
 1

The Spanning Tree Protocol
Guangyu Dong, Jorg Liebeherr, MNG Group
Wednesday, March 30, 2005

This is a draft and not a final version.
© 2005-8. All rights reserved. All material is copyrighted by the authors.

Table of Contents
TABLE OF CONTENTS ... 1

1. INTRODUCTION .. 2

2. OVERVIEW OF SPANNING TREE PROTOCOL .. 3

2.1 JOINING AND LEAVING .. 3
2.2 BUILDING SPANNING TREE.. 3

2.2.1 Overview .. 3
2.2.1 Measuring Link Quality .. 5
2.2.2 Algorithms of Choosing Ancestor .. 5
2.2.3 Asymmetric Link Problem... 7
2.2.4 Count-To-Infinity Problem.. 8

2.3 MULTICAST ROUTING ... 9
2.3.1 Forwarded in Unicast Channel ... 9
2.3.2 Forwarded in Broadcast Channel ... 9
2.3.3 A Unified Solution .. 10

2.4 UNICAST ROUTING.. 10
2.4.1 Forwarding Table... 11
2.4.2 Building On-Demand Unicast Path ... 11
2.4.3 Forwarding .. 14

3. DETAILED PROTOCOL DESCRIPTION... 15

3.1 BASIC ELEMENTS.. 15
3.1.1 SPT ID ... 15
3.1.2 Physical Address .. 15
3.1.3 Neighbors... 15

3.2 TABLES .. 15
3.2.1 Tree Information Table ... 15
3.2.2 Neighborhood Table ... 16
3.2.3 Backup Ancestor Table ... 16
3.2.4 Adjacency Table ... 16
3.2.5 Core Table.. 17
3.2.6 Forwarding Table... 17

3.3 BEACON ... 17
3.3.1 Beacon Message ... 17
3.3.2 Sending Beacon .. 18
3.3.3 Receiving Beacon ... 18
3.3.4 Timeout Mechanism.. 20
3.3.5 Backup Ancestor... 21

3.4 JOINING AND LEAVING .. 21
3.4.1 Joining ... 21
3.4.2 Leaving .. 22

3.5 MULTICAST DATA PACKET FORWARDING.. 22
3.5.1 Packet Header .. 22

 2

3.5.2 Forwarding Decision.. 22
3.6 UNICAST DATA PACKET FORWARDING .. 22

3.6.1 Forwarding Table... 22
3.6.2 On-Demand Route Maintenance ... 23

4. SETTINGS.. 25

4.1 TIMERS FOR MAINTAINING SPANNING TREE... 25
4.2 TIMERS FOR MAINTAINING UNICAST PATH .. 26
4.3 OTHER SETTINGS ... ERROR! BOOKMARK NOT DEFINED.

5. MESSAGE FORMATS.. 26

5.1 PROTOCOL MESSAGE FORMATS... 27
5.1.1 Beacon Message ... 27
5.1.2 Goodbye Message... 28
5.1.3 Route Request Message... 28
5.1.4 Route Reply Message .. 28

5.2 DATA MESSAGE FORMATS .. 29
5.2.1 Multicast Packet Header... 29
5.2.2 Unicast Packet Header ... 29

6. INTERACTION WITH OVERLAY SOCKET... 30

6.1 INTERFACE FUNCTIONS ... 30
6.2 OPERATIONS OF FORWARDING ENGINE .. 31

7. STATES AND STATE TRANSITIONS .. 32

7.1 STATE DEFINITIONS .. 32
7.2 STATE TRANSITION DIAGRAM ... 32
7.3 ACTIONS OF SPT PROTOCOL ... 33

1. Introduction
In this document, we describe a network protocol which establishes and maintains a

spanning tree connecting a group of mobile device in the wireless ad hoc network. The
protocol is called Spanning Tree Protocol (or SPT) and has been implemented and tested
as a part of the HyperCast 3.0 overlay software.

This Spanning Tree Algorithm is inspired by Perlman’s Spanning Tree Algorithm for
bridges. Perlman’s spanning tree algorithm is used to prevent the existence of a loop in
networks that contain parallel bridges. If there is a loop in the network, a packet will be
forwarded by bridges for indefinite times, which can result in increased traffic and
degradation in network performance. Since a tree has no loop, Perlman solves the loop
problem by using a spanning tree algorithm to organize those bridges into a tree.

Similarly, in the ad hoc environment, after a spanning tree is built to connect a group
of mobile devices, a packet can be always flooded into all members along the tree
structure without loop and duplicated transmission. And a mechanism has been built to
provide aid for unicasting a packet to some specific receiver without having to flood it to
the whole network.

We refer to the protocol entities that execute the SPT protocol as nodes. Each node has
a logical address and a physical address. The logical address in SPT protocol is a positive
integer number, called SPT ID and set to 32bits. The SPT ID should be unique for each
node in a SPT group. The physical address is for transmitting protocol messages and data
packets between nodes, which consists of an IP address and a port number.

 3

There’s ordering between different SPT ID, which we define as the natural ordering of
positive number.

2. Overview of Spanning Tree Protocol

2.1 Joining and Leaving
Since the Spanning Tree Protocol is implemented by building an overlay network, it

must provide some rendezvous mechanism to enable nodes who want to join the overlay
network to communicate with nodes in the overlay.

Basically there are three kinds of rendezvous mechanism for an overlay network: (1)
Broadcast: non-members have a broadcast mechanism that is available to them. They use
this to announce themselves to members of the overlay network. (2) Buddy List: non-
members maintain a list of members that are likely to be in the overlay network (a
"buddy list"). They use this list to contact members. (3) Server: non-members contact a
well-known server that establishes communication between members and non-members
of an overlay network.

In the SPT Protocol, we choose the first method, and it’s done in an implicit way for
the unique characteristics of wireless ad hoc network. Since a node in the overlay
network will broadcast a beacon message periodically, and all adjacent nodes in its
transmission range will get the beacon message. And since a no-member node can
contact to a member node only when it’s in its transmission range, the broadcasted
beacon message is a natural way to find the member. So actually, the rendezvous process
is done without any explicit additional mechanism.
 Join: When a node wants to join a spanning tree network, it simply starts to
periodically send out and receive beacon messages.

Leave: When a node wants to leave the network, it sends out a Goodbye message and
stops sending and receiving beacon messages.

2.2 Building Spanning Tree

2.2.1 Overview
A spanning tree is built by locally exchanging information between adjacent nodes.

Two nodes are adjacent when they can communicate to each other directly, which means
they are in the transmission range of each other in ad hoc network. For any two adjacent
nodes, we say there is a single hop path between them. Here we don’t assume wireless
channels are always symmetric, but asymmetric channels will be discarded by some
mechanism.

When we need to establish a spanning tree to connect a group of members, it’s
necessary that those members should be in a network partition already. That is, for any
two nodes in the group, theoretically there exists a multi-hop path connecting them.
When there are separated network partitions, a spanning tree will be formed for each
partition by the protocol, as is shown in Figure 1.

 4

Figure 1: Network Partitions1

When partitions exist, multiple spanning trees are formed

The basic algorithm of building and maintaining a spanning tree is that, beacon

messages are exchanged periodically between adjacent nodes, and a node use the
information stored in the beacons received to decide its ancestor. The basic fields of the
beacon message are listed below:

(Sender ID, Physical Address, Core ID, Ancestor ID, Cost, Path Metric, Adjacency
Table)

In a beacon message, the Sender ID is used to identify the sender node of the message

and the Physical Address field gives the other nodes within wireless transmission range a
way to send unicast message. Core ID field tells which node is the current spanning tree
core of the message sender, and every node in the same SPT overlay network should
finally agree on the same Core ID in order to be connected. The Ancestor ID tells which
node is the current spanning tree ancestor of the sender, and the Cost field is the hop
count to the core node. The Path Metric field is used by receivers as the part of the
criteria to select their ancestor, and in the three ancestor selecting algorithms, there are
different ways to compute the Path Metric field. A node's ancestor and all its children
compose of its neighborhood table. At the end of each beacon message, there is an
Adjacency Table listing the ID of all nodes that the beacon sender has recently heard
from. A link quality value for each adjacent node is also included in the adjacency table.
This table is used to avoid asymmetric wireless links, which are not unusual in the real
world wireless network.

A SPT node in the overlay network periodically broadcasts the beacon messages to all

adjacent nodes, not only to exchange the topology information, but also refresh its active
state. If a node A has been not hearing beacons from another node B for some period of
time, B will be removed from both the neighbor table and the adjacency table. The final
function of beacon message is a probe of the wireless link quality, for which we will have
detailed description in following sub-sections.

1 The convention of drawing spanning tree figure used in all parts of the document is: 1) the gray node is
the core of the tree; 2) An arrow pointing from node A to node B means B is the ancestor of A; 3) a pair of
number (r, c) on the arrow pointing from node A to node B means that A’s core is r, ancestor is B, the cost
from A to the core is c.

 5

2.2.1 Measuring Link Quality
SPT protocol uses the delivery ratio of beacon messages as the metric of link quality

between adjacent nodes pair. The link quality measurement of each individual wireless
link is used both as a way to avoid asymmetric link, and to computed the path metric
value in some parent selecting algorithms that will be covered in following sub-sections.

Formally, the link quality from node A to B is defined as (given a parameter N):

LQ(A,B) = Delivery Ratio of Recent N Beacons From A to B

And we define the bidirectional link quality value as:

BiLQ(A,B) = min(LQ(A,B), LQ(B,A))

Node B calculates LQ(A,B) and stores it in table. And this value is put into the

adjacency table at the end of the beacon message of B such that A can get it and
calculates the bidirectional link quality value between A and B. It is not an exact
calculation of BiLQ(A,B) since the beacon message from B can also be lost, but it is still a
good estimation because if beacon from B is lost the LQ(B,A) will bring the BiLQ value
down. By the way described above, every node keeps tracking of the bidirectional link
quality between itself and all adjacent nodes. The link quality measurement is a value
ranging from 0 to 1.

We place a threshold value as a parameter, such that any beacon message coming from

a node that has a BiLQ lower than the threshold is dropped, to guarantee that the node
only establish neighborhood relationship with nodeshaving reliable bidirectional wireless
connectivity. A dropped beacon message is still used to calculate the link quality. When
this threshold is only set to a small value larger than zero, it is simply used to eliminate
the asymmetric link.

2.2.2 Algorithms of Choosing Ancestor
2.2.2.1 Basic Algorithm
Based on the beacon messages received from adjacent nodes, a node decides who

should become its spanning tree ancestor. Firstly, the node in the network with the
minimum ID becomes the core such that all nodes can easily make an agreement about
who is the core node. Secondly, every node calculates a Path Metric value for the
spanning tree path leading from the current node to the core, and this value is put in to B,
A computes the possible Path Metric value if B is selected as A's ancestor, according to
the Path Metric field in the beacon and some other rules depending on different
algorithms.

When node A receives a beacon message M from B, it tries to determine if B is a better
ancestor by the following rules:

(a) If M.CoreID<A.CoreID, then B is a better ancestor. Otherwise if

M.CoreID==A.CoreID, continue the following judgments.
(b) If the Path Metric value computed based on M is larger than A's current Path

Metric by a preset threshold value (Jumping Threshold), B is a better ancestor. The

 6

Jumping Threshold is used to prevent the spanning tree topology from being changed
when the environment only has very little variance.

By the rules specified above, every node tries to optimize the Path Metric value of the

path leading to the core node, though it would not necessarily choose the best path while
limited by the Jumping Threshold. In our protocol to build a shared spanning tree, every
node locally decides its ancestor in order to obtain a better path leading to core, and the
result is a shared tree topology with better global metric. Then the quality of the tree is
determined by how we define and compute the Path Metric value, which is the key
difference between the algorithms described in following subsections.

When every node sees and sends unchanging beacon messages, the spanning tree is

successfully established, and every node knows its ancestor, its descendants, and the core
node. An example of the process for establishing spanning tree is show in Figure 2.

Tree structure is up to change when the network topology changes.

Figure 2: Process of Establishing Spanning Tree

2.2.2.2 Minimum Hop Count Algorithm
In this algorithm, the Path Metric of a node is defined as (- Hop Count to the Core),

and the Jumping Threshold is set to 1. We put a negative sign because in our protocol,
larger value means better for the Path Metric. The resulting spanning tree is a classic
minimum cost tree. In fact, for this algorithm a Path Metric field in the beacon message
is not needed since a Cost field already gives the enough information.

2.2.2.3 Link Quality Algorithm
In this algorithm, a node use the BiLQ to its ancestor as the Path Metric. To avoid loop,

the node A would not choose node B as the ancestor if A.Cost=<B.Cost-2 because B is
probably A's descendent in this case. Basically, every node only tries to optimize the
quality of the one hop link to its ancestor, under the condition that loop is impossible,
regardless of what the resulting path length is. The Path Metric value of a node varies
from 0 to 1. A moderate Jumping Threshold parameter is important to keep the topology
relatively stable because usually the link quality between adjacent nodes always oscillates
constantly even though everything is stationary. On the other hand, the Jumping
Threshold cannot be too large such that it prevent node from choosing a better ancestor
quickly.

 7

Since there is almost intended control on the length of path to the core, the hop count
tends to be larger and there is no defense against a spanning tree path going unnecessarily
back and forth.

2.2.2.4 Path Quality Algorithm
A product of all BiLQ values along the path to core node is evaluated as the Path

Metric. To calculate the Path Metric, a node gets the product of the BiLQ to the ancestor
and the Path Metric of the ancestor that can be obtained in the beacon messages. A node
in the network intends to optimize quality of the path between itself and the core node.
Same to the Link Quality algorithm, in this case the Path Metric is a value ranging from 0
to 1. The analysis of the Jumping Threshold parameter for this algorithm is similar to the
Link Quality algorithm. On the other hand, the average hop count is expected to be
shorter than Link Quality algorithm because a longer path tends to have smaller path
metric since it is a product of more BiLQ values.

Although this algorithm seems to perform better in overall than the Link Quality
approach with the ability to avoid unnecessarily long path, in some specific situations the
later algorithm outbids. For example, when the communication happens majorally on two
nodes on the same to-core path, the traffic doesn't go over the whole path therefore the
Link Quality algorithm might exhibit better performance. However, since we assume that
the traffic pattern is not predictable, we favor the Path Quality algorithm because it is
expected to work better in average case.

2.2.3 Asymmetric Link Problem
The SPT protocol is based on the assumption of symmetric channel. That is, if node A

can hear from node B, the node B can also hear from node A, node A and node B have
exactly the same transmission range. However, in the real wireless environment, this
assumption is not necessarily the truth. Most the current ad hoc networks use 802.11 as
the MAC layer. In 802.11, the broadcast operation doesn’t require RTS/CTS operation or
acknowledgement. As a result, it’s quite possible that there exists an asymmetric channel
between two nodes.

We use the Bidirectional Link Quality values of adjacent nodes to eliminate the
asymmetric link. In SPT protocol, any adjacent node with a BiLQ value lower than a
Reliable Threshold parameter is excluded from being an ancestor candidate. A decent
threshold value can guarantee that only reliable link is used to form the topology. If we
set this threshold value to 0.1, it is just used to avoid asymmetric link.

An example is shown in Figure 3. Since node 2 can find the BiLQ value of node 4
larger than the threshold and vice versa, a symmetric link is verified between these two
nodes. On the other hand, since node 1 can’t find itself in the Adjacency table of node 2,
it will not process beacon message sent by 2 because BiLQ value of node 2 is zero.

 8

1 2

2 4

3

4

4

2

3

Figure 3: Preventing Asymmetric Channel with Adjacency table
The boxes are the adjacency table of each node

2.2.4 Count-To-Infinity Problem
Count-to-Infinity Problem will probably happen when a critical path leading to the

core is destroyed for some reason and some part of the group has no longer any path to
the core. For example, some node on the path leaves the group, crashes or move to
somewhere else. The leaving node may be the core itself. Under some conditions the
whole network will become unstable, as shown in Figure 5.

1
,1

Figure 4: Count-to-Infinity Problem Caused by Leaving of Node 1

The cause of count-to-infinity problem is that, even though the core node has left,

moved away or become unreachable, the core information announced by it is still being
propagated through the network through some loop. A single node cannot detect this
problem without additional information. So there should be a mechanism to make the
core information stale. Simply checking whether the beacon message’s Ancestor ID is the
receiver itself will no solve the problem, since a loop may still form involving more than
two nodes.

To solve this problem, in our implementation, a Sequence Number is added to the
beacon message. The sequence number is only created by the core node and increments
by 1 every time a beacon message is sent. For a node that is not the core, it stores the
sequence number coming from the ancestor and sends it out in beacon message.

Every node maintains a hash table, called Core Table, which stores a list of (Core ID,
Sequence Number, Last Change Time) entries. If the sequence number from some core

 9

has not been increased for some specified period, any beacon message carrying the same
or older sequence number will not be processed by the receiver.

2.3 Multicast Routing

2.3.1 Forwarded in Unicast Channel
After a spanning tree is established, multicast routing among all the tree members can

be done along the tree. Since basically a node’s location in the tree is unknown, how to
forward a multicast data packet can not be decided by the source address of the packet. In
our protocol, on receiving a multicast packet from one of its neighbors, a node will
simply forward the packet to all other neighbors, if there is any.

When an underlying unicast wireless channel is used to transfer the data packet, the
fields needed to be carried by the data packet to do the forwarding decision is a (Source
ID, Previous Hop) pair.

An example is shown in the Figure 5 to show how node 3 forwards a multicast coming
from node 4. As a result of our forwarding rules, the packet will be forwarded to node 1
and 2.

Figure 5: Forwarding Multicast Packet in Unicast Channel

2.3.2 Forwarded in Broadcast Channel
When packet is forwarded by using the wireless broadcast channel, all adjacent nodes

inside the transmission would have the chance to receive the packet. So some further
control should be made to make it clear about which nodes are supposed to receive the
packet.

In our protocol, when forwarded in underlying broadcast channel, a multicast data
packet carries the fields of (Source ID, Previous Hop, 2nd Previous Hop). A node will
only deliver and forward those multicast data packets coming from tree-neighbors and
not listing the node’s ID as Previous Hop or 2nd Previous Hop. Data packet will be sent
out at most once by each node forwarding it because a broadcast channel is being used.

Figure 6 shows an example about how node 3 forwards a multicast message received
from node 4. Node 3 resends the message out by local broadcasting and all adjacent

 10

nodes will receive it, including 1, 2, 4 and 3 itself. Node 3 will drop this message because
its ID equals to Previous Hop of this message. Node 4 will drop this message because its
ID equals the 2nd Previous Hop. Node 1 and 2 will accept the message and do further
forwarding when necessary.

Figure 6: Multicast Forwarding with Broadcasting Channel

2.3.3 A Unified Solution
By analyzing the solutions for forwarding multicast data packet in unicast or

broadcasting channel, we found that they can be unified to a general scheme. In either
solution, the data packet carries a list of nodes the packet has recently gone through
(route record). However the difference is for forwarding in unicast channel, the size of
list is 1, while in broadcast channel, the size of list is 2. When a node receiving a packet
from a neighbor finds itself in the list, it will drop it.

Suppose the size of the list is N, then a routing loop involving N nodes can be avoided.
For a spanning tree topology, in which only two-node-loop is possible, N=2 is sufficient.
However, for a protocol forming a mesh topology, to totally avoid loop, N has to equal to
the TTL of the packet.

Thus, for forwarding multicast data packet, we got a single solution by adding a route
record with limited size to the packet header, and let the size be a parameter of the
network. When underlying unicast channel is used to forward data, the size should be at
least 1 (previous hop), and when broadcast channel is used, size should be at least 2
(previous hop, 2nd previous hop). A node receiving the packet and seeing itself in the
route record will not process it.

2.4 Unicast Routing
The difficulty of doing unicast in spanning tree is that the location of the destination in

the tree is usually unknown. The exception only happens when the destination is the core
node or it’s one of the source node’s neighbors. Certainly a unicast packet can be always
flooded to the whole network as like it’s a multicast packet, but it’s very inefficient.

 11

To route unicast data packet in an efficient way, we propose a unicast solution to build
an on-demand unicast path between source and destination.

2.4.1 Forwarding Table
In our protocol, every node maintains a Forwarding Table containing a list of

(Destination, Next Hop) pairs, which works as a routing cache. The node uses the
forwarding table to lookup the next hop node to forward a unicast packet. How the
forwarding table is updated is discussed in 2.4.2.

A forwarding entry will be removed from forwarding table if it expires or the next hop
is no longer a neighbor.

As we have mentioned before, the forwarding table is not the only way to find the next
hop leading to a destination. When the destination is core, or is a neighbor of the node
forwarding the packet, the node also knows what the next hop is. On the other hand, even
though the forwarding node can find the next hop from the forwarding table, if the next
hop node is currently not its neighbor, it still cannot forwards the packet to the next hop
node.

When a node doesn’t know where to forward a unicast packet, it just forwards to all
other neighbors except the previous hop, as like it’s a multicast packet. So when the
location of destination is unknown, the packet will be flooded to almost the whole
network until it reaches the destination node.

2.4.2 Building On-Demand Unicast Path
2.4.2.1 On-Demand Unicast Route Maintenance

A unicast path built between the source and destination when all nodes on the route
between them have a forwarding entry for that destination and carrying the right next hop
information.

We suppose node S tries to send a unicast data packet to D, and the process to build
and maintaining a unicast path is composed of several parts:

1. When a node tries to forward a unicast packet and doesn’t know where to forward
it, besides flooding the packet ahead, it also sends out a RouteRequest message to
all its neighbors to inform them of its lack of the forwarding entry for D.

2. When a node holding a forwarding entry for D receives a RouteRequest from the
next hop node, it learns that this forwarding entry is no longer valid so just
removes it from the forwarding table.

3. When a node knowing where to forward packet to D (either D is one of its
neighbors, or it holds a forwarding entry for D, or itself is D) receives a
RouteRequest for D from one of its neighbor, it sends out a RouteReply message
to all neighbors excepts the next hop node.

4. When a node receives a RouteReply message for D from one of its neighbors, and
it’s not holding a forwarding entry for D, it update its forwarding table by adding
the forwarding entry for D and set the next hop to the neighbor sending the
message. If a forwarding entry for D has already existed, update the next hop field
to the message sender. After then, if and only if a forwarding entry has been
added or a forwarding entry has changed its next hop field due to receiving this
RouteReply, the node will further forward this message to all other neighbors. The
destination D itself will not process this message.

 12

In the above situations, if a protocol message is being sent to multiple neighbors of a

node (1. 3. & 4.), it’s sent in broadcast channel.

We illustrate our Route Discovery Algorithm in Figure 7 using an example. In our

example, the source node is 10, and the destination is 4. In all of the sub-figures below, a
node shown in gray color indicates that it knows where to forward the packet to
destination 4.

(a) (b)

(c) (d)

(e) (f)

 13

(g) (h)

(i) (j)

(k)

Figure 7: Route Discovery Example

At the very beginning, all nodes in the network have empty forwarding tables, so the
data is relayed by every node to all other neighbors. (a) shows that the packet is flooded
to the network along the spanning tree until it reach node 7, who is 4’s ancestor and will
forward the data to 4 directly. In the mean time, because 7 receives a RouteRequest from
1, it will sends out a RouteReply, as shown in (b). Node 1, 5, 3 and 10 will further
forward the RouteReply. As a result, in (c), a unicast path 10-3-5-1-7-4 is built. Node 2, 6
and 8 will also have the forwarding entries for D, because the RouteReply message is
forwarded by each node not having a valid forwarding entry for D.

 14

In (d), node 4 moves to another place and becomes a descendant of node 4, so the
unicast path breaks at node 7. When some data packet reach node 7, node 7 found the 4 is
no longer its neighbor, so it simply floods the data ahead to the remaining part of the
spanning tree, along with a RouteRequest message to all neighbors. After the
RouteRequest message reaches the node 1, 1 removes its forwarding entry for D. In (e),
after node 2 receives the data packet and forwards to its descendant node 4, it will send a
RouteReply back to repair the path. As shown in (f), a unicast path from 1 to 4 is repaired.

In (g), node 7 moves away, so node 2 has to find another new ancestor, which is 6, so
the unicast path breaks again at 7. Situation is much more complicated. Note that this
time, 1, 5 and 6 are all holding forwarding entries for D with wrong next hops. We will
show how these wrong entries are removed or updated.

Similarly, when data reach node 7, 7 cannot relay it to 2 and doesn’t have any other
neighbor to forward the packet, so only a RouteRequest is sent to 1, which removes the
forwarding entry on receiving it. In (h), another data packet reaches 1, and for 1 still has
no forwarding entry, it floods the data to 7 and sends a RouteRequest to clear the
forwarding entry in 5. Because these two data packet can never reach 4, they are lost.

In (i), when another data packet arrives, 5 will send RouteRequest to clear the
forwarding entries of 3 and 6, and flood the data. This time, the data will reach node 2,
and the destination 4 finally. In (j), similar to previous situations, node 2 sends back
RouteReply to repair the path.

2.4.2.2 Some Discussions

Some advantages of our route maintenance algorithm are listed below:
1. This solution builds the unicast path in an on-demand way, eliminating extra control

overhead.
2. Since our protocol can detect the invalid unicast path and actively repair it, the

timeout mechanism for forwarding entry becomes not very much necessary. We could
even set the expiring time for a forwarding entry to an infinite value.

3. No information is exchanged periodically to maintain the path. If the spanning tree
topology remains unchanged, no protocol message is needed to repair the path.

4. We try to restrict the forwarding of RouteReply message to prevent it from being
flooded to the whole spanning tree unnecessarily.

5. We don’t assume any pattern for the unicast data stream. It can vary from casual
packet exchange, to heavy load traffic.

2.4.3 Forwarding
When a node knows that a unicast path is passing through itself, it will forward the

unicast data packet along the path, otherwise it will forward it like a multicast packet, that
is, it will sends it to all neighbors other than the one it received the packet from.

 15

3. Detailed Protocol Description

3.1 Basic Elements

3.1.1 SPT ID
Every node has a unique ID, which is a positive integer number. It can be a value set in

the configuration file, a random number or derived from the IP address.

3.1.2 Physical Address
Node’s Physical Address is used to transmit protocol messages and data packets

between nodes using underlying unicast channel. In our implementation, it’s actually an
address pair containing a physical address to transmit protocol message, and another one
to forward data packets. A unicast physical address is in the form of “IPAddress/Port”.
The transfer protocol is UDP or TCP.

When a protocol message or data packet is transferred using underlying broadcasting
channel, a multicast physical address is used to send the packet. This multicast physical
address is not exchanged between nodes because it’s well known by all nodes. The form
of this multicast physical address is like “MulticastIPAddress/Port”. The transfer
protocol is UDP Multicast.

3.1.3 Neighbors
Two nodes are neighbors if and only if there’s a tree edge between them, which means

for nodes N1 and N2, N1.Ancestor==N2 or N2.Ancestor==N1.
Nodes in a node’s transmission range are called this node’s adjacent nodes.

3.2 Tables

3.2.1 Tree Information Table
Tree Information Table contains a single entry. The contents of the table are shown

below:

Self
ID

Physical
Address

Core ID Ancestor
ID

Cost Path
Metric

Sequence
Number

Table 1: Tree Information Table

Self ID: The ID of this node
Physical Address: The physical address of this node. Physical address is used to

forward data packets.
Core ID: The ID of the core.
Ancestor ID: The ID of the ancestor. If this node is core, Ancestor ID=Self ID.
Cost: The cost of the path from this node to the core. Metric is the hop count. If this

node is core, Cost=0.
Path Metric: The Path Metric of the path between node and the core.

 16

Sequence Number: This value is set to the Sequence Number recorded in the newest
beacon message received from the ancestor, if the ancestor is not the node itself.
Whenever a node whose ancestor is another node sends out a beacon, it put this value
into the beacon message.

3.2.2 Neighborhood Table
Neighborhood Table contains a list of neighborhood entries corresponding to a node’s

neighbors in a spanning tree.

Neighbor
ID

Physical
Address

Core
ID

Cost Path
Metric

Timestamp IsAncestor?

… … … … … … …
Table 2: Neighborhood Table

Neighbor ID: The ID of the neighboring node. Every entry has a unique Neighbor ID.
Physical Address: The physical address of the neighboring node. The physical address

contains both the unicast addresses for transferring protocol and data packets to this
neighbor.

Core ID: The ID of the core of this neighboring node.
Cost: The neighboring node’s cost to the core.
Path Metric: The Path Metric of the path between that neighbor and the core.
Timestamp: The last time this neighborhood entry has been updated.
IsAncestor : Whether this neighboring node is the ancestor. There should be at most

one entry with this field set to ‘YES’. An entry with IsAncestor set to ‘YES’ is called an
‘Ancestor Entry’, otherwise it’s called ‘Descendant Entry’.

3.2.3 Backup Ancestor Table
The Backup Ancestor Table is used to quickly find an alternative ancestor when the

current ancestor has lost contact to the node. The entry in table is similar to that in the
Neighborhood Table.

Neighbor
ID

Physical
Address

Core
ID

Cost Path Metric Timestamp

… … … … …
Table 3: Backup Ancestor Table

This table has a limit of size, and entries in it are in the order of the extent to which
they will be favored as an ancestor. An entry in the backup ancestor table is not
necessarily in the neighborhood table. Every entry has a unique Neighbor ID.

3.2.4 Adjacency Table
The Adjacency Table is used to record the Link Quality values of all adjacent nodes. It

stores a list of IDs of nodes it received beacons from recently. Every entry has a unique
Adjacent Node ID.

 17

Adjacent Node ID Link Quality Timestamp

… … …
Table 4: Adjacency Table

3.2.5 Core Table
 The Core Table is used to solve the count-to-infinity problem. Core Table records the
newest sequence numbers generated by different core nodes and the last time they have
been increased. Every entry has a unique Core ID.

Core ID Sequence Number Last Change Time(ms)

… … …
Table 5: Core Table

3.2.6 Forwarding Table
Forwarding Table in a node functions like a Routing Cache, and is used to forward

unicast data packet.
When a node is going to forward a unicast packet, it checks if the destination is the

core or a neighbor, in which case it knows where to forward the packet.
If the result is false, it checks the Forwarding Table. If an entry is present and the

NextHop is one of its neighbors, the packet is forwarded to the NextHop, otherwise, it
will be forwarded to all neighbors other than the one the node received the packet from.

In 3.5.1, an solution to actively build and maintain the forwarding table is presented.

Destination ID Next Hop Timestamp
8 4 1065801553401
7 3 1065801553614

… … …
Table 6: Forwarding Table

Destination ID: The ID of the destination. Every entry has a unique Destination ID.
Next Hop: The ID of the next hop node leading to the destination
Timestamp: The last time this entry has been confirmed by a data packet sourced at the

node with the Destination ID, or by a route reply packet containing that Destination ID.

3.3 Beacon

3.3.1 Beacon Message
Beacon Message is sent by each node to announce its presence and exchange tree

information. The information contained in a Beacon Message is listed below:

(Sender ID, Core ID, Ancestor ID, Cost, Sequence Number, <Adjacency Table>)

<Adjacency Table>=<Size, ID1, LinkQuality1, ID2, LinkQuality2 …>

 18

The beacon message contains the information store in the sender’s Tree Information

Table and Adjacency Table. For the Sequence Number, we have the following rule:
1. If Node.CoreID==Node.Self ID, Sequence Number in the beacon message is

generated incrementally.
2. Otherwise, use the Sequence Number stored in the Tree Information Table.

3.3.2 Sending Beacon
Beacon Message will be sent by every node in the network periodically, every

[Beacon-Period] seconds. A beacon message is sent to a local broadcast channel so that
every node in the transmission range will receive it.

3.3.3 Receiving Beacon
3.3.3.1 Overall Operation

The overall operation diagram is shown in Figure 9:

Figure 9: Overall Processing of Beacon Message

3.3.3.2 Adjacency and Reliability Test

Before a beacon message can be processed, the node uses it to update the link quality
between node and beacon sender. That is, the node records how many beacons have been
received during the last [Ping-Buf-Size] beacon periods. The BiLQ value of the beacon
sender is computed using this LinkQuality and the information stored in the adjacency
table in the beacon message.

After updating the BiLQ of the link, the node checks if the link is reliable (BiLQ
>=[Reliable-Threshold]. If the result is YES, this node confirms that the beacon sender
can also receive beacons from it, so there is a symmetric reliable link between them.
Otherwise, there may exist an asymmetric or unreliable link.

 19

When the testing result is NO, this beacon message will not be processed. However, no
matter what the result is, the node will always use the ID of beacon sender to update its
Adjacency Table.

3.3.3.3 Core Table Test

When a node receives a beacon message, it will try to find the matching entry in the
Core Table using Core ID of the message as the index:

1. If no entry is found, the message is processed as usual and an entry is added to Core
Table using the sequence number in the message.

2. If an entry is found, and the sequence number of the message is a new one, the
message is processed as normal and the entry is updated using the sequence number in
the message.

3. If an entry is found, and the sequence number of the message is the same one, don’t
update the entry. If the last updating time is not beyond [Max-Message-Age] ago, this
message is processed as usual; otherwise it’s dropped because the core information
contained in this message is too stale.

3.3.3.4 Deciding Ancestor

After passing the adjacency test and core table test, a beacon message can be processed.
A node will use the beacon message to decide whether the beacon sender should become
its ancestor. The algorithm is listed below (M denotes the beacon message):

1. If M.CoreID <Node.CoreID, return TRUE.
2. If M.CoreID >Node.CoreID, return FALSE
3. If M.Cost>=(Node.Cost+2), return FALSE
4. Computes the NewPathMetric assume that the beacon sender becomes the new

ancestor. The way to compute the NewPathMetric value depends on the topology
algorithm being used.

 a) Minimum hop count algorithm: NewPathMetric= - M.Cost
 b) Link quality algorithm: NewPathMetric = BiLQ(M.SenderID)
 c) Path quality algorithm: NewPathMetric = BiLQ(M.SenderID)*M.PathMetric
5. NewPathMetric>=NodePathMetric+[Jump-Threshold], return TRUE.
6. Otherwise, return FALSE;

A result of ‘TRUE’ indicates that the beacon sender should be the new ancestor of this

node.

3.3.3.5 Maintaining Tree Information and Neighborhood Table
After getting the result to decide whether the beacon sender should be the new ancestor,

we do some further steps to update the node’s data structures:
1. If result==TURE, update the tree information and neighborhood table, and return:

a) Node.CoreID = M.CoreID
b) Node.AncestorID = M.SenderID
c) Node.Cost = M.Cost+1
d) Node.SequenceNumber = M.SequenceNumber
e) Node.PathMetric = NewPathMetric

 20

f) If there’s a descendant entry in the table with NeighborID==M.SenderID,
remove this entry.

g) Remove the old ancestor entry (the one set IsAncestor to ‘YES’) from the
neighborhood table, and add a new entry containing this new ancestor into the
table; if old ancestor ID equals to new ancestor ID, only update the ancestor
entry instead of removing it.

2. Otherwise, if M.SenderID==Node.AncestorID, update the tree information and
neighborhood table:
a) If M.CoreID>=Node.SelfID, reset the tree information, and return:

i. Node.CoreID = Node.SelfID
ii. Node.Ancestor = Node.SelfID

iii. Node.Cost = 0
iv. Node. NewPathMetric =MaximumPathMetricValue
v. Remove the ancestor entry from the neighborhood table.

b) Otherwise, update the tree information and ancestor entry in neighborhood table,
and return:

i. Node.CoreID = M.CoreID
ii. Node.AncestorID = M.SenderID
iii. Node.Cost = M.Cost+1
iv. Node. PathMetric = NewPathMetric
v. Node.SequenceNumber = M.SequenceNumber
vi. Update the ancestor entry with this message.

3. Otherwise, if M.AncestorID==Node.SelfID, update the neighborhood table by
adding or updating the corresponding descendant entry, and return.

4. Otherwise, if there exists a descendant entry in the neighborhood table, remove that
entry.

3.3.4 Timeout Mechanism
3.3.4.1 Timing out Adjacency Entries

After an adjacency entry has not been updated for more than [Adjacency-Timeout]
seconds, it will be removed from the adjacency table of node.

3.3.4.2 Timing out Core Entries
 After a node has not received any beacon message carrying new Sequence Number for
some Core ID for more than [Core-Timeout] seconds, the corresponding entry in Core
Table will be removed.

3.3.4.3 Timing out Neighborhood Entries

After a neighborhood entry has not been updated for more than [Neighbor-Timeout], it
is removed from the neighborhood table.

If the neighborhood entry to be removed is an ancestor entry, tree information is reset:
1. Node.CoreID = Node.SelfID
2. Node.Ancestor = Node.SelfID
3. Node.Cost = 0
4. Node.PathMetric = MaximumPathMetricValue

 21

After the tree information is Reset, the node thinks that Core is itself, as like it just

begins to join the network.

3.3.5 Backup Ancestor
When the link between a node and its ancestor is broken, the timeout mechanism will

detect the broken link and reset the tree information as like the node doesn’t have an
ancestor. The node will have chance to re-choose a new ancestor when it gets beacon
messages from other adjacent nodes some time later. To eliminate the time gap between
the time the node loses contact with its ancestor and the time the node finds another
appropriate ancestor, a backup ancestor table is used.

3.3.5.1 Updating Backup Ancestor Table

When the sender of a beacon message is decided by 3.3.3.4 and 3.3.3.5 to be neither
the ancestor nor a descendant of the node, the message is used to update the backup
ancestor table.

The entries in backup ancestor table are in the descending order of the extent they is
favored by the node as an ancestor.

Different entries will not have duplicate different Node ID.
Nodes believed to be either the ancestor or a descendant of this node will be removed

from the backup ancestor table.
Entries that have not been updated for more than [Neighbor-Timeout] will be removed

from the backup ancestor table

3.3.5.2 Finding Backup Ancestor
Every time before a node wants to reset its tree information table, that is, set itself as

the core, it will check the backup ancestor table first to find whether it can find an
alternative ancestor. The first entry in the backup ancestor table will be selected.

If there is no backup ancestor can be found, the node will reset the tree information
table as usual.

3.4 Joining and Leaving

3.4.1 Joining
When a node wants to join a spanning tree network, it starts to do the following steps:
1. Reset the tree information by setting:

a. Node.CoreID = Node.SelfID
b. Node.AncestorID = Node.SelfID
c. Node.Cost = Node.Cost
d. Node.PathMetric=MaximumPathMetricValue. The MaximumPathMetricValue

depends on which algorithm to use:
i) Minimum hop count algorithm: MaximumPathMetricValue=0
ii) Link quality algorithm: MaximumPathMetricValue=1
iii) Path quality algorithm: MaximumPathMetricValue=1

2. Clear the Adjacency Table, Core Table, and Neighborhood Table.
3. Start to periodically send out beacon messages.

 22

3.4.2 Leaving
When a node wants to leave the network, it simply stops sending and receiving beacon

messages. To help the neighboring nodes to learn about the leaving of the node as soon as
possible, besides the timeout mechanism, a Goodbye message is broadcasted by the
leaving node to all nodes in its transmission range.

The Goodbye message only contains the ID of the leaving node. Any node receiving a
Goodbye message will remove the sender from its neighborhood table.

For a node leaving the network because of unexpected failure, a Goodbye may not
have chance to be sent out. In this case, timeout mechanism will help to remove this node
from the neighborhood table of other nodes.

3.5 Multicast Data Packet Forwarding

3.5.1 Packet Header
The header of the multicast data packet should contain following fields:

(Source ID, Route Record)

The Route Record field is a list of node IDs the packet has recently gone through in the

order of time they are put in the list. The size of the Route Record should be at least 1,
and limited by a global parameter. The last element of Route Record should be always the
previous hop of the packet. If underlying broadcast channel is used, the maximum size
should be at least 2.

3.5.2 Forwarding Decision
When a node receives a multicast data packet, it does the forwarding decision by the

following rules:
1. If the last node in the Route Record (previous hop) is not a neighbor of this node,

the packet is dropped.
2. Otherwise if Node.SelfID is in the Route Record, drop the packet.
3. Otherwise, deliver this packet and forward it by doing:
a) Insert Node.SelfID into the last position of Route Record, and remove the first

element if the record is already full.
b) If an underlying unicast channel is used, send message to all nodes listed in the

neighborhood table other than the Previous Hop, by using the Physical Address
stored in the neighborhood entry.

c) Otherwise Send out the message only once by local broadcasting.

3.6 Unicast Data Packet Forwarding

3.6.1 Forwarding Table
3.6.1.1 Updating Forwarding Table

The entries in the forwarding table will be added or updated next hop field in the on-
demand route maintenance scheme described in 3.6.2. Whenever an entry is added or
updated, the time stamp field is updated to current time.

 23

A forwarding entry is invalid when the next hop is no longer a neighbor. The node
checks if an entry is valid when it wants to use the entry to forward a unicast data packet.
If it finds the entry no longer valid, it removes it from the forwarding table, otherwise, the
time stamp of the entry is updated to current time.

A forwarding entry will become invalid and be removed when the next hop node is
removed from the neighborhood table, or the destination becomes one of the node’s
neighbors.

3.6.1.2 Timing out Forwarding Entries

A forwarding entry will be removed from Forwarding Table if it has not been updated
for [Route-Cache-Timeout] seconds. The [Route-Cache-Timeout] could be a very large
value, or even infinity, which means a forwarding entry will never been removed because
it is too old. Since we have a mechanism to detect and correct invalid routing cache, we
don’t very much rely on the timeout mechanism to do the same work. On the other hand,
because the time stamp of the forwarding entry is updated whenever a data packet is
forwarded to the next hop, data traffic will help to prevent the corresponding forwarding
entry from expiring.

3.6.2 On-Demand Route Maintenance
3.6.2.1 Forwarding Process

The header of the unicast data packet should contain following fields:

(Source ID, Destination ID, Route Record)

The Route Record field is a list of node IDs the packet has recently gone through in the

order of time they are put in the list. The size of the Route Record should be at least 1,
and limited by a global parameter. The last element of Route Record should be always the
previous hop of the packet. If underlying broadcast channel is used, the maximum size
should be at least 2.

On receiving a unicast packet with source S and destination D, a node do the following

steps:
1. If it’s D itself, deliver the packet.
2. Otherwise, if D is the core, forward the packet to its ancestor.
3. Otherwise, if D is one of its neighbors, forward the packet to D.
4. Otherwise, if there is a forwarding entry E, and E.DestinationID==D, and

E.NextHop is one of the node’s neighbors, forward the packet to E.NextHop.
5. Otherwise, send out a RouteRequest and forward the packet to all other neighbors

except the previous hop. If there’s a forwarding entry E.DestinationID==D, remove that
entry.

For 1., 2., 3., or 4., we says the node know where to forward this packet. In 5., we say

the node doesn’t know where to forward this packet.

3.6.2.2 Sending Route Request

 24

In 3.6.2.1, if the node doesn’t know where to forward the packet (5.), it will send a
RouteRequest message to all neighbors using broadcasting channel, including the
previous hop of the packet. The RouteRequest message contains the following
information:

(Sender, PathDestination)

Sender: the sender of this message.
PathDestination: the destination of the unicast path, for which a route is requested for.

While sending the RouteRequest message, the node will add an entry containing the

PathDestination and current time into the Route Request History Table.
If the destination of packet is core node, no RouteRequest is ever sent.

3.6.2.3 Receiving Route Request
The actions taken by a node on receiving a RouteRequest message RReq are listed

below:
1. If RReq.Sender is not one of the neighbors, do nothing but return.
3. If RReq.PathDestination==Node.CoreID, do nothing but return.
3. Otherwise, if there’s a forwarding entry FE, and

FE.Destination==RReq.PathDestination, and FE.NextHop==RReq.Sender, removes FE
from the forwarding table.

4. Otherwise, if Node.SelfID==RReq.PathDestination, or there’s a neighbor entry NE
with NE.NeighborID==RReq.PathDestination, or there’s a valid forwarding entry FE
with FE.Destination==RReq.PathDestination, and FE.NextHop!=RReq.Sender, sends
out a RouteReply message (3.6.2.4).

3.6.2.4 Route Reply

RouteReply Message is sent by an intermediate node or the destination to announce its
having a route to some destination. Neighboring nodes will rely on this message to
update their forwarding table, so as to establish or maintain the unicast path to that
destination. A RouteReply message contains the following information:

(Sender, NextHop, PathDestination)

Sender: the sender of this message.
NextHop: the next hop node from the view of the message sender. If the sender itself is

the destination, this field is set to it’s ID; if the destination is one of the sender’s
neighbors, this field is set to the destination’s ID; if the sender is having a valid
forwarding entry for that destination, this field is set to the next hop field of that entry.

PathDestnation: the destination of the unicast path.

A RouteReply message is triggered when a node receive RouteRequest message for

some destination and happens to know where the destination is (3.6.2.3, 3.).
On receiving a RouteReply message RR, a node will do the following steps:
1. If RR.Sender is not a neighbor, do nothing but return.
2. Otherwise, if RR.NextHop==Node.SelfID, do nothing but return.
3. Otherwise, if Node.SelfID==RR.PathDestination, do nothing but return.

 25

4. Otherwise, if RR.PathDestination is one of this node’s neighbors, do nothing but
return.

5. Otherwise, if there is no forwarding entry FE with
FE.Destination==RR.PathDestination, add an forwarding entry FE to the forwarding
table, and set FE.Destination=RR.PathDestination, and FE.NextHop=RR.Sender, and
FE.Timestamp=current time.

6. Otherwise, if there a forwarding entry FE with
FE.Destination==RR.PathDestination and FE.NextHop!=RR.Sender, set
FE.NextHop=RR.Sender, and FE.Timestamp=current time.

7. Otherwise, if there a forwarding entry FE with
FE.Destination==RR.PathDestination and FE.NextHop==RR.Sender, set
FE.Timestamp=current time.

8. If either step 5. or 6. is executed, set RR.NextHop=RR.Sender,
RR.Sender=Node.SelfID, and forward RR to all neighbors using broadcasting channel.

4. Settings
 At the end of the description of each setting, the corresponding configuration attribute
is listed.

4.1 Timers for Maintaining Spanning Tree
 [Beacon-Period] Default = 1 second. This is the time period between two consecutive

beacon messages sent by a node. (/Public/Node/SPT/BeaconTime)
[Neighbor-Timeout] Default = 5 seconds. A neighborhood entry will be removed if it

has not been updated for this specified timeout value.
(/Public/Node/SPT/NeighborTimeout)

[Adjacency-Timeout] Default = 20 seconds. An adjacency entry will be removed if it
has not been updated for this specified timeout value. (/Public/Node/SPT/Adjacency-
Timeout)

[Core-Timeout] Default = 20 seconds. A core table entry will be removed if the node
has not received any beacon message carrying new Sequence Number for the Core ID of
this entry for more than this specified timeout value.
(/Public/Node/SPT/CoreHistoryTimeout)

[Max-Message-Age] Default = 5 seconds. If the Sequence Number from some Core ID
has not changed for more than this specified time value, any beacon message carrying the
same Core ID and Sequence Number will not be said to be too old and not be processed.
(/Public/Node/SPT/MsgMaxAge)

[Reliable-Threshold] Default = 0.1. The threshold value that a link quality of a link
must achieve to become a spanning tree edge.
(/Public/Node/SPT/LinkQuality/ReliableThreshold)

[Jump-Threshold] Default = 1. A new ancestor candidate must improve the metric by
at least this threshold value. (/Public/Node/SPT/JumpThreshold)

[Ping-Buf-Size] Default = 10. This is the size of the buffer the node uses to record the
beacon recently received from an adjacent node.
(/Public/Node/SPT/LinkQuality/PingBufSize)

 26

4.2 Timers for Maintaining Unicast Path
[Route-Cache-Timeout] Default=20s. This timer is used to timeout an old forwarding

entry which is believed to be probably invalid. It can be set to Infinity, which means that
a forwarding entry can never be removed because of being too old. The reason about why
we don’t have to timeout a forwarding entry is that, we have another mechanism to detect
and correct invalid route cache in an on-demand way (3.5.2).
(/Public/Node/SPT/RouteCacheTimeout)

4.3 SPT Logical Address Setting
There are three different way to decide the logical address of a SPT node, depending

on how the configuration XML file is composed:
1) Use a specified SPT logical address

<SPT>
<Coords>
<FIXED>

 <coordinate>XX</coordinate>
</FIXED>

</Coords>
</SPT>

2) Use a random integer number smaller than the <base> as the logical address

<SPT>
<Coords>
<RANDOM>

 <base>XXX</base>
</RANDOM>

</Coords>
</SPT>

3) Use the IP address to generate a SPT logical address. The current system have to use

TCP/IP to support this setting
<SPT>
<Coords>
<USE_IP/>

</Coords>
</SPT>

5. Message Formats
 This section list the detailed message formats used in the Spanning Tree Protocol,
including the protocol messages and data messages. Since the SPT protocol is
implemented as a part of the Hypercast software, the message headers listed here are all
Hypercast-related.

 27

5.1 Protocol Message Formats
The common format for all protocol messages is shown in Figure 10.

Figure 10: Protocol Message Format

The types of the SPT protocol message are:

Message Type Type Field
Beacon 0
Goodbye 1
RouteRequest 2
RouteReply 3

Table 8: Protocol Message Types

The OverlayIDHash is a 4-byte long hash value which is derived from the OverlayID.

It’s used to identify whether this protocol message is coming from a node inside the same
overlay network. If no, the message will be dropped.

5.1.1 Beacon Message
Beacon message is sent by each node periodically to announce its existence and

exchange tree information with adjacent nodes.
A Beacon Message is sent by using underlying broadcasting channel.

Figure 11: Beacon Message Format

SenderID: The ID of the sender of this beacon message.
PhysicalAddress: The physical address of the sender.
CoreID: The Core ID of the sender.
AncestorID: The ID of the sender’s ancestor.
Cost: The path cost from the sender to the core.
SequenceNumber: The newest sequence number generated by the core and received by

the sender.

 28

Adjacency Table: This table copies the IDs listed in the beacon sender’s adjacency
table. So the length of a beacon message is variable, depending on the size of its
adjacency table. A node’s ID is in the adjacency table of a beacon message means that
the beacon sender has received beacon message from this node recently.

5.1.2 Goodbye Message
The Goodbye Message is sent by a leaving node to inform its neighbors. Any node

receiving a Goodbye message will remove the message sender from its neighborhood
table immediately.

A Goodbye Message is sent by using underlying broadcasting channel.

Figure12: Goodbye Message Format

5.1.3 Route Request Message
A RouteRequest Message is sent to all neighbors when a node doesn’t know where to

forward a unicast data packet and has to flood it ahead. The previous hop of this data
packet will use this message to clear the forwarding entry, while other neighbor will be
triggered to send RouteReply message by this message if it knows where the destination
is.

Figure 13: RouteRequest Message

SenderID: The ID of the sender of this message.
PathDstID: The ID of the destination, to which a route is requested.

5.1.4 Route Reply Message
A RouteReply Message is used to actively build or repair a unicast path when some

node sees a RouteRequest coming in for some destination, for which it knows where to
forward the unicast data.

Figure 14: Route Reply Message

SenderID: The ID of the sender of this message.
NextHopID: The next hop for the unicast destination from the view of the message

sender. If the sender is the destination itself, this field will be set to the ID of itself. A

 29

node receiving a RouteReply message with NextHopID set to it will simply ignore the
message.

PathDstID: The ID of the destination of the unicast path to be built.

5.2 Data Message Formats
 Here we present the header for the data packet forwarded in a spanning tree network.
We only list the fields which are related to our protocol. In Hypercast software, a data
packet header has a lot of common fields shared by different protocols, which are not
listed here.

5.2.1 Multicast Packet Header

Figure 15: Multicast Data Packet Header

Source: The ID of the multicast source node.
Route Record: The list of nodes the packet has recently gone through. The Size of route

record is limited by a maximum value, which is a parameter. The strategy of replacing
when new node ID comes in and list is full, is FIFO.

A node receiving a multicast packet will drop it if it finds that:
1. The Previous Hop is not its neighbor.
2. Or, its node ID is in the Route Record of the packet.

5.2.2 Unicast Packet Header

 30

Figure 17: Unicast Data Packet Header

Source: The ID of the unicast source.
Destination: The ID of the unicast destination.
Route Record: The list of nodes the packet has recently gone through. The Size of route

record is limited by a maximum value, which is a parameter. The strategy of replacing
when new node ID comes in and list is full, is FIFO.

A unicast packet can be forwarded in underlying broadcasting channel only when the

forwarding node doesn’t know how to forward it, and trying to forward it to all other
neighbors except the previous hop.

A node receiving a unicast packet will drop it if it finds that:
1. The Previous Hop is not its neighbor.
2. Or, its node ID is in the Route Record of the packet.

6. Interaction with Overlay Socket

6.1 Interface Functions
In Hypercast framework, the spanning tree protocol is run in the protocol node, and it’s

the overlay socket that does the forwarding of data packets. On receiving a data packet
from a neighbor, the overlay socket will query the protocol node about where to forward
the packet by some specified interface functions, and do the forwarding accordingly.

So the Route Record scheme we have mentioned before is implemented in the overlay
socket, rather in the protocol node. And most of the data forwarding steps are also in the
overlay socket.

The interface functions related to data packet forwarding between the overlay socket
and protocol node are listed below:

Functions Comments
getParent(Dst) 1. The overlay socket queries the node by

this function to ask for the next hop to
forward a unicast packet.

2. The node can also use this function to
learn when the socket needs to forward a
unicast packet and what the destination is,
and this the only information the node need
to know for the unicast scheme.

3. If the node knows where to forward the
packet to destination, it simply returns the
next hop; otherwise it returns a NULL
value.

4. If the overlay socket gets a NULL value

 31

from the node, it will try to forward the
packet to all other neighbors except the
previous hop.

getChildren(Src) 1. The overlay socket queries the node by
this function to ask for a list of next hop
neighbors to forward a multicast packet.

2. The node can also use this function to
learn when the socket needs to forward a
multicast packet and what the multicast
source is.

3. The spanning tree protocol node always
returns a NULL list here.

4. Since the overlay socket always gets a
NULL value by this function, it will try to
forward the packet to all other neighbors
except the previous hop.

getAllNeighbors() The overlay socket queries the node by this
function to ask for a list of all neighbors.

Table 9: Interface Functions between Overlay Socket and Protocol Node

6.2 Operations of Forwarding Engine
The ways how the forwarding engine in OL_Socket operates to forward data are listed

as pseudo codes:

MulticastPacketReceived(p){
 If (p didn’t come from a neighbor)return;
 If (my address is in the route record of p) return;
 Children_list=node.getChildren(p.Src);

If(Children_list==null)
 Children_list=node.getAllNeighbors()-p.PrevHop;

 Add my address to the route record of p
 Forward p to each neighbor in the Children_list;

 Deliver p to the application;
}
UnicastPacketReceived(p){
 If (p didn’t come from a neighbor) return;
 If (my address is in the route record of p) return;
 If (I am the destination){

 32

 Deliver p to the application;
 return;
 }
 Nexthop=node.getParent(p.Dst);
 If(Nexthop!=null){
 Add my address to the route record of p;
 Forward p to Nexthop;
 }else{
 Nexthop_list=node.getAllNeighbors()-p.PrevHop;
 Add my address to the route record of p
 Forward p to each neighbor in the Nexthop_list;

}

}

7. States and State Transitions

7.1 State Definitions

State Name State Definition

Stopped The node is not running
Core The node is the core of the spanning tree
Not Core Te node is not core of the spanning tree

Table 10: Node States Definitions

Stopped: Nodes in this state do nothing. Before a node transits from another state to
Stopped state, a Goodbye message will be sent out.

Core: After a node starts to join the network, it enters in this state. A node in IsCore
state will periodically send out beacon message carrying an incremental sequence number.

NotCore: After a node in IsCore state receives a valid beacon message containing a
Core ID smaller than its ID, it enters the No Core state. In this state, a node will
periodically send out beacon message carrying the sequence number it got from its
ancestor.

7.2 State Transition Diagram

 33

Figure 19: Transition Diagram of Node States

7.3 Actions of SPT Protocol
The following tables summarize the actions taken by nodes when events like message

arrival, timer expiration happen.
Please note that, when we say “insert an entry into a table”, we imply that if an entry

already exists, we only update the information carried by that entry. Similarly, “remove
an entry” implies that an entry will be removed only when it already exists in the table.

State: Stopped
Event Action
Join Group Reset tree information table, set ancestor to myself

�Core

State: Core
Event Action
Beacon message m
received from s

Update adjacency and reliability
IF m doesn’t pass adjacency and reliability test

return
Update core table
IF m doesn’t pass core table test

return
IF s is a better ancestor

Set ancestor to s
�Not Core
return

ELSE

 34

IF s is my descendant
 Insert s into neighborhood table
ELSE
 Remove s from neighborhood table

Goodbye message
received from s

IF s is one of the neighbors
Remove s from neighborhood table

Beacon Timer expires Check neighborhood table, adjacency table, core table, backup
ancestor table and forwarding table, to remove expiring or
invalid entries.

Broadcast Beacon message m to all adjacent nodes.
The sequence number in m is generated incrementally.

State: Not Core
Event Action
Beacon message m
received from s

Update adjacency and reliability
IF m doesn’t pass adjacency and reliability test

return
Update core table
IF m doesn’t pass core table test

return
IF s is a better ancestor

Set ancestor to s
update tree information table
remove old ancestor entry, insert s as the ancestor entry into

neighborhood table
return

ELSE
IF s is current ancestor
 IF m carries a Core ID larger than my ID
 IF a backup ancestor is found
 Set ancestor to this backup ancestor
 ELSE
 Reset tree information table, set ancestor to myself
 � Core
 ELSE
 Update ancestor information with m
ELSE
 IF s is my descendant
 Insert s into neighborhood table
 ELSE
 Remove s from neighborhood table
 Insert s into backup ancestor table

Goodbye message
received from s

IF s is one of the neighbors
Remove s from neighborhood table
IF s is current ancestor

 35

 IF a backup ancestor is found
 Set ancestor to this backup ancestor
 ELSE
 Reset tree information table, set ancestor to myself
 � Core

Beacon Timer expires Check neighborhood table, adjacency table, core table, backup
ancestor table and forwarding table, to remove expiring or
invalid entries.

IF the ancestor entry is removed

IF a backup ancestor is found
 Set ancestor to this backup ancestor
ELSE
 Reset tree information table, set ancestor to myself
 � Core

Broadcast Beacon message m to all adjacent nodes.
The sequence number in m uses the sequence number stored in
tree information table

State: Core, Not Core
Event Action
Leave Group Broadcast Goodbye to all neighbors

�Stopped
Multicast data packet
d received

IF myself is in the route record of d
 return
IF d was not sent by one of my neighbors

return

Insert myself into the route record of d, while maintaining the
maximum size of route record.

IF using underlying unicast channel

Forward d to every neighbors except the previous hop
ELSE
 IF has more than one neighbor

 Broadcast d to all adjacent nodes
Unicast data packet d
received

IF myself is in the route record of d
 return

IF d was not sent by one of my neighbors

IF I am the destination
 Deliver d
return

 36

IF I am the destination
Deliver d
return

Insert myself into the route record of d, while maintaining the
maximum size of route record.

IF destination is core

Forward d to my ancestor
return

IF destination is one of my neighbors
Forward d to destination node
return

IF can find the next hop for the destination in forwarding table
IF the next hop node is one of my neighbors
 Update the timestamp of the entry
 Forward d to the next hop node
 return
ELSE
 Remove the invalid forwarding entry

Send RouteRequest message for the destination to all neighbors
Forward d to all neighbors except the previous hop

RouteRequest message
rreq received from s

IF the sender is not a neighbor
 return
IF rreq’s path destination is core node
 return

IF there is a forwarding entry for the path destination, and the
next hop is equal to the sender of rreq

Remove the forwarding entry
return

IF I am the path destination
Send out RouteReply message
return

IF path destination is one of my neighbors
 Send out RouteReply message
return

IF there’s a valid and updated forwarding entry for the
destination

Send out RouteReply message
return

RouteReply message
rr received from s

IF the sender of rr is not one of my neighbors
 return

 37

IF rr’s path destination is core
 return
IF rr’s next hop is myself
 return
IF myself is the rr’s path destination
 return
IF the rr’s path destination is one of my neighbors
 return

IF there’s no forwarding entry for the destination

Add an entry for that destination
Set the entry’s next hop to rr’s sender
Forward rr to all neighbors
return

IF there’s a forwarding entry for the destination
IF the entry’s next hop is not rr’s sender
 Set the entry’s next hop to rr’s sender
 Update the entry’s timestamp
 Forward rr to all neighbors
 return
ELSE
 Only update the entry’s timestamp

