First, GNP component can be placed outside the
overlay node process. In that case, GNP component acts as a location service running on the
local machine. The main advantage of the first choice is that it ensures all the overlay nodes on
the same machine can obtain the same logical address and consequently, leads to a host-specific
optimization for the overlay topology. For example, only one overlay node on the local host is
elected to communicate with outside. This can eliminate the many duplicated logical links
originated from the same node. However, the major concern for this choice is the high cost of
inter-process communication, complicated dependency between processes and difficulty of
updating logical addresses. The second choice is to place GNP component inside OL_Socket, but
outside DT_Node. There are two main disadvantages of doing that. One is the introduction of
inconsistency in software architecture. Adding GNP component to OL_Socket means that this
component is a member of OL_Socket. However, not every overlay node needs such information,
for example, Hypercube. Such a design does not abstract the essential common functions well.
The other disadvantage is that the communication between GNP component and overlay node, is
still complicated. Therefore, we choose the third option of placing GNP component inside DT
Node. In this way, the whole software architecture is keep intact and all the changes are limited
to DT node. In addition, since GNP component is a member of DT node, the communication
between the two is simple and easy to implement.

In the GNP component, the UDP_UnicastAdaptor is used to for the probing of landmarks. GNP
component implements the I_AdapterCallBack interface to process the messages to and from the
landmarks. Logical address is a critical resource because GNP component’s processing thread
and DT node’s process threads can access it concurrently. The logical address of the DT node is
stored at the member neighborhood. To ensure the consistence of the data, Java synchronization
is used to protect the critical resource. The other part of the system is landmark daemon. The
landmark is also implemented using UDP_UnicastAdapter.

3.1.26 Coordinate selection USING Geographical Coordinates

Algorithm

2/7/2008 Overlay Protocol 3.51

University of Virginia HyperCast 2.0

Geographical coordinates are two-dimensional coordinates obtained from the longitudes and
latitudes of a node. For a longitude-latitude pair (lo, la), we know the range of their values:

(south) -90 <= la <= +90 (north)

(west) -180 <= lo <= +180 (east)

Given a set of points on the earth, each of them corresponds to a longitude-latitude pair (x,
y), we can draw a rectangle area which contains all points. To ensure the DT formed by this set
of points resides in this rectangle area, we choose a base meridian, which is outside of the
rectangle area, as the reference line. The value of the base meridian is denoted by base_meridian.
The objective of this algorithm is to calculate the two-dimensional coordinates (x_cor, y_cor)
from the value of (x, y) and base_meridian. For each point, its x-coordinate is calculated based
on the adjusted difference between the longitude of this point and the base meridian. If base
meridian is not specified, the Prime Meridian will be used as the base meridian.

Figure 1. Base Meridian

Case 1: base_meridian >= 0

If x >= base_meridian, then x_cor = x - base_meridian;

If x < 0, then x_cor = (180 - base_meridian) + (x – (-180))

= 360 + x - base_meridian;

If 0<= x < base_meridian, then x_cor = 360 – (base_meridian – x)

= 360 + x - base_meridian.

Case 1: base_meridian < 0

If base_meridian <= x <= 0, then x_cor = x – base_meridian

If x > 0, then x_cor = (x – 0) + (0 – base_meridian) = x - base_meridian;

If x < base_meridian, then x_cor = 360 – (base_meridian - x)

= 360 + x - base_meridian;

Combine all cases, we can simplify the calculation:

2/7/2008 Overlay Protocol 3.52

University of Virginia HyperCast 2.0

If x >= base_meridian, then x_cor = x - base_meridian;

Else, x_cor = 360 + x - base_meridian.

For y_cor, the following calculation is used which ensures y_cor >= 0:

 y_cor = y + 90

The coordinates calculated in the above way satisfy:

1. x_cor >= 0, y_cor >= 0;
2. the DT formed by the coordinates of the set of pints will not cross the base meridian

line.

Implementation

To support the way through which a node derives its logical address from the longitude and
latitude, the following properties are added in the Hypercast configuration file for single node
case:

DT3-0.Coords = USE_GEO

To use geographical information to determine an overlay node’s logical coordinate.

DT3-0.USE_GEO.GeoLocation = -95.2631, 38.9605

Indicate the longitude and latitude of the node.

DT3-0.USE_GEO.BaseMeridian = 0.0

Indicate the base or reference meridian line for the overlay.

In the DT_Node, DT_Node_Buddylist and DT_Node_Multicast class, the above algorithm is
implemented in the method createLogicalAddress(). A modification is made to reduce the impact
of the shift of a node’s coordinates: after obtaining x_cor and y_cor, we set x_cor = x_cor * 10,
and y_cor=y_cor*10.

