The Security Architecture in Hypercast3.0
Version 7, January 2005
ABSTRACT

This document summarizes the design of the security architecture in Hypercast3.0, including key management, authentication, and message security.

21.
Overview

52.
KeyVault

93.
Security Processor

134.
User Authentication

155.
Key Management

196.
Secure Protocol Message

196.1.
The Format of Protocol Message

216.2.
The Secure Protocol Message

246.3.
The Integrity for Protocol Message

267.
Secure OL Message

267.1.
The Format of OL_Message

287.2.
Integrity for OL Message

297.3.
Privacy for OL Message

1.

1. Overview
In this report we discuss the design of the security architecture in Hypercast3.0 which offers a host of features to allow for extensive flexibility in the security settings. The architecture supports three levels of security: plaintext, integrity, or confidentiality. Plaintext means no security, i.e., all messages is transmitted in plaintext and no authentication between overlay nodes. The integrity and confidentiality security are discussed in this report. Table 1 shows the relationship between security level and the actual security level applied to the overlay message and protocol message. The security level of the overlay socket is specified by the attribute “/Public/Security/SecurityLevel”.
	Security Level
	Security level applied to protocol messages
	Security level applied to application messages

	Plaintext
	Plaintext
	Plaintext

	Integrity
	Integrity
	Integrity

	Confidentiality
	Integrity
	Confidentiality

Table 1. Security levels supported by the overlay socket

The following is a list of the features offered by the architecture and a description of each:

· User Authentication: Encryption of data is a waste of CPU resources and bandwidth if anybody can freely join the group. Authentication is managed through certificates signed by a trusted third party (TTP) or designated certificate authority for the group. The certificate is presented to any node to which the newcomer is trying to join and verified before the join can actually be completed. The certificate format being used is X.509, the most widely used certificate specification.
· Key Management: Any type of security, whether integrity or privacy, requires some manner of key management to provide the “shared secrets” necessary to ensure that the legitimate members of the multicast can read the messages they receive and nobody else. Unlike most key management schemes, which distribute a single group key to the entire group or only make a few divisions into sub-groups, the Hypercast Hop-by-Hop Security Architecture treats each node and its neighbors as a separate subgroup. In this way, changes to group membership will only require the neighbors of a joining or leaving node to change their keys since each hop uses a different key.
Hypercast3.0 also supports shared group key. The shared group key is created and distributed by the application. Anytime if new shared group key is generated and distributed, the application needs to pass the new key to the overlay socket so that it can be used.
· Message Keys: Having to entirely decrypt and re-encrypt a message at each hop would be highly inefficient. To address this issue, the security architecture calls for a message key to be created by a node when it creates a new message. The same key can be used for a given amount of time or a given number of messages, or a new key can be generated for each message. This key is then used to provide the payload integrity and privacy, if desired, and then is encrypted by the sender with its personal key. Now, only the message key needs to be decrypted and encrypted at each step.
· Integrity: Whenever any message security is requested, message integrity is provided for both overlay message and protocol message. The integrity provided for an overlay message is two-level, each message containing both a payload MAC, or message authentication code, and a header MAC. Each one is computed using a different key, as described in detail later.
· Confidentiality: It is also called privacy security. When confidentiality is desired, the entire payload of the message is encrypted. When a secure overlay message is received by a node, it will only decrypt the message if it is one of the intended receivers, and even in that case only after it has forwarded the message on to any other specified receivers. The result is that very little latency is added on to the message forwarding delay versus no security at all. Confidentiality is only available for application messages.
Figure 1 shows the structure of an overlay socket with security activated. When security is activated, the overlay socket contains a Key Vault instance. The Key Vault manages the certificates and keys of local node and other overlay sockets which contact this overlay socket.

Whenever security is specified, a Security Processor instance is created which exists between the overlay node and the node adapter. All protocol messages created by the overlay node are passed to the Security Processor where they are wrapped into SecInfoExchange messages and sent out by the Node Adapter. All incoming protocol messages are received as SecInfoExchange messages. They are passed to the Security Processor where the plaintext protocol messages are reconstructed from the corresponding SecInfoExchange messages and then passed to the overlay node to process.

[image: image1.emf]OL_Socket

Forwarding

Engine

Node

Node Adapter

Socket Adapter

Adapter Interface

Adapter Interface

Application

Receive

Buffer

S

t

a

t

i

s

t

i

c

s

I

n

t

e

r

f

a

c

e

OL_Socket Interface

Node Interface

SecurityProcessor

Adapter Interface

Key vault

Message

store

Figure 1. The structure of overlay socket with security activated
The security mechanism is mainly implemented in the Security Processor and the Key Vault and is transparently added or integrated into the overlay socket structure. Activating security in the overlay socket is decided by attributes in the configuration file. The other components in the overlay socket do not know if the security components are activated. In this way, changes to the overlay socket due to supporting security are minimized.
There is no security specific API defined in the overlay socket. Instead, the security mechanism and related parameters are specified in the configuration file. Please refer to Chapter 3 of the document “Overlay Socket API (Advanced)” for the information on security configuration.
2. KeyVault

[image: image2.emf]KeyVault

My Personal

Key

My Personal

Certificate

.

.

.

.

.

.

Security Policy

LA of Overlay

Socket

Key of Overlay

Socket

.

.

.

.

.

.

LA of Overlay

Socket

Certificate of

Overlay Socket

Key Table Certificate Table

Figure 2. The Key Vault
JL and Gd4j: 3/25/05: Maintain 2 tables: table of neighbors, table of non-neighbors:
1. neighborhood key is used for neighbors and non-neighbors

2. neighborhood key is used for neighbors, separate key is used for each non-neighbor
3. shared key is used for protocol messages, neighborhood key is used for data messages.
The Key Vault is an object created by and contained in the overlay socket to manage various security properties. It is the central part for managing certificates and keys. The Key Vault is instantiated in the overlay socket only when the security level is specified to confidentiality or integrity,
The Key Vault class manages the following items:

· Security Policy

· Hashing algorithm

· Encryption algorithm

· Key size

· Personal key

· Personal certificate

· Lookup table of the keys of contacting overlay sockets indexed by their logical addresses

· Lookup table of the certificates of contacting overlay sockets indexed by their logical addresses

Here the contacting overlay sockets mean the overlay sockets that exchange messages with the local overlay socket. They include current neighbor overlay sockets and some non-neighbor overlay sockets. An example of non-neighbor overlay sockets is a new joining overlay socket which sends NewNode message to the local overlay socket but does not become a neighbor of the local overlay socket. Another example is an overlay socket which periodically contacts its buddy may not become a neighbor of the buddy.

The Key Vault is used extensively by the Security Processor and Message classes. The Security Processor contains a reference to the Key Vault (The instance of Key Vault is contained in the OL_Socket object). The Key Vault is accessed by the Security Processor to check and update local certificate and personal key, and check for the existence and validity of certificates and keys of the remote overlay sockets when received SecInfoExchange messages from them. If the desired certificate or key doesn’t exist, the Security Processor starts the process of certificate or key exchange with the remote overlay socket.

The Message classes use the Key Vault to check the security policy and to obtain the personal key or one of the neighbor’s personal keys to encrypt and decrypt payloads, encrypt and decrypt message keys, and compute and verify hashes. The Key Vault is also needed to determine the length of the key and MAC fields for restoring raw messages.

The Key Vault object is instantiated with a set of security attributesdefined in the Hypercast configuration files. This includes the security policy of the application and protocol messages, the desired algorithms, the certificate settings, etc. Below is a list of the attributes used by the security architecture:

/Public/Security/SecurityLevel

/Public/Security/CertificateLocation

/Public/Security/CACertificateLocation
/Public/Security/KeyModeMethod

/Public/Security/KeyStoreLocation

/Public/Security/MacAlgorithm

/Public/Security/CryptAlgorithm

/Public/Security/SymmetricKeyLength

/Private/KeyStorePassword
/Private/PrivateKeyAlias

/Private/PrivateKeyPassword

/Private/GroupKey

The security attributes are divided into two groups: public security attributes (attributes starting with /Public above) and private security attributes (attributes starting with /Private above). The public security attributes are defined in the public attribute schema file and have default values assigned. The private security attributes are defined in the private attribute schema file without default values assigned. The private attributes must be specified by the application before they can be used by the overlay socket. The following API method is used to specify the private security attributes:
config.setPrivateTextAttribute(XPath xpathOfPrivateAttribute,String value)

Here config is the configuration object (an instance of class HypercastConfig) of the overlay socket, xpathOfPrivateAttribute is the Xpath created from the private security attributes specified in the above format.

 The private key corresponding to the local digital certificate is obtained from the specified Java Key Store file. This is a file that can be created by Java programs or the keytool command line utility.
When the attribute /Public/Security/KeyModeMethod is specified to GroupKeys which means shared group key method is used, the Key Vault gets the group key by reading the value of attribute /Private/GroupKey. The group key in the Key Vault is a SecretKeySpec object. The value of attribute /Private/GroupKey should be the string converted from a SecretKeySpec instance. Following is an example of setting shared group key to the overlay socket. We assume that the cipher algorithm for the overlay socket, which is specified by the attribute /Public/Security/CryptAlgorithm, is set to AES. The size of the key created by the AES algorithm is 16 bytes. In this example, the application creates the group key from a byte array which defines the shared key, converts it into a string and sets it into the private attribute document:

/* Creates the group key */

byte[] aesData = /* 16 bytes */
{(byte)0x7e,(byte)0x1a,(byte)0xab,(byte)0x55,

 (byte)0x4a,(byte)0x6f,(byte)0x11,(byte)0x79,

 (byte)0x2e,(byte)0x1e,(byte)0x3b,(byte)0x55,

 (byte)0x3e,(byte)0xa1,(byte)0xc3,(byte)0x4b};

SecretKeySpec groupKey =

new SecretKeySpec(aesData, “AES”);

/* Converts the group key into a string */

String groupkeyString;

try

{

ByteArrayOutputStream bos = new ByteArrayOutputStream();

ObjectOutputStream ketStringObj =

new ObjectOutputStream(bos);

ketStringObj.writeObject(groupKey);

groupkeyString = bos.toString();

ketStringObj.close();

} catch (Exception e) {

System.out.println ("Error reading group key.");

}

/* Sets the group key string into private attribute document */

ConfObj.setPrivateTextAttribute(HyperCastConfig.createXPath("/Private/GroupKey"), groupkeyString);
Above example assumes that the application has obtained the shared group key, i.e., the byte array aesData. Below is an example which shows how to create the key byte array with the key algorithm AES:

try

{

KeyGenerator keyGen = KeyGenerator.getInstance(“AES”);

keyGen.init(16);

byte[] keyData = keyGen.generateKey().getEncoded();

}

catch (NoSuchAlgorithmException nsae)

{

System.out.println("Specified key algorithm is not supported!");

}
The key algorithm specified in the key creation statements

new SecretKeySpec(byte[] keyData, String keyAlgorithm);
KeyGenerator.getInstance(String keyAlgorithm)
must be the same as the cipher algorithm determined by the value of the attribute /Public/Security/CryptAlgorithm since the created key is used to work with the specified cipher algorithm in encryption and decryption. The key size parameter in the key generator initialization method:

keyGenerator.init(int keySize);
is key algorithm specific. Table 2 shows the sizes of the keys created with different key algorithms:
	Key algorithm
	Key size parameter
	Size of the created key

	AES
	128
	128 bits

	Blowish
	128
	128 bits

	DES
	56
	64 bits

	DESede
	112 or 168
	192 bits

Table 2. The relation of key algorithm, key size parameter and the size of actually created key
3. Security Processor

The Security Processor unifies processing secure protocol message for all overlay protocols. To an overlay node, the Security Processor works as the node adapter which implements I_MulticastAdapter interface. To the node adapter, the Security Processor works as the overlay node which implements I_AdapterCallback interface. In this way the Security Processor bridges the overlay node and the node adapter. But neither the overlay node nor the node adapter are aware of the existence of the Security Processor.
Figure 3 shows the structure of class SecurityProcessor.

[image: image3.emf]I_MulticastAdapter

I_AdapterCallback

Implements

Extends

SecurityProcessor

I_Stats

Figure 3. The class structure of SecurityProcessor
The Security Processor has two main functions:

· Manage the certificate and key database in the Key Vault. For an incoming protocol message, the Security Processor checks for the existence and validity of the certificate and key for the sender of the message, and starts the certificate authentication or key exchange process if the certificate or key is not present or is invalid. The user authentication and key exchange process involves the exchange of certificate request, certificate reply, key request and key update messages. These protocol independent messages are created in the Security Processor and received by other Security Processor on the remote overlay socket.

· Provide security support for protocol messages. An overlay node is not aware of security and exchanges plaintext protocol messages with other overlay nodes. When security is specified, all protocol messages are protected by an integrity checkum which is computed in the Security Processor. Protocol messages are wrapped into SecInfoExchange messages by the Security Processor before transmission. At the receiver side, the SecInfoExchange messages are converted into plaintext protocol messages by the Security Processor and passed to the overlay node to process.
Figure 4 and 5 show the flow of outgoing and incoming protocol messages.

As a consequence, only one type of secure protocol messages is exchanged between two overlay nodes. An outgoing protocol message created in the overlay node is wrapped by the Security Processor into a SecInfoExchange message, and sent out through the node adapter. An incoming secure protocol message is received in the node adapter as a byte array, which is reconstructed into a SecInfoExchange message by the Security Processor ((1) in Figure 5). The reconstructed SecInfoExchange message is passed to the messageArrivedFromAdapter method of the Security Processor where the byte array of the payload (or the byte array of protocol message) is reconstructed into the plaintext protocol message (((3) in Figure 5) and passed to the overlay node (((4) in Figure 5).

[image: image4.emf]Node

Security Processor

Node Adapter

Plaintext protocol message

Plaintext protocol message

SendMsgMethod

SecInfoExchange message

SendMsgMethod

SecInfoExchange message

Byte array

Figure 4. The flow of an outgoing secure protocol message

[image: image5.emf]Node

Security Processor

Node Adapter

Plaintext protocol message

SecInfoExchange message

restoreMessage

SecInfoExchange message

Byte Array

Byte Array

messageArrivedFromAdapter

SecInfoExchange message

Plaintext protocol message

messageArrivedFromAdapter

Payload Byte Array

Plaintext protocol message

restoreMessage

Payload Byte Array

(1)

(2)

(3)

(4)

Figure 5. The flow of an incoming secure protocol message
The Security Processor also supports the following types of SecInfoExchange messages which are applied to all overlay protocols:

· Certificate request

· Certificate reply

· Key request

· Key update
The above messages are created and received by the Security Processor. The details of these messages are discussed in Section “Secure Protocol Message”.

The Security Processor maintains a table, called Key Neighbor Table, which contains the logical address of contacting overlay sockets and the timestamps when last secure messages are received from them. The Key Neighbor Table is discussed in Section 5, “Key Management”.
4. User Authentication

Authentication is managed through the use of digital certificates. The following set of attributes has been added to the configuration file to manage how these digital certificates should be obtained and verified:

/Public/Security/CertificateLocation –- Expects a string value that represents the location of the file that contains the certificate.
/Public/Security/CACertificateLocation – Expects a string representing the location of the file that contains the Certificate Authority’s certificate.
The first of these properties specifies where to find the certificate for this node. The certificate must be in a binary or text DER (Distinguished Encoding Rules)-encoded format, such as PKCS#7 or Base-64. The second property specifies the address of the Certificate Authority (CA) that granted the certificates to be used in the overlay network. This will be used for the sake of obtaining Certificate Revocation Lists (CRLs) so that the nodes can stay up-to-date on the validation of certificates. The use of CRLs is optional and depends on the level of security required for the specific group and how long it is acceptable for a user with a revoked certificate to remain a member of the group. It is not supported in the current implementation.

[image: image6.emf]NewNode

1. Check for certificate

2. If not found, send CertRequest

1.

CertRequest

1. Check certificate validity

2. If valid, store certificate and send

CertReply

2.

CertReply

1. Check certificate validity

2. If valid, store certificate

3.

Both parties authenticated

4.

Denotes that the node is not trusted by

the other party

Denotes that the node is trusted by the

other party

Node A

Node B

Figure 6. Typical authentication steps
The exchange and verification of certificates occurs in an on-demand basis. When the Security Processor receives a secure message from remote node and finds no certificate stored for it, it starts the process of user authentication. Figure 6 shows an example of executing a user authentication. In this example, when a protocol message is received by the Security Processor of node A from a sender, B, whose certificate is unknown, a CertRequest message is sent to B. The CertRequest message contains A’s certificate, as described in more detail in Section 9. When B gets the request, it will verify the signature on the certificate and, if valid, store the certificate in the KeyVault and send a CertReply with its own certificate. Verification of the signature requires that the private key that signed the certificate in question be the private counterpart of the public key known to belong to the trusted Certificate Authority. This public key is obtained from the CA’s own certificate. A will then check B’s certificate and, if valid store the certificate in its KeyVault.
Before the authentication is completed for the remote overly socket, the protocol message received from the remote node with unknown certificate is dropped. If the authentication of certificate is failed on an overlay node, it simply drops the certificate received from remote node and takes no further action.
5. Key Management

Key management in Hypercast3.0 security architecture is implemented in the Security Processor in protocol independent way. The data structures for key management include:

· The Key Table in the Key Vault (as shown in Figure 2). It contains the keys of all contacting overlay sockets indexed by their logical addresses.

· The Key Neighbor Table in the Security Processor. It contains the timestamps of when the last SecInfoExchange messages are received from the contacting overlay sockets. The entries are also indexed by the logical addresses of the contacting overlay sockets.
Figure 7 shows the steps of processing an incoming SecInfoExchange message with type ProtoMsg (i.e. it is a protocol message):

[image: image7.emf]No

SecInfoExchange message

with type ProroMsg

Has the certificate of the

sender?

Initialize certificate

authentication and drop

the message

Yes

Has the key of the sender?

No

Initialize key exchange

and drop the message

Yes

Is integrity check

successful?

Yes

Pass the protocol message to

the overlay node

No

Figure 7. The steps of processing an incoming secure protocol message

Initializing a certificate authentication finishes the following work:

· Send a Certificate Request message to the remote overlay socket;

· Add an entry for the remote overlay socket in the Key Neighbor Table if it does not exist.
The certificate authentication is only triggered by the event that a protocol message (a SecInfoExchange message with type ProtoMsg) is received from an unauthenticated overlay socket.

Initializing a key exchange includes the following steps:
· Set the WatchDogTimer (or reset if the WatchDogTimer has been set before) for the remote overlay socket;
· Send a Key Request message to the remote overlay socket.

Once the WatchDogTimer is set for a remote overlay socket, it works as shown in Figure 8:

[image: image8.emf]No

Is A on the Key Neighbor

Table?

Is the key of A out-of-date?

Reset WatchDogTimer

for A

Yes

Send Key Request message

to A

WatchDogTimer expires for

remote overlay socket A

No

Do nothing. The

WatchDogTimer for A

is no longer set.

Yes

Figure 8. The process of WatchDogTimer expired event for remote overlay socket A

As a summary, the Key Request message is sent to an remote overlay socket, e.g. A, when one of the following events happens:
· A protocol message is received from A, the certificate of A is found but no key of A is found;

· WatchDogTimer for A expires and the key of A is out-of-date.

Once overlay socket A is removed from the Key Neighbor Table due to the expiration of A’s key, the WatchDogTimer for A automatically stop working.

In the Security Processor, another timer, called DelayNewKeyTimer, is used to control the frequency that the local overlay socket sends Key Update messages to all contacting overlay sockets due to the changes happening on the Key Neighbor Table. It works in the way shown in Figure 9:
The DelayNewKeyTimer is set when the Security Processor is created. When the DelayNewKeyTimer expires, the Key Neighbor Table is checked. If the key of an entry on the Key Neighbor Table is out-of-date, the entry is deleted from the Key Neighbor Table, and the corresponding certificate and the key are also removed from the Certificate Table and the Key Table in the Key Vault.

[image: image9.emf]No

DelayNewKeyTimer expires

Delete each entry in the Key

Neighbor Table whose key

is out-of-date. The

corresponding certificate

and key are deleted from the

Certificate Table and Key

Table in the Key Vault.

Reset DelayNewKeyTimer

Yes

Create new personal key and

send Key Update message to

all overlay sockets on the

Key Neighbor Table

Is there any change on the

Key Neighbor Table?

Figure 9. The process of WatchDogTimer expired event

Following are a set of attributes defined for the Securoty Processor to do the above key management task:

/Public/Security/WatchDogTime

- The time interval for checking if the key of a remote overlay socket is out-of-date.

/Public/Security/CertificateRequestTimeout

- The timeout time for waiting for the reply of a Certificate Request message.
/Public/Security/KeyRequestTimeout

- The timeout time for waiting for the reply of a Key Request message.
/Public/Security/KeyTimeout
- The timeout time of the personal key of a remote overlay socket to be considered out-of-date.
/Public/Security/KeyUpdatePeriod

- The time interval for sending Key Update messages.

The Security Processor does not check the type of a protocol message. As a result, there is a gap of time between the changes on the neighborhood table and the update of the local personal key. The maximum gap value is determined by the attribute /Public/Security/KeyUpdatePeriod, which is the time used to set NewKeyDelayTimer timer. There is a tradeoff between the system performance and the response time to the changes on the neighbor table. Setting the attribute /Public/Security/KeyUpdatePeriod to a small value, the system can promptly update the local personal key when changes happened on the neighbor table, such as node joining or leaving. But this may create performance bottleneck on some overlay sockets in a large scale overlay network. For example, overlay socket A is the buddy of a big set of other overlay sockets, it will renew its personal key whenever a new joining overlay socket contacts it or one of its neighbors becomes non-neighbor. At the start-up time of the overlay network, overlay socket A may keep updating its personal key all the time and cannot process the requests from other overlay sockets quickly. The network stabilizing time may increase tremendously. By increasing the value of the attribute /Public/Security/KeyUpdatePeriod, the burden of updating personal key on A is reduced, the cost is that the response time to the changes on the Key Neighbor Table becomes longer.
The key management system can be effectively “bypassed” in order to use a shared group key security mechanism. In this case, the user specifies that he wants shared group key security by setting the attribute /Public/Security/KeyModeMethod to GroupKeys in the Hypercast configuration file. The desired group key in string format also must be specified in the file as well (see the discussion on the shared key in Section 2). With shared group key security, all tasks that require a key, such as MAC computation and message encryption, must be performed using the specified group key. Since all nodes will share this key, no exchanges or intermediate decryptions and encryptions are necessary.
6. Secure Protocol Message

6.1. The Format of Protocol Message

The message format for a protocol message in HyperCast 3.0 consists of a preamble and an overlay protocol message. The structure is shown in Figure 10:

[image: image10.emf]1 byte

Preamble Overlay Protocol message

>= 0 bytes

Figure 10. Protocol Message Format.
6.1.1. Preamble

The preamble is 11 bits long field which defines the index of themessage. See Figure 11.

[image: image11.emf]Index

8 bits

Figure 11. The Preamble Format of a Protocol Message.
· Index (8 bits): Indicates the index of a protocol node in a multi-overlay node with multiple protocol nodes.

0x00:
protocol message for Node 0

0x01:
protocol message for Subnode1

…

…

0xff:
protocol message for Subnode255

In a protocol node with a single protocol node (only Node), the index value is always set to 0.

6.1.2. Overlay protocol message

In Hypercast3.0, each protocol node executes an overlay protocol that exchanges messages with other overlay nodes. The format of these messages is part of the definition of the overlay protocol node. The HyperCast3.0 overlay protocol message requires that all overlay protocol messages have a fixed header, as shown in Figure 12.

[image: image12.emf]1 byte 2 bytes

Length

Protocol

number

Protocol dependent part

variable

Figure 12: Format of overlay protocol message.

· Protocol number (8 bits): The protocol number is one-byte long field that identfies the overlay protocol. The protocol number uses the convention that the first four bits identify the protocol (hypercube (HC), Delaunay triangulation (DT), spanning tree (SPT), and clustering protocol (CT)) and that the last four bits identify the rendezvous method (server, buddylist, multicast).
However, this convention is not mandatory. Currently, the following overlay numbers are defined.

0x13:
HC protocol (with multicast rendezvous)

0x21:
DT protocol (with server rendezvous)

0x22:
DT protocol (with buddylist rendezvous)

0x23:
DT protocol (with multicast rendezvous)

0x33:
SPT protocol (with multicast rendezvous)

0x40:
CT protocol (cluster protocol)

· Length (16 bits): The length of the protocol dependent part of the message in bytes.

· Protocol dependent part (> 0 bits): The content in this part depends on the specific protocol. Figure 13 to Figure 15 show the protocol dependent parts for DT3.0, HC3.0 and SPT3.0.

[image: image13.emf]paSize+8 bytes 4 bytes 1 byte

1 byte

2 bytes

OverlayID

Hash

DST SRC Type

Proto

col

Length

ADDR2 ADDR1

paSize+8 bytes

paSize+8 bytes paSize+8 bytes

 Figure 13: DT3.0 Protocol Message Format.

[image: image14.emf]4 bytes

1 byte 1 byte

2 bytes

4 bytes 4 bytes 4 bytes

variable 4 bytes

SRC PA Type

Proto

col

Length SRC LA

Dest LA HRoot LA

HRoot Seq

Number

paSize

Dest PA

paSize

Data Length Data

Figure 14: HC3.0 Protocol Message Format.

[image: image15.emf]paSize+4 bytes 4 bytes

4 bytes 1 byte 1 byte 2 bytes

4 bytes 8 bytes

4 bytes

Sender_count x 4

bytes

4 bytes

4 bytes

OverlayID

Hash

Type

Proto

col

Length SRC AddrPair Root Addr

Parent Addr Cost Time_stamp Sender_count Sender list

Routing

_count

Routing list

Routing_count x 4

bytes

Figure 15: SPT3.0 Protocol Message Format.

In the above packet formats, the paSize is determined by calling nodeAdapter.getPhysicalAddressSize() which returns the length of the physical address actually used in the overlay socket. The length of the logical address, laSize, is protocol specific. For DT protocol, it is 8 bytes; for HC and SPT protocols, it is 4 bytes.
6.2. The Secure Protocol Message

As mentioned in the beginning of this report, security mechanisms can be applied to the transfer of protocol messages. We create a class called SecInfoExchange_Message to handle secure protocol messages exchange. Figure 13 shows the structure of SecInfoExchange_Message class.

[image: image16.emf]SecInfoExchange_Message

I_Message

Implements

Extends

Figure 13. The structure of SecInfoExchange_Message

The KeyReq, KeyUpdate, CertReq, CertReply messages can be applied to all protocols and are protocol independent, so that can be handled in a single class. The SecInfoExchange_Message class also provides a wrapper for protocol messages and process secure protocol messages in a unified way. The SecInfoExchange message has the following format:

[image: image17.emf]1 byte 2 bytes

Length

Protocol

number

Type

=CertReq

1 byte

SrcLa

DstLa Payload

Overlay ID

hash

4 bytes

SecInfoExchange message header

Figure 14. The format of SecInfoExchange message

The SecInfoExchange message header is the part before the payload field. The detailed format of the five type SecInfoExchange messages are shown in the Figure 15. For different types of SecInfoExchange messages, the Payload field may contain different information, as shown in Figure 15.

[image: image18.emf]1 byte 2 bytes

Length

Protocol

number

Type

=CertReq

1 byte

Src

AddrPair

Dest

AddrPair

Certificate

Overlay ID

hash

4 bytes

(a) Certificate request message

[image: image19.emf]1 byte 2 bytes

Length

Protocol

number

Type

=CertRep

1 byte

Src

AddrPair

Dest

AddrPair

Certificate

Overlay ID

hash

4 bytes

(b) Certificate reply message

[image: image20.emf]1 byte 2 bytes

Length

Protocol

number

Type

=KeyReq

1 byte

Src

AddrPair

Dest

AddrPair

Overlay ID

hash

4 bytes

(c) Key request message

[image: image21.emf]1 byte 2 bytes

Length

Protocol

number

Type

=KeyRep

1 byte

Src

AddrPair

Dest

AddrPair

Overlay ID

hash

4 bytes

[image: image22.emf]8 bytes

Key Key Timestamp

(d) Key update message

[image: image23.emf]1 byte 2 bytes

Length

Protocol

number

Type

=ProtoMsg

1 byte

Src

AddrPair

Dest

AddrPair

Overlay ID

hash

4 bytes

[image: image24.emf]2 bytes

Message Mac

Length

Message MAC

8 bytes

Protocol_Message Key Timestamp

(e) Secure protocol message

 Figure 15. The formats of the SecInfoExchange messages

The following lists part of the fields in class SecInfoExchange_Message:

byte Protocol_num: The protocol number of this message.

int Length: The length of remained part (following the length field) of this message.

byte Type: 1-CertReq, 2-CertReply, 3-KeyReq, 4-KetUpd,.

I_LogicalAddress src: The logical address of the source for this message.

I_LogicalAddress dst: The logical address of the receiver for this message.

X509Certificate cert: The certificate contained in this message.
SecretKeySpec key: The key contained in this message.
long keyTimeStamp: The time when the key is created.
I_Message protoMsg: The Protocol Message contained in this message.
For a SecInfoExchange message, the Protocol number is set to 0xF0.
The types for the five messages are defined as:

0x01 (CertReq):
Certificate request.

0x02 (CertRep):
Certificate reply.

0x03 (KeyReq):
Key request.

0x04 (KeyUpd):
Key Update.

0x05 (ProtoMsg):
Protocol Message

A SecInfoExchange_Message object do not know the specific types of the logical addresses of the source and destination. In the method toByteArray() of class SecInfoExchange_Message, it only needs to call srcLA.toByteArray() and dstLA.toByteArray() to create the byte array format of SrcLA and DstLA. When it needs to create a logical address from byte array, it calls

SecurityProcessor.getNode().createLogicalAddress(byte[] data, int offset)

Here, SecurityProcessor.getNode() returns the reference to the overlay node that contains the Security Processor. The physical addresses in the Src AddrPair and Dest AddrPair are processed in the following way:
· Create byte array from a physical address instance, phAddr:

phAddr.toByteArray()

· Create from a byte array phaByteArray:

adapter.createPhysicalAddress(phaByteArray, offset)
The Message MAC is calculated on the byte array of Protocol_Message.

When the Security Processor wants to send a CertReq or KeyReq message to its neighbor, it creates a SecInfoExchange_Message, and sends it to the node adapter. In the node adapter, method toByteArray() in class SecInfoExchange_Message is called to convert this SecInfoExchange_Message to a byte array format. Finally the node adapter sends the message out.

When a CertRep or KeyUpd message is received by the node adapter, the node adapter will call SecurityProcessor.restoreMessage() which in turn calls SecInfoExchange_Message.restoreMessage(). The reconstructed SecInfoExchange_Message is passed to the method messageArrivedFromAdapter in class SecurityProcessor where the SecInfoExchange_Message is processed.

When the Security Processor wants to send a protocol message with integrity protection to its neighbor, it creates a Protocol_Message as it would normally. It then creates a SecInfoExchange_Message and passes the Protocol_Message to it, which will create a MAC for the Protocol_Message. The Protocol_Message is just received as type “I_Message” so that the SecInfoExchange_Message class is not dependant on the type of protocol being used. When the message is sent, the SecInfoExchange_Message will create the byte array for its part of the message, then call Protocol_Message.toByteArray() and attach it. The concatenated result is then sent by the node adapter.

When a SecInfoExchange_Message of type ProtoMsg is received, the message is restored by calling SecInfoExchange_Message.restoreMessage(). This method will restore the SecInfoExchange header information, verify the MAC of the Protocol_Message. The reconstructed SecInfoExchange_Message is passed to the method SecurityProcessor.messageArrivedFromAdapter() which calls Protocol_Message.restoreMessage() to restore the protocol message. This message can then be sent to the overlay node and processed normally.

6.3. The Integrity for Protocol Message

When security is activated (security level is set to integrity or confidentiality) in the overlay socket, integrity is applied to protocol messages. Figure 16 shows the MAC calculation, which is calculated using the personal key, of a outgoing protocol message. From Figure 16, we know that integrity is only applied to the contents of the plaintext protocol message, not the SecInfoExchange message header.
The processing of an incoming protocol message is shown in Figure 7.

[image: image25.emf]Protocol message

SecInfoExchange message

Wrapped into

toByteArray()

SecInfoExchange

message header

Message

MAC Length

Message

MAC

Key

Timestamp

Protocol Message Byte Array

Protocol Message Byte Array

Message

MAC

Calculate the

message MAC

Set the result to

the message

MAC field

Figure 16. The MAC calculation of the protocol message

7. Secure OL Message

7.1. The Format of OL_Message

The OL_Message has the similar format as protocol message, as shown in Figure 17.

[image: image26.wmf]Payload

Overlay

message

header

Extension

...

Extension

Figure 17. The Format of OL_Message.

For a secure OL_Message, there is a security extension which is an instance of class SecurityExtension and handled in the same way as other extensions.
7.1.1. OL message header

The OL message Header is the first part of each OL_Message. Please refer to the section 5.2 and 5.3 of “Hypercast2.0 – Design Document” for the detail information of OL Header. The first eight bytes of the OL Header in an OL_Message has the following format:

[image: image27.wmf]

 1 2 3

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

 +

+

+

+

+

+

 |Version|LAS|Dmd| Traffic Class |

Flow Label

 | Next He

ader |

 +

+

+

+

+

+

 | OL Message Length |

 Hop Limit |

 +

+

+

Figure 18. The First Eight Bytes of OL Header.

Table 2 is the list of possible values in the NextHeader field of an OL_Message in Hypercast3.0.

	Extension Types
	Description

	0x00
	No Next Extension

	0x01
	Finite State Machine (FSM) Extension

	0x03
	Payload Extension

	0x04
	Route Record Extension

	0x21
	Security Extension

Table 2. Extension Type Assignment.

Except No Next Header, each value of NextHeader field corresponds to a type of extension supported in the overlay socket.
7.1.2. Security extension
An OL message consists of two parts: OL header and extensions part and OL payload part. The security is applied to two parts separately. For OL header and extension part, only plaintext and integrity security mechanisms are considered in Hypercast3.0. For OL payload, each of three security mechanisms, plaintext, integrity and confidentiality, can be specified.

The format of security extension for an OL message is as follow:

[image: image28.emf]OL_H

MAC Len

Length

Payload MAC

1 byte

2 bytes

Sequence Number

4 bytes

>=16 bytes

Next

Header

1 byte

OL_H MAC

>=16 bytes

Payload

MAC Len

1 byte

Ep(Mk)

16 - 32 bytes

LA of Sender

Length of

LA

1 byte

Figure 19. Security Header for OL Message.

· Next Header (8 bits): Specifies the type of following header. The available value is listed in Table 4.

· Length (16 bits): The length of the security header (except Next Header and Length fields).
· OL_H MAC Len (8 bits): Indicate the length of OL_H MAC field in unit of bytes.

· OL_H MAC (>=16 bits): Contains the result of the keyed hashing algorithm being applied to the OL header and Security header.
· Sequence Number(32 bits): Specify the sequence number of this message. (As defined below)
· Ep(Mk) (128 – 258 bits): The encrypted message key.

· Length of LA (6 bits): The length of the sender’s logical address of this message.
· LA of the Sender (variable): The logical address of the sender of this message.
· Payload MAC Len (8 bits): Indicate the length of Payload MAC field in unit of bytes.

· Payload MAC (>=16 bits). Contains the result of the keyed hashing algorithm being applied to the payload/encrypted payload.

When specifying either integrity or privacy security for OL message, the OL header is protected using integrity security mechanism. When specifying plaintext security for OL message, the OL header is also applied with plaintext security.
<Note on Sequence Number>
The sequence numbers are handled as described in the IPsec ESP. Whenever two nodes initially become neighbors, they initialize their sequence numbers to 0. The counter is incremented before each message sent (so the first message has sequence number 1). The receiver maintains a sliding window of sequence numbers – those to the left are discarded, those to the right are accepted, and those in the window are checked to see if they are new. Sequence numbers must never cycle, so if that situation is about to occur, a new personal key should be created and sent to the neighbors. Key updates will trigger a reset of the sequence number counters for the nodes.
7.1.3. EncryptedPayloadExtension
If the security level is set to confidentiality or privacy, the Payload Extension is an instance of EncryptedPayloadExtension which handles the encryption and decryption of the payload. Figure 20 shows the structure of EncryptedPayloadExtension.

[image: image29.emf]PayloadExtension

Extension

Implements

Extends

EncryptedPayloadExtension

Figure 20. Structure of EncryptedPayloadExtension.

Extension is an abstract class. It defines the following methods that must be implements by a concrete class, such as PayloadExtension, which extends class Extension.
byte getExtensionType() //return the type of the extension
byte[] toByteArray()
 //return the byte array converted from the extension
int getSize()

 //return the length of byte array converted from the extension
PayloadExtension also defines the following method for getting the payload.

byte[] getPayload()
 //return the payload byte array in this extension

All extensions are recognized as Extension instances in the OL_Message class. The OL_Message class is not aware of EncryptedPayloadExtension, and the encryption and decryption of the payload is hidden to the OL_Message and application. The process of encryption and decryption is discussed in Section 7.15.
7.2. Integrity for OL Message

No matter what specific security policy is chosen, all secure application messages have data integrity, independently computed and verified on both the headers and the payload. The payload MAC is computed using the user-specified secure hashing algorithm, parameterized with the message key assigned by the original sender of that message. The header MAC is recomputed at every hop of a message and, unlike the payload, is parameterized with the hop’s personal key. Since each neighbor of a node knows that node’s personal key, the MAC can be verified by any of the potential next-hop receivers. Figures 21 and 22 below show which fields are used to compute the payload MAC and header MAC. Note that we don’t assume the order in which the extensions occur in an OL_Message.

[image: image30.emf]OL Header OL Payload

Payload

Length

…...

Next

header

Header

MAC

Payload

MAC

…...

SecurityExtension

PayloadExtension

…...

Figure 21. The fields used to calculate payload MAC (only OL Payload field).

[image: image31.emf]OL Header OL Payload

Payload

Length

…...

Next

header

Header

MAC

Payload

MAC

…...

SecurityExtension

PayloadExtension

…...

Figure 22. The fields used to calculate header MAC (all parts except the Header Mac and OL Payload fields).

For an outgoing overlay message, both Payload MAC and Header MAC are calculated when it is converted to a byte array. Note that the Header MAC is applied to the Payload MAC field which implies that the Payload MAC is calculated prior to Header MAC. When confidentiality is specified, the Payload MAC is calculated on the encrypted payload.

7.3. Privacy for OL Message

Privacy, a feature only available on application messages, is provided by encrypting the message payload with a message key determined by the sender. This message key is then encrypted with the sender’s personal key and included in the security header. Privacy messages also provide message integrity, as described in the previous section.

At each hop, the message is reconstructed and the sequence number and header MAC are verified. If either of these checks fails, the message is dropped without further processing. If they both pass, the header MAC is recomputed with this node’s personal key and the message key is decrypted, stored, and re-encrypted with, also with this node’s personal key. If this node is the destination (or one of the destinations), the payload is decrypted and the message is passed to the application. If, on the other hand, the message is a flood or multicast message and has additional hops, it will be forwarded before the payload is decrypted. The reason behind this is to ensure that minimum additional latency is added on to the message travel time by the security architecture. If the node receives a message which must be forwarded and does not include this node in the destination, the payload will never be decrypted at all.

Figure 23 shows the transmission process of an encrypted application message.

[image: image32.emf]Source

Destination

Intermediate

node

Security

header

OL

header

Encrypted

payload

OL_SEC_

Message

Security

header

OL

header

Encrypted

payload

Security

header

OL

header

Encrypted

payload

Security

header

OL

header

Encrypted

payload

Encrypted

payload

toByteArray() toByteArray()

restoreMessage() restoreMessage()

OL_SEC_

Message

Encrypted

payload

Encrypted

payload

Encrypted

payload

OL_SEC_

Message

messageArrived

FromAdapter()

If multicast,

decryptPayload()

Payload

OL_Message

Encrypted

payload

OL_SEC_

Message

messageArrived

FromAdapter()

Payload

OL_Message

decryptPayload()

OL_SEC_

Message

(1) (2) (1) (2)

 Figure 23. The Procession of an Encrypted Application Message at Overlay Sockets.

To reduce the times of doing unnecessary encryption and decryption on the payload, a mechanism, called delayed encryption/decryption, is invented. In this mechanism, the encryption or decryption is only done when necessary. More particularly, only when an overlay message is converted into byte array and sent out, the encryption on the payload is executed; and only when the plaintext payload is needed, i.e. the method EncryptedPayloadExtension.getPayload() is called, the decryption is actually done.
As mentioned before, when privacy security is applied, the payload extension is an instance of EncryptedPayloadExtension. An OL_Message object recognizes it as a normal Extension instance. When the methods toByteArray() or getPayload() of this extension is called, the encryption or decryption are executed. In this way, the encryption and decryption are transparent to the OL_Message class and application.

Another optimization is that for an encrypted overlay message, encryption or decryption on the payload is only done once. This is implanted by keeping a plaintext copy and encrypted copy of payload in the EncryptedPayloadExtension instance. Encryption is done only when the encrypted copy doesn’t exist, and decryption is done only the plaintext copy of payload doesn’t exist. The later is the case when an intermediate or destination node receives an encrypted overlay message.

PAGE
5

_1167723498.vsd
I_MulticastAdapter�

I_AdapterCallback�

Implements�

Extends�

SecurityProcessor�

I_Stats�

�

�

_1167739198.vsd
OverlayID Hash�

Routing
_count�

Routing_count x 4 bytes�

SRC AddrPair�

Root Addr�

Type�

paSize+4 bytes�

4 bytes�

4 bytes�

Routing list�

4 bytes�

1 byte�

Protocol�

Length�

1 byte�

2 bytes�

Parent Addr�

4 bytes�

8 bytes�

4 bytes�

Cost�

Time_stamp�

Sender_count�

Sender_count x 4 bytes�

4 bytes�

Sender list�

 �

_1167758208.vsd
No�

SecInfoExchange message
with type ProroMsg�

Has the certificate of the sender?�

Initialize certificate authentication and drop the message�

Yes�

Has the key of the sender?�

No�

Initialize key exchange and drop the message�

Yes�

Is integrity check successful?�

Yes�

Pass the protocol message to the overlay node�

No�

_1167764225.vsd
No�

DelayNewKeyTimer expires �

Delete each entry in the Key Neighbor Table whose key is out-of-date. The corresponding certificate and key are deleted from the Certificate Table and Key Table in the Key Vault.�

Reset DelayNewKeyTimer�

Yes�

Create new personal key and send Key Update message to all overlay sockets on the Key Neighbor Table�

Is there any change on the Key Neighbor Table?�

_1167765064.vsd
OverlayID�Hash�

ADDR2�

ADDR1�

DST�

SRC�

Type�

paSize+8 bytes�

paSize+8 bytes�

paSize+8 bytes�

paSize+8 bytes�

4 bytes�

1 byte�

Protocol�

Length�

1 byte�

2 bytes�

_1167766054.vsd
Protocol message�

SecInfoExchange message�

Wrapped into�

toByteArray()�

SecInfoExchange message header�

Message MAC Length�

Message MAC�

Key Timestamp�

Protocol Message Byte Array�

Calculate the message MAC�

Protocol Message Byte Array�

Message MAC�

Set the result to the message MAC field�

_1167764032.vsd
No�

Is A on the Key Neighbor Table?�

Is the key of A out-of-date?�

Reset WatchDogTimer for A�

Yes�

Send Key Request message to A�

WatchDogTimer expires for remote overlay socket A�

No�

Do nothing. The WatchDogTimer for A is no longer set.�

Yes�

_1167758664.vsd
OL_H MAC Len�

Length�

Payload MAC�

1 byte�

2 bytes�

Sequence Number�

4 bytes�

>=16 bytes�

Next Header�

1 byte�

OL_H MAC�

>=16 bytes�

Payload MAC Len�

1 byte�

Ep(Mk)�

16 - 32 bytes�

LA of Sender�

Length of LA�

1 byte�

_1167741189.vsd
Type =CertRep�

Length�

Protocol�number�

1 byte�

1 byte�

2 bytes�

Src AddrPair�

Dest AddrPair�

Certificate�

Overlay ID hash�

4 bytes�

_1167741196.vsd
Type =CertReq�

Length�

Protocol�number�

1 byte�

1 byte�

2 bytes�

Src AddrPair�

Dest AddrPair�

Certificate�

Overlay ID hash�

4 bytes�

_1167741301.vsd
Type =ProtoMsg�

Length�

Protocol�number�

1 byte�

1 byte�

2 bytes�

Src AddrPair�

Dest AddrPair�

Overlay ID hash�

4 bytes�

_1167741180.vsd
Type =KeyReq�

Length�

Protocol�number�

1 byte�

1 byte�

2 bytes�

Src AddrPair�

Dest AddrPair�

Overlay ID hash�

4 bytes�

_1167741153.vsd
Type =KeyRep�

Length�

Protocol�number�

1 byte�

1 byte�

2 bytes�

Src AddrPair�

Dest AddrPair�

Overlay ID hash�

4 bytes�

_1167738182.vsd
Index�

8 bits�

_1167739155.vsd
4 bytes�

1 byte�

1 byte�

2 bytes�

4 bytes�

4 bytes�

4 bytes�

variable�

4 bytes�

SRC PA�

Type�

Protocol�

Length�

SRC LA�

Dest LA�

HRoot LA�

HRoot Seq Number�

paSize�

Dest PA�

paSize�

Data Length�

Data�

_1167727513.vsd
�

KeyVault�

LA of Overlay Socket�

�

My Personal Key�

My Personal Certificate�

�

...�

...�

...�

LA of Overlay Socket�

...�

Security Policy�

Key of Overlay Socket�

Certificate of Overlay Socket�

Key Table�

Certificate Table�

_1167468312.vsd
�

�

�

Node�

Security Processor�

Node Adapter�

Plaintext protocol message�

SecInfoExchange message�

�

restoreMessage�

Payload Byte Array�

�

SecInfoExchange message�

Byte Array�

Byte Array�

messageArrivedFromAdapter�

SecInfoExchange message�

Plaintext protocol message�

�

Plaintext protocol message�

messageArrivedFromAdapter�

�

restoreMessage�

Payload Byte Array�

(1)�

(2)�

(3)�

(4)�

_1167476066.vsd
8 bytes�

Key�

Key Timestamp�

_1167486833.vsd
Text�

OL Header�

�

OL Payload�

Payload Length�

�...�

Next header�

Header MAC�

Payload MAC�

�

�

�...�

�

SecurityExtension�

�

PayloadExtension�

�...�

_1167516210.vsd
Text�

1 byte�

2 bytes�

Length�

Protocol�number�

Type =CertReq�

1 byte�

SrcLa�

DstLa�

Payload�

Overlay ID hash�

4 bytes�

�

SecInfoExchange message header�

_1167487030.vsd
Text�

OL Header�

�

OL Payload�

Payload Length�

�...�

Next header�

Header MAC�

Payload MAC�

�

�

�...�

�

SecurityExtension�

�

PayloadExtension�

�...�

_1167483284.vsd
PayloadExtension�

Extension�

Implements�

Extends�

EncryptedPayloadExtension�

_1167473058.vsd
SecInfoExchange_Message�

I_Message�

Implements�

Extends�

_1167475391.vsd
Message MAC�

Message Mac Length�

8 bytes�

2 bytes�

Protocol_Message�

Key Timestamp�

_1167425626.vsd
�

�

�

Node�

Security Processor�

Node Adapter�

Plaintext protocol message�

Plaintext protocol message�

�

SendMsgMethod�

SecInfoExchange message�

�

SendMsgMethod�

SecInfoExchange message�

Byte array�

_1167431800.vsd
�

NewNode�

1. Check for certificate
2. If not found, send CertRequest�

1.�

�

CertRequest�

1. Check certificate validity
2. If valid, store certificate and send CertReply�

2.�

CertReply�

1. Check certificate validity
2. If valid, store certificate�

3.�

�

Both parties authenticated�

4.�

Denotes that the node is not trusted by the other party�

Denotes that the node is trusted by the other party�

Node A�

Node B�

_1135606742.vsd
1 byte�

Preamble�

Overlay Protocol message�

>= 0 bytes�

_1167392300.vsd
OL_Socket�

Forwarding Engine�

 �

Node�

SecurityProcessor�

Adapter Interface�

Node Adapter�

Socket Adapter�

Adapter Interface�

Adapter Interface�

Application �Receive �Buffer�

�

Statistics Interface�

OL_Socket Interface �

Node Interface�

Key vault�

Message store�

�

�

�

_1152642086.vsd
Text�

��

Drag the side handles to change the width of the text block.�

Select box and type. Control handles change width & height of box.�

Subselect and enter title here�

�

?�

�

?�

�

?�

Text�

Select note and type your message!�

Data�

�

Overlay message header�

Extension�

Payload�

...�

Extension�

_1127113144.vsd
Protocol dependent part�

Length�

Protocol�number�

variable�

1 byte�

2 bytes�

_1135604248.vsd
�

�

Source�

�

�

Destination�

Intermediate node�

Security header�

OL header�

Encrypted payload�

�

OL_SEC_
Message�

Encryptedpayload�

Security header�

OL header�

Encrypted payload�

Security header�

OL header�

Encrypted payload�

�

�

OL_SEC_
Message�

Encryptedpayload�

Security header�

OL header�

Encrypted payload�

�

�

OL_SEC_
Message�

Encryptedpayload�

�

toByteArray()�

toByteArray()�

restoreMessage()�

restoreMessage()�

�

Encryptedpayload�

OL_SEC_
Message�

messageArrived
FromAdapter()�

�

If multicast,
decryptPayload()
�

�

Payload�

OL_Message�

�

�

Encryptedpayload�

OL_SEC_
Message�

messageArrived
FromAdapter()�

�

�

Payload�

OL_Message�

decryptPayload()
�

(1)�

(2)�

(1)�

(2)�

_1124568626.doc

 1 2 3

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

 +-------+---------------+---+---+-------------------------------+� |Version|LAS|Dmd| Traffic Class | 	Flow Label	 | Next Header |� +-------+---------------+---+---+-------------------------------+� | OL Message Length |		 Hop Limit |� +-------------------------------+-------------------------------+�

