
Page 1 of 9

The MUX (Multiplexer) Protocol
Wittawat Tantisiriroj, J. Liebeherr, MNG Group

(updated: January 2008)

This is a draft and not a final version.
© 2008. All rights reserved. All material is copyrighted by the authors.

Table of Contents
1. Introduction ..2
2. Message Format...2
3. Components of the MUX protocol ...2

3.1. MUX Processor...2
3.2. Dummy Adapter ...4

4. Interaction ..5
4.1. Creation of Dummy Adapters...5
4.2. Processing of incoming and outgoing messages ...5

4.2.1. Incoming message ...5
4.2.2. Outgoing message..7

4.3. Processing of timers ...7
4.4. Processing of other operations of an adapter...8

5. Statistics ...9

Page 2 of 9

1. Introduction
The MUX (Multiplexer) Protocol provides a capability to share the same node adapter among several
overlay sub-nodes. To distinguish between messages of the different sub-nodes, the protocol
encapsulates a message of a sub-node into the MUX message (see Section 2 Message Format) which

contains the index field for demultiplexing the message at the destination.

The goal of the design is to hide the multiplexing operation from an overlay sub-node and a node adapter.

2. Message Format
This section list the detailed message formats used in the MUX Protocol. The format for messages is
shown in Figure 1.

Figure 1: MUX Message Format

Protocol: The protocol number is one-byte long field that identifies the overlay protocol:

0x50: MUX protocol

Index: The index of the sub-node of the sub-node message.
Length: The length of the sub-node message of the MUX message in bytes.

3. Components of the MUX protocol

3.1. MUX Processor
This component is used to create dummy adapters and to manage the indexes of dummy adapters for
the overlay sub-nodes. By using a createDummyAdapter function provided by this component (See
Section 4.1), an overlay node can create an arbitrary number of dummy adapters which share the same
node adapter. However, a message can be exchanged only between the dummy adapters with the same
index. This component also performs the demultiplexing operation for incoming message by examining
the MUX message for the index and calls a processMessage function of the dummy adapter which has the
same index as the index in the MUX message (See Section 4.2)

Figure 2: The class structure of MUXProcessor

The MUXProcesssor implements I_AdapterCallBack to handle incoming messages from the adapter. To a
node adapter, the MUXProcesssor looks the same as the overlay node which implements the

Page 3 of 9

I_AdapterCallBack interface. So, the node adapter is not aware of the existence of the MUXProcessor.
The MUXProcesssor also implements I_Stats to enhance statistic operations.

The MUXProcessor is implemented as the abstract class which will be extended by an overlay node with
multiple sub-nodes such as a Tier-Cluster node or by an adapter with multiple sub-adapters.

Figure 3: A general object which extends the MUXProcessor

The overlay node which extends the MuxProcessor then calls a method createDummyAdapter to a node
adapter for each of its sub-nodes before passing these dummy adapters through a method node factory
to create sub-nodes.

Figure 4: The overlay node which extends the MUXProcessor

Page 4 of 9

The adapter which extends the MuxProcessor then also calls a method createDummyAdapter to its sub-
adapters. This model may be used to share a single underlay socket between a node adapter and a
socket adapter.

0 1 N
. . .

Figure 5: An adapter which extends the MUXProcessor

3.2. Dummy Adapter

Figure 6: The class structure of DummyAdapter

The Dummy Adapter implements I_MulticastAdapter to handle outgoing and incoming messages for the

sub-node. To a sub-node, the Dummy Adapter looks the same as the regular node adapter which
implements the I_MulticastAdapter interface. So, the sub-node is not aware of the existence of the
Dummy Adapter. Between the MUX Processor and the Dummy Adapter, there is the internal interface to

handle all of the adapter operations.

Page 5 of 9

4. Interaction

4.1. Creation of Dummy Adapters
Before creating a dummy adapter, the MUX Processor must be initialized in order to allocate the table of
dummy adapters. An overlay node then calls a function createDummyAdapter and provides the index as a
parameter. Inside the function createDummyAdapter, a new dummy adapter is created with the index
and the pointer to the MUX Processor as the parameter in the constructor. So, the dummy adapter has
enough information to handle outgoing messages. Then, the MUX Processor registers the dummy adapter

to its dummy adapter table so that the MUX Processor has enough information to handle incoming
messages.

For example, a dummy adapter is created with the following line of code:

//Initialize the MUX Processor in a constructor

Public Object(…){

 super(multicast_adapter);

}

//Create dummy adapter for a sub-node with index of 0

I_MulticastAdapter sub_adapter_0 = super.createDummyAdapter(0);

4.2. Processing of incoming and outgoing messages

4.2.1. Incoming message
When an incoming MUX message is received from the node adapter as a byte array, the MUX message is
reconstruct into a MUX message by calling the restoreMessage function of the MUX_Message class inside
the MUX Processor (Step 1 in Figure 7). After the MUX message arrives from the node adapter, the MUX
Processor examines the index in the MUX Message (Step 2 in Figure 7) and passes only the sub-node
message to the correspondent dummy adapter by calling the processMessage function of the dummy
adapter (Step 3 in Figure 7). Then, an incoming sub-node message as a byte array is reconstruct into a
sub-node message inside the sub-node (Step 4 in Figure 7). Finally, the messageArrivedFromAdapter

function of the sub-node is invoked to process the message (Step 5 in Figure 7).

Page 6 of 9

Sub-Node i

Mux Processor

Node Adapter

Sub- protocol message

Mux Message

restoreMessage

Mux messageByte Array

Byte Array

messageArrivedFromAdapter

Mux message

Sub-protocol message

messageArrivedFromAdapter

Payload Byte Array

Sub-protocol message

restoreMessage

Payload Byte Array

Index i

Dummy Adapter i

processMessage

Payload Byte Array

1

2

3

4 5

Figure 7: Processing an incoming MUX message.

Page 7 of 9

4.2.2. Outgoing message
When the overlay node wants to send a protocol message, it calls the sendUnicastMessage /
sendMulticastMessage function of its adapter which is the dummy adapter in this case and passes the
protocol message as a parameter (Step 1 in Figure 8). The dummy adapter then transforms the protocol
message into a byte array and encapsulates it into a MUX message which contains the index of the
dummy adapter (Step 2 in Figure 8). Then, the dummy adapter calls mux_sendUnicastMessage /
mux_sendMulticastMessage function of the MUX Processor and the MUX Processor calls

sendUnicastMessage / sendMulticastMessage function of the node adapter (Step 3-4 in Figure 8). Finally,
the node adapter transforms the MUX message into a byte array before sending it to the underlay
network (Step 5 in Figure 8).

Sub-Node i

Mux Processor

Node Adapter

Mux message

mux_sendUnicastMessage/

mux_sendMulticastMessage

Sub-protocol message

Dummy Adapter i

sendUnicastMessage/sendMulticastMessage

Payload Byte Array

Sub-protocol message

Index i

Mux message

Mux message

sendUnicastMessage/sendMulticastMessage

Byte Array

1

2

3

4

5

Figure 8: Processing an outgoing MUX message.

4.3. Processing of timers
When the overlay node wants to set a timer, it calls the setTimer function of its adapter which is the
dummy adapter in this case and passes the timer ID as a parameter (Step 1 in Figure 9). The dummy

adapter then encapsulates it into a MUX Timer ID which contains the index of the dummy adapter (Step
2 in Figure 9). Then, the dummy adapter calls mux_setTimer function of the MUX Processor and the MUX
Processor calls setTimer function of the node adapter (Step 3-4 in Figure 8). Finally, the node adapter

Comment: Rename to avoid
conflict with I_MulticastAdapter
in case MUX Processor is used
to multiplex adapter

Comment: Same reason as

above

Page 8 of 9

uses this MUX Timer ID to create a timer. In case of getTimer and clearTimer functions, they follow a
similar procedure as setTimer function does.

When a timer expired, the timerExpired function of the MUX Processor is called (Step 5 in Figure 9). Then,
the MUX Processor examines the index in the MUX Timer ID (Step 6 in Figure 9) and passes only the sub-
node timer ID to the correspondent dummy adapter by calling the timerExpired function of the dummy

adapter (Step 7 in Figure 9). Then, the dummy called the timeExpired function of the sub-node and the
sub-node is invoked to process the timer expired event (Step 8 in Figure 9).

Sub-Node i

Mux Processor

Node Adapter

MUX Timer ID

mux_setTimer/mux_getTimer/mux_clearTimer

Sub-Node Timer ID

Dummy Adapter i

setTimer / getTimer / clearTimer

Sub-Node Timer IDIndex i

MUX Timer ID

MUX Timer ID

setTimer / getTimer / clearTimer

1

2

3

4

Figure 9: Processing a timer.

4.4. Processing of other operations of an adapter
The other operations are straightforward from the Sub-node via the Dummy Adapter via the MUX
Processor to the node adapter. For example, the processing of the createPhysicalAddress(String)
operation is shown in Figure 10.

Page 9 of 9

Figure 10: Processing createPhysicalAddress operation.

5. Statistics

The MUX Processor support statistics. However, all statistics are hidden behind the statistic interface of
the class extended from MUX Processor. A list of supported statistics is following

- NumOfDummyAdapters
o The number of the dummy adapter that are registered with a Mux Processor

- NodeAdapter

o The statistic of underlay adapter that the MUX Processor using.

Comment: No clear way to
access MUX Processor

