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1. Introduction 
In this document, we describe a network protocol which establishes and maintains a 

spanning tree connecting a group of mobile device in the wireless ad hoc network. The 
protocol is called Spanning Tree Protocol (or SPT) and has been implemented and tested 
as a part of the HyperCast 3.0 overlay software. 

This Spanning Tree Algorithm is inspired by Perlman’s Spanning Tree Algorithm for 
bridges. Perlman’s spanning tree algorithm is used to prevent the existence of a loop in 
networks that contain parallel bridges. If there is a loop in the network, a packet will be 
forwarded by bridges for indefinite times, which can result in increased traffic and 
degradation in network performance. Since a tree has no loop, Perlman solves the loop 
problem by using a spanning tree algorithm to organize those bridges into a tree.  

Similarly, in the ad hoc environment, after a spanning tree is built to connect a group 
of mobile devices, a packet can be always flooded into all members along the tree 
structure without loop and duplicated transmission. And a mechanism has been built to 
provide aid for unicasting a packet to some specific receiver without having to flood it to 
the whole network. 

We refer to the protocol entities that execute the SPT protocol as nodes. Each node has 
a logical address and a physical address. The logical address in SPT protocol is a positive 
integer number, called SPT ID and set to 32bits. The SPT ID should be unique for each 
node in a SPT group. The physical address is for transmitting protocol messages and data 
packets between nodes, which consists of an IP address and a port number. 
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There’s ordering between different SPT ID, which we define as the natural ordering of 
positive number. 
 

2. Overview of Spanning Tree Protocol 

2.1 Joining and Leaving 
Since the Spanning Tree Protocol is implemented by building an overlay network, it 

must provide some rendezvous mechanism to enable nodes who want to join the overlay 
network to communicate with nodes in the overlay. 

Basically there are three kinds of rendezvous mechanism for an overlay network: (1) 
Broadcast: non-members have a broadcast mechanism that is available to them. They use 
this to announce themselves to members of the overlay network. (2) Buddy List: non-
members maintain a list of members that are likely to be in the overlay network (a 
"buddy list").  They use this list to contact members. (3) Server: non-members contact a 
well-known server that establishes communication between members and non-members 
of an overlay network. 

In the SPT Protocol, we choose the first method, and it’s done in an implicit way for 
the unique characteristics of wireless ad hoc network. Since a node in the overlay 
network will broadcast a beacon message periodically, and all adjacent nodes in its 
transmission range will get the beacon message. And since a no-member node can 
contact to a member node only when it’s in its transmission range, the broadcasted 
beacon message is a natural way to find the member. So actually, the rendezvous process 
is done without any explicit additional mechanism. 
    Join: When a node wants to join a spanning tree network, it simply starts to 
periodically send out and receive beacon messages. 

Leave: When a node wants to leave the network, it sends out a Goodbye message and 
stops sending and receiving beacon messages. 

 

2.2 Building Spanning Tree 

2.2.1 Overview 
A spanning tree is built by locally exchanging information between adjacent nodes. 

Two nodes are adjacent when they can communicate to each other directly, which means 
they are in the transmission range of each other in ad hoc network. For any two adjacent 
nodes, we say there is a single hop path between them. Here we don’t assume wireless 
channels are always symmetric, but asymmetric channels will be discarded by some 
mechanism. 

When we need to establish a spanning tree to connect a group of members, it’s 
necessary that those members should be in a network partition already. That is, for any 
two nodes in the group, theoretically there exists a multi-hop path connecting them. 
When there are separated network partitions, a spanning tree will be formed for each 
partition by the protocol, as is shown in Figure 1.  
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Figure 1: Network Partitions1 

When partitions exist, multiple spanning trees are formed 
 
The basic algorithm of building and maintaining a spanning tree is that, beacon 

messages are exchanged periodically between adjacent nodes, and a node use the 
information stored in the beacons received to decide its ancestor. The basic fields of the 
beacon message are listed below: 

 
(Sender ID, Physical Address, Core ID, Ancestor ID, Cost, Path Metric, Adjacency 
Table) 
 
In a beacon message, the Sender ID is used to identify the sender node of the message 

and the Physical Address field gives the other nodes within wireless transmission range a 
way to send unicast message. Core ID field tells which node is the current spanning tree 
core of the message sender, and every node in the same SPT overlay network should 
finally agree on the same Core ID in order to be connected. The Ancestor ID tells which 
node is the current spanning tree ancestor of the sender, and the Cost field is the hop 
count to the core node. The Path Metric field is used by receivers as the part of the 
criteria to select their ancestor, and in the three ancestor selecting algorithms, there are 
different ways to compute the Path Metric field. A node's ancestor and all its children 
compose of its neighborhood table. At the end of each beacon message, there is an 
Adjacency Table listing the ID of all nodes that the beacon sender has recently heard 
from. A link quality value for each adjacent node is also included in the adjacency table. 
This table is used to avoid asymmetric wireless links, which are not unusual in the real 
world wireless network. 

 
A SPT node in the overlay network periodically broadcasts the beacon messages to all 

adjacent nodes, not only to exchange the topology information, but also refresh its active 
state. If a node A has been not hearing beacons from another node B for some period of 
time, B will be removed from both the neighbor table and the adjacency table. The final 
function of beacon message is a probe of the wireless link quality, for which we will have 
detailed description in following sub-sections. 

 
 

                                                
1 The convention of drawing spanning tree figure used in all parts of the document is: 1) the gray node is 
the core of the tree; 2) An arrow pointing from node A to node B means B is the ancestor of A; 3) a pair of 
number (r, c) on the arrow pointing from node A to node B means that A’s core is r, ancestor is B, the cost 
from A to the core is c. 
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2.2.1 Measuring Link Quality 
SPT protocol uses the delivery ratio of beacon messages as the metric of link quality 

between adjacent nodes pair. The link quality measurement of each individual wireless 
link is used both as a way to avoid asymmetric link, and to computed the path metric 
value in some parent selecting algorithms that will be covered in following sub-sections. 

Formally, the link quality from node A to B is defined as (given a parameter N): 
 
LQ(A,B) = Delivery Ratio of Recent N Beacons From A to B 
 
And we define the bidirectional link quality value as: 
 
BiLQ(A,B) = min(LQ(A,B), LQ(B,A)) 
 
Node B calculates LQ(A,B) and stores it in table. And this value is put into the 

adjacency table at the end of the beacon message of B such that A can get it and 
calculates the bidirectional link quality value between A and B. It is not an exact 
calculation of BiLQ(A,B) since the beacon message from B can also be lost, but it is still a 
good estimation because if beacon from B is lost the LQ(B,A) will bring the BiLQ value 
down. By the way described above, every node keeps tracking of the bidirectional link 
quality between itself and all adjacent nodes. The link quality measurement is a value 
ranging from 0 to 1. 

 
We place a threshold value as a parameter, such that any beacon message coming from 

a node that has a BiLQ lower than the threshold is dropped, to guarantee that the node 
only establish neighborhood relationship with nodeshaving reliable bidirectional wireless 
connectivity. A dropped beacon message is still used to calculate the link quality. When 
this threshold is only set to a small value larger than zero, it is simply used to eliminate 
the asymmetric link. 

2.2.2 Algorithms of Choosing Ancestor 
2.2.2.1 Basic Algorithm 
Based on the beacon messages received from adjacent nodes, a node decides who 

should become its spanning tree ancestor. Firstly, the node in the network with the 
minimum ID becomes the core such that all nodes can easily make an agreement about 
who is the core node. Secondly, every node calculates a Path Metric value for the 
spanning tree path leading from the current node to the core, and this value is put in to B, 
A computes the possible Path Metric value if B is selected as A's ancestor, according to 
the Path Metric field in the beacon and some other rules depending on different 
algorithms. 

When node A receives a beacon message M from B, it tries to determine if B is a better 
ancestor by the following rules:  

 
(a) If M.CoreID<A.CoreID, then B is a better ancestor. Otherwise if 

M.CoreID==A.CoreID, continue the following judgments.  
(b) If the Path Metric value computed based on M is larger than A's current Path 

Metric by a preset threshold value (Jumping Threshold), B is a better ancestor. The 
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Jumping Threshold is used to prevent the spanning tree topology from being changed 
when the environment only has very little variance. 

 
By the rules specified above, every node tries to optimize the Path Metric value of the 

path leading to the core node, though it would not necessarily choose the best path while 
limited by the Jumping Threshold. In our protocol to build a shared spanning tree, every 
node locally decides its ancestor in order to obtain a better path leading to core, and the 
result is a shared tree topology with better global metric. Then the quality of the tree is 
determined by how we define and compute the Path Metric value, which is the key 
difference between the algorithms described in following subsections. 

 
When every node sees and sends unchanging beacon messages, the spanning tree is 

successfully established, and every node knows its ancestor, its descendants, and the core 
node. An example of the process for establishing spanning tree is show in Figure 2.  

Tree structure is up to change when the network topology changes. 
 
 

 
Figure 2: Process of Establishing Spanning Tree 

 
2.2.2.2 Minimum Hop Count Algorithm 
In this algorithm, the Path Metric of a node is defined as (- Hop Count to the Core), 

and the Jumping Threshold is set to 1. We put a negative sign because in our protocol, 
larger value means better for the Path Metric. The resulting spanning tree is a classic 
minimum cost tree. In fact, for this algorithm a Path Metric field in the beacon message 
is not needed since a Cost field already gives the enough information. 

 
2.2.2.3 Link Quality Algorithm 
In this algorithm, a node use the BiLQ to its ancestor as the Path Metric. To avoid loop, 

the node A would not choose node B as the ancestor if A.Cost=<B.Cost-2 because B is 
probably A's descendent in this case. Basically, every node only tries to optimize the 
quality of the one hop link to its ancestor, under the condition that loop is impossible, 
regardless of what the resulting path length is. The Path Metric value of a node varies 
from 0 to 1. A moderate Jumping Threshold parameter is important to keep the topology 
relatively stable because usually the link quality between adjacent nodes always oscillates 
constantly even though everything is stationary. On the other hand, the Jumping 
Threshold cannot be too large such that it prevent node from choosing a better ancestor 
quickly. 
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Since there is almost intended control on the length of path to the core, the hop count 
tends to be larger and there is no defense against a spanning tree path going unnecessarily 
back and forth. 

 
2.2.2.4 Path Quality Algorithm 
A product of all BiLQ values along the path to core node is evaluated as the Path 

Metric. To calculate the Path Metric, a node gets the product of the BiLQ to the ancestor 
and the Path Metric of the ancestor that can be obtained in the beacon messages. A node 
in the network intends to optimize quality of the path between itself and the core node. 
Same to the Link Quality algorithm, in this case the Path Metric is a value ranging from 0 
to 1. The analysis of the Jumping Threshold parameter for this algorithm is similar to the 
Link Quality algorithm. On the other hand, the average hop count is expected to be 
shorter than Link Quality algorithm because a longer path tends to have smaller path 
metric since it is a product of more BiLQ values. 

Although this algorithm seems to perform better in overall than the Link Quality 
approach with the ability to avoid unnecessarily long path, in some specific situations the 
later algorithm outbids. For example, when the communication happens majorally on two 
nodes on the same to-core path, the traffic doesn't go over the whole path therefore the 
Link Quality algorithm might exhibit better performance. However, since we assume that 
the traffic pattern is not predictable, we favor the Path Quality algorithm because it is 
expected to work better in average case. 

 

2.2.3 Asymmetric Link Problem 
The SPT protocol is based on the assumption of symmetric channel. That is, if node A 

can hear from node B, the node B can also hear from node A, node A and node B have 
exactly the same transmission range. However, in the real wireless environment, this 
assumption is not necessarily the truth. Most the current ad hoc networks use 802.11 as 
the MAC layer. In 802.11, the broadcast operation doesn’t require RTS/CTS operation or 
acknowledgement. As a result, it’s quite possible that there exists an asymmetric channel 
between two nodes. 

We use the Bidirectional Link Quality values of adjacent nodes to eliminate the 
asymmetric link. In SPT protocol, any adjacent node with a BiLQ value lower than a 
Reliable Threshold parameter is excluded from being an ancestor candidate. A decent 
threshold value can guarantee that only reliable link is used to form the topology. If we 
set this threshold value to 0.1, it is just used to avoid asymmetric link. 

An example is shown in Figure 3. Since node 2 can find the BiLQ value of  node 4 
larger than the threshold and vice versa, a symmetric link is verified between these two 
nodes. On the other hand, since node 1 can’t find itself in the Adjacency table of node 2, 
it will not process beacon message sent by 2 because BiLQ value of node 2 is zero. 
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Figure 3: Preventing Asymmetric Channel with Adjacency table 
The boxes are the adjacency table of each node 

 
 

2.2.4 Count-To-Infinity Problem 
Count-to-Infinity Problem will probably happen when a critical path leading to the 

core is destroyed for some reason and some part of the group has no longer any path to 
the core. For example, some node on the path leaves the group, crashes or move to 
somewhere else. The leaving node may be the core itself. Under some conditions the 
whole network will become unstable, as shown in Figure 5. 

 

1
,1

 
 

Figure 4: Count-to-Infinity Problem Caused by Leaving of Node 1 
 
The cause of count-to-infinity problem is that, even though the core node has left, 

moved away or become unreachable, the core information announced by it is still being 
propagated through the network through some loop.  A single node cannot detect this 
problem without additional information. So there should be a mechanism to make the 
core information stale. Simply checking whether the beacon message’s Ancestor ID is the 
receiver itself will no solve the problem, since a loop may still form involving more than 
two nodes. 

To solve this problem, in our implementation, a Sequence Number is added to the 
beacon message. The sequence number is only created by the core node and increments 
by 1 every time a beacon message is sent. For a node that is not the core, it stores the 
sequence number coming from the ancestor and sends it out in beacon message. 

Every node maintains a hash table, called Core Table, which stores a list of (Core ID, 
Sequence Number, Last Change Time) entries. If the sequence number from some core 
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has not been increased for some specified period, any beacon message carrying the same 
or older sequence number will not be processed by the receiver. 
 

2.3 Multicast Routing 

2.3.1 Forwarded in Unicast Channel 
After a spanning tree is established, multicast routing among all the tree members can 

be done along the tree. Since basically a node’s location in the tree is unknown, how to 
forward a multicast data packet can not be decided by the source address of the packet. In 
our protocol, on receiving a multicast packet from one of its neighbors, a node will 
simply forward the packet to all other neighbors, if there is any.  

When an underlying unicast wireless channel is used to transfer the data packet, the 
fields needed to be carried by the data packet to do the forwarding decision is a (Source 
ID, Previous Hop) pair. 

An example is shown in the Figure 5 to show how node 3 forwards a multicast coming 
from node 4. As a result of our forwarding rules, the packet will be forwarded to node 1 
and 2. 

 

 
Figure 5: Forwarding Multicast Packet in Unicast Channel 

 

2.3.2 Forwarded in Broadcast Channel 
When packet is forwarded by using the wireless broadcast channel, all adjacent nodes 

inside the transmission would have the chance to receive the packet. So some further 
control should be made to make it clear about which nodes are supposed to receive the 
packet.  

In our protocol, when forwarded in underlying broadcast channel, a multicast data 
packet carries the fields of (Source ID, Previous Hop, 2nd Previous Hop). A node will 
only deliver and forward those multicast data packets coming from tree-neighbors and 
not listing the node’s ID as Previous Hop or 2nd Previous Hop. Data packet will be sent 
out at most once by each node forwarding it because a broadcast channel is being used. 

Figure 6 shows an example about how node 3 forwards a multicast message received 
from node 4. Node 3 resends the message out by local broadcasting and all adjacent 
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nodes will receive it, including 1, 2, 4 and 3 itself. Node 3 will drop this message because 
its ID equals to Previous Hop of this message. Node 4 will drop this message because its 
ID equals the 2nd Previous Hop. Node 1 and 2 will accept the message and do further 
forwarding when necessary. 
 
 

 

 
 

Figure 6: Multicast Forwarding with Broadcasting Channel 
 

2.3.3 A Unified Solution 
By analyzing the solutions for forwarding multicast data packet in unicast or 

broadcasting channel, we found that they can be unified to a general scheme. In either 
solution, the data packet carries a list of nodes the packet has recently gone through 
(route record). However the difference is for forwarding in unicast channel, the size of 
list is 1, while in broadcast channel, the size of list is 2. When a node receiving a packet 
from a neighbor finds itself in the list, it will drop it. 

Suppose the size of the list is N, then a routing loop involving N nodes can be avoided. 
For a spanning tree topology, in which only two-node-loop is possible, N=2 is sufficient. 
However, for a protocol forming a mesh topology, to totally avoid loop, N has to equal to 
the TTL of the packet. 

Thus, for forwarding multicast data packet, we got a single solution by adding a route 
record with limited size to the packet header, and let the size be a parameter of the 
network. When underlying unicast channel is used to forward data, the size should be at 
least 1 (previous hop), and when broadcast channel is used, size should be at least 2 
(previous hop, 2nd previous hop). A node receiving the packet and seeing itself in the 
route record will not process it. 

2.4 Unicast Routing 
The difficulty of doing unicast in spanning tree is that the location of the destination in 

the tree is usually unknown. The exception only happens when the destination is the core 
node or it’s one of the source node’s neighbors. Certainly a unicast packet can be always 
flooded to the whole network as like it’s a multicast packet, but it’s very inefficient. 
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To route unicast data packet in an efficient way, we propose a unicast solution to build 
an on-demand unicast path between source and destination. 

2.4.1 Forwarding Table 
In our protocol, every node maintains a Forwarding Table containing a list of 

(Destination, Next Hop) pairs, which works as a routing cache. The node uses the 
forwarding table to lookup the next hop node to forward a unicast packet. How the 
forwarding table is updated is discussed in 2.4.2. 

A forwarding entry will be removed from forwarding table if it expires or the next hop 
is no longer a neighbor. 

As we have mentioned before, the forwarding table is not the only way to find the next 
hop leading to a destination. When the destination is core, or is a neighbor of the node 
forwarding the packet, the node also knows what the next hop is. On the other hand, even 
though the forwarding node can find the next hop from the forwarding table, if the next 
hop node is currently not its neighbor, it still cannot forwards the packet to the next hop 
node. 

When a node doesn’t know where to forward a unicast packet, it just forwards to all 
other neighbors except the previous hop, as like it’s a multicast packet. So when the 
location of destination is unknown, the packet will be flooded to almost the whole 
network until it reaches the destination node. 

2.4.2 Building On-Demand Unicast Path 
2.4.2.1 On-Demand Unicast Route Maintenance 

A unicast path built between the source and destination when all nodes on the route 
between them have a forwarding entry for that destination and carrying the right next hop 
information.  

We suppose node S tries to send a unicast data packet to D, and the process to build 
and maintaining a unicast path is composed of several parts: 

1. When a node tries to forward a unicast packet and doesn’t know where to forward 
it, besides flooding the packet ahead, it also sends out a RouteRequest message to 
all its neighbors to inform them of its lack of the forwarding entry for D.  

2. When a node holding a forwarding entry for D receives a RouteRequest from the 
next hop node, it learns that this forwarding entry is no longer valid so just 
removes it from the forwarding table. 

3. When a node knowing where to forward packet to D (either D is one of its 
neighbors, or it holds a forwarding entry for D, or itself is D) receives a 
RouteRequest for D from one of its neighbor,  it sends out a RouteReply message 
to all neighbors excepts the next hop node.  

4. When a node receives a RouteReply message for D from one of its neighbors, and 
it’s not holding a forwarding entry for D, it update its forwarding table by adding 
the forwarding entry for D and set the next hop to the neighbor sending the 
message. If a forwarding entry for D has already existed, update the next hop field 
to the message sender. After then, if and only if a forwarding entry has been 
added or a forwarding entry has changed its next hop field due to receiving this 
RouteReply, the node will further forward this message to all other neighbors. The 
destination D itself will not process this message. 
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In the above situations, if a protocol message is being sent to multiple neighbors of a 

node (1. 3. & 4.), it’s sent in broadcast channel. 
 
We illustrate our Route Discovery Algorithm in Figure 7 using an example. In our 

example, the source node is 10, and the destination is 4. In all of the sub-figures below, a 
node shown in gray color indicates that it knows where to forward the packet to 
destination 4. 

 

   
(a)                                                         (b)  

 

          
(c) (d)  

 

          
(e)                                                         (f)  
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(g) (h)  

 

          
(i)                                                          (j) 

 
(k) 

 
 

Figure 7: Route Discovery Example 
     

At the very beginning, all nodes in the network have empty forwarding tables, so the 
data is relayed by every node to all other neighbors. (a) shows that the packet is flooded 
to the network along the spanning tree until it reach node 7, who is 4’s ancestor and will 
forward the data to 4 directly. In the mean time, because 7 receives a RouteRequest from 
1, it will sends out a RouteReply, as shown in (b). Node 1, 5, 3 and 10 will further 
forward the RouteReply. As a result, in (c), a unicast path 10-3-5-1-7-4 is built. Node 2, 6 
and 8 will also have the forwarding entries for D, because the RouteReply message is 
forwarded by each node not having a valid forwarding entry for D. 
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In (d), node 4 moves to another place and becomes a descendant of node 4, so the 
unicast path breaks at node 7. When some data packet reach node 7, node 7 found the 4 is 
no longer its neighbor, so it simply floods the data ahead to the remaining part of the 
spanning tree, along with a RouteRequest message to all neighbors. After the 
RouteRequest message reaches the node 1, 1 removes its forwarding entry for D. In (e), 
after node 2 receives the data packet and forwards to its descendant node 4, it will send a 
RouteReply back to repair the path. As shown in (f), a unicast path from 1 to 4 is repaired. 

In (g), node 7 moves away, so node 2 has to find another new ancestor, which is 6, so 
the unicast path breaks again at 7. Situation is much more complicated. Note that this 
time, 1, 5 and 6 are all holding forwarding entries for D with wrong next hops. We will 
show how these wrong entries are removed or updated. 

Similarly, when data reach node 7, 7 cannot relay it to 2 and doesn’t have any other 
neighbor to forward the packet, so only a RouteRequest is sent to 1, which removes the 
forwarding entry on receiving it. In (h), another data packet reaches 1, and for 1 still has 
no forwarding entry, it floods the data to 7 and sends a RouteRequest to clear the 
forwarding entry in 5.  Because these two data packet can never reach 4, they are lost. 

In (i), when another data packet arrives, 5 will send RouteRequest to clear the 
forwarding entries of 3 and 6, and flood the data. This time, the data will reach node 2, 
and the destination 4 finally. In (j), similar to previous situations, node 2 sends back 
RouteReply to repair the path.  

 
2.4.2.2 Some Discussions 

Some advantages of our route maintenance algorithm are listed below: 
1. This solution builds the unicast path in an on-demand way, eliminating extra control 

overhead. 
2. Since our protocol can detect the invalid unicast path and actively repair it, the 

timeout mechanism for forwarding entry becomes not very much necessary. We could 
even set the expiring time for a forwarding entry to an infinite value. 

3. No information is exchanged periodically to maintain the path. If the spanning tree 
topology remains unchanged, no protocol message is needed to repair the path. 

4. We try to restrict the forwarding of RouteReply message to prevent it from being 
flooded to the whole spanning tree unnecessarily. 

5. We don’t assume any pattern for the unicast data stream. It can vary from casual 
packet exchange, to heavy load traffic. 

 

2.4.3 Forwarding 
When a node knows that a unicast path is passing through itself, it will forward the 

unicast data packet along the path, otherwise it will forward it like a multicast packet, that 
is, it will sends it to all neighbors other than the one it received the packet from. 
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3. Detailed Protocol Description 

3.1 Basic Elements 

3.1.1 SPT ID 
Every node has a unique ID, which is a positive integer number. It can be a value set in 

the configuration file, a random number or derived from the IP address.  

3.1.2 Physical Address 
Node’s Physical Address is used to transmit protocol messages and data packets 

between nodes using underlying unicast channel. In our implementation, it’s actually an 
address pair containing a physical address to transmit protocol message, and another one 
to forward data packets. A unicast physical address is in the form of “IPAddress/Port”. 
The transfer protocol is UDP or TCP. 

When a protocol message or data packet is transferred using underlying broadcasting 
channel, a multicast physical address is used to send the packet. This multicast physical 
address is not exchanged between nodes because it’s well known by all nodes. The form 
of this multicast physical address is like “MulticastIPAddress/Port”. The transfer 
protocol is UDP Multicast. 

3.1.3 Neighbors 
Two nodes are neighbors if and only if there’s a tree edge between them, which means 

for nodes N1 and N2, N1.Ancestor==N2 or N2.Ancestor==N1. 
Nodes in a node’s transmission range are called this node’s adjacent nodes. 
 

3.2 Tables 

3.2.1 Tree Information Table 
Tree Information Table contains a single entry. The contents of the table are shown 

below: 
 

Self 
ID 

Physical 
Address 

Core ID Ancestor 
ID 

Cost Path 
Metric 

Sequence 
Number 

Table 1: Tree Information Table 
 
Self ID: The ID of this node 
Physical Address: The physical address of this node. Physical address is used to 

forward data packets. 
Core ID: The ID of the core. 
Ancestor ID: The ID of the ancestor. If this node is core, Ancestor ID=Self ID. 
Cost: The cost of the path from this node to the core. Metric is the hop count. If this 

node is core, Cost=0. 
Path Metric: The Path Metric of the path between node and the core. 
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Sequence Number: This value is set to the Sequence Number recorded in the newest 
beacon message received from the ancestor, if the ancestor is not the node itself. 
Whenever a node whose ancestor is another node sends out a beacon, it put this value 
into the beacon message. 
 

3.2.2 Neighborhood Table 
Neighborhood Table contains a list of neighborhood entries corresponding to a node’s 

neighbors in a spanning tree. 
 

Neighbor 
ID 

Physical 
Address 

Core 
ID 

Cost Path 
Metric 

Timestamp IsAncestor? 

… … … … … … … 
Table 2: Neighborhood Table 

 
Neighbor ID: The ID of the neighboring node. Every entry has a unique Neighbor ID. 
Physical Address: The physical address of the neighboring node. The physical address 

contains both the unicast addresses for transferring protocol and data packets to this 
neighbor. 

Core ID: The ID of the core of this neighboring node. 
Cost: The neighboring node’s cost to the core. 
Path Metric: The Path Metric of the path between that neighbor and the core. 
Timestamp: The last time this neighborhood entry has been updated. 
IsAncestor : Whether this neighboring node is the ancestor. There should be at most 

one entry with this field set to ‘YES’. An entry with IsAncestor set to ‘YES’ is called an 
‘Ancestor Entry’, otherwise it’s called ‘Descendant Entry’. 
 

3.2.3 Backup Ancestor Table 
The Backup Ancestor Table is used to quickly find an alternative ancestor when the 

current ancestor has lost contact to the node. The entry in table is similar to that in the 
Neighborhood Table. 

 
Neighbor 
ID 

Physical 
Address 

Core 
ID 

Cost Path Metric Timestamp 

… … … …  … 
Table 3: Backup Ancestor Table 

This table has a limit of size, and entries in it are in the order of the extent to which 
they will be favored as an ancestor. An entry in the backup ancestor table is not 
necessarily in the neighborhood table. Every entry has a unique Neighbor ID. 
 

3.2.4 Adjacency Table 
The Adjacency Table is used to record the Link Quality values of all adjacent nodes. It 

stores a list of IDs of nodes it received beacons from recently. Every entry has a unique 
Adjacent Node ID. 
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Adjacent Node ID Link Quality Timestamp 

… … … 
Table 4: Adjacency Table 

 

3.2.5 Core Table 
   The Core Table is used to solve the count-to-infinity problem. Core Table records the 
newest sequence numbers generated by different core nodes and the last time they have 
been increased. Every entry has a unique Core ID. 

 
Core ID Sequence Number Last Change Time(ms) 

… … … 
Table 5: Core Table 

 
 

3.2.6 Forwarding Table 
Forwarding Table in a node functions like a Routing Cache, and is used to forward 

unicast data packet.  
When a node is going to forward a unicast packet, it checks if the destination is the 

core or a neighbor, in which case it knows where to forward the packet.  
If the result is false, it checks the Forwarding Table. If an entry is present and the 

NextHop is one of its neighbors, the packet is forwarded to the NextHop, otherwise, it 
will be forwarded to all neighbors other than the one the node received the packet from.  

In 3.5.1, an solution to actively build and maintain the forwarding table is presented. 
 

Destination ID Next Hop Timestamp 
8 4 1065801553401 
7 3 1065801553614 

… … … 
Table 6: Forwarding Table 

Destination ID: The ID of the destination. Every entry has a unique Destination ID. 
Next Hop: The ID of the next hop node leading to the destination 
Timestamp: The last time this entry has been confirmed by a data packet sourced at the 

node with the Destination ID, or by a route reply packet containing that Destination ID.  

3.3 Beacon 

3.3.1 Beacon Message 
Beacon Message is sent by each node to announce its presence and exchange tree 

information. The information contained in a Beacon Message is listed below: 
 
(Sender ID, Core ID, Ancestor ID, Cost, Sequence Number, <Adjacency Table>) 
 
<Adjacency Table>=<Size, ID1, LinkQuality1,  ID2, LinkQuality2 …> 
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The beacon message contains the information store in the sender’s Tree Information 

Table and Adjacency Table. For the Sequence Number, we have the following rule: 
1. If Node.CoreID==Node.Self ID, Sequence Number in the beacon message is 

generated incrementally. 
2. Otherwise, use the Sequence Number stored in the Tree Information Table. 
 

3.3.2 Sending Beacon 
Beacon Message will be sent by every node in the network periodically, every 

[Beacon-Period] seconds. A beacon message is sent to a local broadcast channel so that 
every node in the transmission range will receive it. 

 

3.3.3 Receiving Beacon 
3.3.3.1 Overall Operation 

The overall operation diagram is shown in Figure 9: 
 

  
Figure 9: Overall Processing of Beacon Message 

 
3.3.3.2 Adjacency and Reliability Test 

Before a beacon message can be processed, the node uses it to update the link quality 
between node and beacon sender. That is, the node records how many beacons have been 
received during the last [Ping-Buf-Size] beacon periods. The BiLQ value of the beacon 
sender is computed using this LinkQuality and the information stored in the adjacency 
table in the beacon message. 

After updating the BiLQ of the link, the node checks if the link is reliable (BiLQ 
>=[Reliable-Threshold]. If the result is YES, this node confirms that the beacon sender 
can also receive beacons from it, so there is a symmetric reliable link between them. 
Otherwise, there may exist an asymmetric or unreliable link. 
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When the testing result is NO, this beacon message will not be processed. However, no 
matter what the result is, the node will always use the ID of beacon sender to update its 
Adjacency Table. 
 
3.3.3.3 Core Table Test 

When a node receives a beacon message, it will try to find the matching entry in the 
Core Table using Core ID of the message as the index:  

1. If no entry is found, the message is processed as usual and an entry is added to Core 
Table using the sequence number in the message. 

2. If an entry is found, and the sequence number of the message is a new one, the 
message is processed as normal and the entry is updated using the sequence number in 
the message. 

3. If an entry is found, and the sequence number of the message is the same one, don’t 
update the entry. If the last updating time is not beyond [Max-Message-Age] ago, this 
message is processed as usual; otherwise it’s dropped because the core information 
contained in this message is too stale.  
 
3.3.3.4 Deciding Ancestor 

After passing the adjacency test and core table test, a beacon message can be processed. 
A node will use the beacon message to decide whether the beacon sender should become 
its ancestor. The algorithm is listed below (M denotes the beacon message): 

1. If M.CoreID <Node.CoreID, return TRUE. 
2. If M.CoreID >Node.CoreID, return FALSE 
3. If M.Cost>=(Node.Cost+2), return FALSE 
4. Computes the NewPathMetric assume that the beacon sender becomes the new 

ancestor. The way to compute the NewPathMetric value depends on the topology 
algorithm being used. 

     a) Minimum hop count algorithm: NewPathMetric= - M.Cost 
     b) Link quality algorithm: NewPathMetric = BiLQ(M.SenderID) 
     c) Path quality algorithm: NewPathMetric = BiLQ(M.SenderID)*M.PathMetric 
5. NewPathMetric>=NodePathMetric+[Jump-Threshold], return TRUE. 
6. Otherwise, return FALSE; 
 
A result of ‘TRUE’ indicates that the beacon sender should be the new ancestor of this 

node. 
 

3.3.3.5 Maintaining Tree Information and Neighborhood Table 
After getting the result to decide whether the beacon sender should be the new ancestor, 

we do some further steps to update the node’s data structures: 
1. If result==TURE, update the tree information and neighborhood table, and return: 

a) Node.CoreID = M.CoreID 
b) Node.AncestorID = M.SenderID 
c) Node.Cost = M.Cost+1 
d) Node.SequenceNumber = M.SequenceNumber 
e) Node.PathMetric = NewPathMetric 
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f) If there’s a descendant entry in the table with NeighborID==M.SenderID, 
remove this entry. 

g) Remove the old ancestor entry (the one set IsAncestor to ‘YES’) from the 
neighborhood table, and add a new entry containing this new ancestor into the 
table; if old ancestor ID equals to new ancestor ID, only update the ancestor 
entry instead of removing it. 

2. Otherwise, if M.SenderID==Node.AncestorID, update the tree information and 
neighborhood table:  
a) If M.CoreID>=Node.SelfID, reset the tree information, and return: 

i. Node.CoreID = Node.SelfID  
ii. Node.Ancestor = Node.SelfID 

iii. Node.Cost = 0 
iv. Node. NewPathMetric =MaximumPathMetricValue 
v. Remove the ancestor entry from the neighborhood table. 

b) Otherwise, update the tree information and ancestor entry in neighborhood table, 
and return: 

i. Node.CoreID = M.CoreID 
ii. Node.AncestorID = M.SenderID 
iii. Node.Cost = M.Cost+1 
iv. Node. PathMetric = NewPathMetric 
v. Node.SequenceNumber = M.SequenceNumber 
vi. Update the ancestor entry with this message. 

3. Otherwise, if M.AncestorID==Node.SelfID, update the neighborhood table by 
adding or updating the corresponding descendant entry, and return. 

4. Otherwise, if there exists a descendant entry in the neighborhood table, remove that 
entry. 

 

3.3.4 Timeout Mechanism 
3.3.4.1 Timing out Adjacency Entries 

After an adjacency entry has not been updated for more than [Adjacency-Timeout] 
seconds, it will be removed from the adjacency table of node. 

 
3.3.4.2 Timing out Core Entries 
    After a node has not received any beacon message carrying new Sequence Number for 
some Core ID for more than [Core-Timeout] seconds, the corresponding entry in Core 
Table will be removed. 
 
3.3.4.3 Timing out Neighborhood Entries 

After a neighborhood entry has not been updated for more than [Neighbor-Timeout], it 
is removed from the neighborhood table.  

If the neighborhood entry to be removed is an ancestor entry, tree information is reset: 
1. Node.CoreID = Node.SelfID 
2. Node.Ancestor = Node.SelfID 
3. Node.Cost = 0 
4. Node.PathMetric = MaximumPathMetricValue 
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After the tree information is Reset, the node thinks that Core is itself, as like it just 

begins to join the network. 

3.3.5 Backup Ancestor 
When the link between a node and its ancestor is broken, the timeout mechanism will 

detect the broken link and reset the tree information as like the node doesn’t have an 
ancestor. The node will have chance to re-choose a new ancestor when it gets beacon 
messages from other adjacent nodes some time later. To eliminate the time gap between 
the time the node loses contact with its ancestor and the time the node finds another 
appropriate ancestor, a backup ancestor table is used. 

 
3.3.5.1 Updating Backup Ancestor Table 

When the sender of a beacon message is decided by 3.3.3.4 and 3.3.3.5 to be neither 
the ancestor nor a descendant of the node, the message is used to update the backup 
ancestor table. 

The entries in backup ancestor table are in the descending order of the extent they is 
favored by the node as an ancestor. 

Different entries will not have duplicate different Node ID. 
Nodes believed to be either the ancestor or a descendant of this node will be removed 

from the backup ancestor table. 
Entries that have not been updated for more than [Neighbor-Timeout] will be removed 

from the backup ancestor table 
 

3.3.5.2 Finding Backup Ancestor 
Every time before a node wants to reset its tree information table, that is, set itself as 

the core, it will check the backup ancestor table first to find whether it can find an 
alternative ancestor. The first entry in the backup ancestor table will be selected. 

If there is no backup ancestor can be found, the node will reset the tree information 
table as usual. 

3.4 Joining and Leaving 

3.4.1 Joining 
When a node wants to join a spanning tree network, it starts to do the following steps: 
1. Reset the tree information by setting: 

a. Node.CoreID = Node.SelfID 
b. Node.AncestorID = Node.SelfID 
c. Node.Cost = Node.Cost 
d. Node.PathMetric=MaximumPathMetricValue. The MaximumPathMetricValue 

depends on which algorithm to use: 
i) Minimum hop count algorithm: MaximumPathMetricValue=0 
ii) Link quality algorithm: MaximumPathMetricValue=1 
iii) Path quality algorithm: MaximumPathMetricValue=1 

2. Clear the Adjacency Table, Core Table, and Neighborhood Table. 
3. Start to periodically send out beacon messages. 
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3.4.2 Leaving 
When a node wants to leave the network, it simply stops sending and receiving beacon 

messages. To help the neighboring nodes to learn about the leaving of the node as soon as 
possible, besides the timeout mechanism, a Goodbye message is broadcasted by the 
leaving node to all nodes in its transmission range.  

The Goodbye message only contains the ID of the leaving node. Any node receiving a 
Goodbye message will remove the sender from its neighborhood table. 

For a node leaving the network because of unexpected failure, a Goodbye may not 
have chance to be sent out. In this case, timeout mechanism will help to remove this node 
from the neighborhood table of other nodes. 

3.5 Multicast Data Packet Forwarding 

3.5.1 Packet Header 
The header of the multicast data packet should contain following fields: 
 
(Source ID, Route Record) 
 
The Route Record field is a list of node IDs the packet has recently gone through in the 

order of time they are put in the list. The size of the Route Record should be at least 1, 
and limited by a global parameter. The last element of Route Record should be always the 
previous hop of the packet. If underlying broadcast channel is used, the maximum size 
should be at least 2. 

3.5.2 Forwarding Decision 
When a node receives a multicast data packet, it does the forwarding decision by the 

following rules: 
1. If the last node in the Route Record (previous hop) is not a neighbor of this node, 

the packet is dropped. 
2. Otherwise if Node.SelfID is in the Route Record, drop the packet. 
3. Otherwise, deliver this packet and forward it by doing: 
a) Insert Node.SelfID into the last position of Route Record, and remove the first 

element if the record is already full. 
b) If an underlying unicast channel is used, send message to all nodes listed in the 

neighborhood table other than the Previous Hop, by using the Physical Address 
stored in the neighborhood entry. 

c) Otherwise Send out the message only once by local broadcasting. 

3.6 Unicast Data Packet Forwarding 

3.6.1 Forwarding Table 
3.6.1.1 Updating Forwarding Table 

The entries in the forwarding table will be added or updated next hop field in the on-
demand route maintenance scheme described in 3.6.2. Whenever an entry is added or 
updated, the time stamp field is updated to current time. 
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A forwarding entry is invalid when the next hop is no longer a neighbor. The node 
checks if an entry is valid when it wants to use the entry to forward a unicast data packet. 
If it finds the entry no longer valid, it removes it from the forwarding table, otherwise, the 
time stamp of the entry is updated to current time. 

A forwarding entry will become invalid and be removed when the next hop node is 
removed from the neighborhood table, or the destination becomes one of the node’s 
neighbors. 

 
3.6.1.2 Timing out Forwarding Entries 

A forwarding entry will be removed from Forwarding Table if it has not been updated 
for [Route-Cache-Timeout] seconds. The [Route-Cache-Timeout] could be a very large 
value, or even infinity, which means a forwarding entry will never been removed because 
it is too old. Since we have a mechanism to detect and correct invalid routing cache, we 
don’t very much rely on the timeout mechanism to do the same work. On the other hand, 
because the time stamp of the forwarding entry is updated whenever a data packet is 
forwarded to the next hop, data traffic will help to prevent the corresponding forwarding 
entry from expiring. 

3.6.2 On-Demand Route Maintenance 
3.6.2.1 Forwarding Process 

The header of the unicast data packet should contain following fields: 
 
(Source ID, Destination ID, Route Record) 
 
The Route Record field is a list of node IDs the packet has recently gone through in the 

order of time they are put in the list. The size of the Route Record should be at least 1, 
and limited by a global parameter. The last element of Route Record should be always the 
previous hop of the packet. If underlying broadcast channel is used, the maximum size 
should be at least 2. 

 
On receiving a unicast packet with source S and destination D, a node do the following 

steps: 
1. If it’s D itself, deliver the packet. 
2. Otherwise, if D is the core, forward the packet to its ancestor. 
3. Otherwise, if D is one of its neighbors, forward the packet to D. 
4. Otherwise, if there is a forwarding entry E, and E.DestinationID==D, and 

E.NextHop is one of the node’s neighbors, forward the packet to E.NextHop. 
5. Otherwise, send out a RouteRequest and forward the packet to all other neighbors 

except the previous hop. If there’s a forwarding entry E.DestinationID==D, remove that 
entry.  

 
For 1., 2., 3., or 4., we says the node know where to forward this packet. In 5., we say 

the node doesn’t know where to forward this packet. 
 

3.6.2.2 Sending Route Request 
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In 3.6.2.1, if the node doesn’t know where to forward the packet (5.), it will send a 
RouteRequest message to all neighbors using broadcasting channel, including the 
previous hop of the packet. The RouteRequest message contains the following 
information: 

(Sender, PathDestination) 
 
Sender: the sender of this message. 
PathDestination: the destination of the unicast path, for which a route is requested for. 
 
While sending the RouteRequest message, the node will add an entry containing the 

PathDestination and current time into the Route Request History Table. 
If the destination of packet is core node, no RouteRequest is ever sent. 
 

3.6.2.3 Receiving Route Request 
The actions taken by a node on receiving a RouteRequest message RReq are listed 

below: 
1. If RReq.Sender is not one of the neighbors, do nothing but return. 
3. If RReq.PathDestination==Node.CoreID, do nothing but return. 
3. Otherwise, if there’s a forwarding entry FE, and 

FE.Destination==RReq.PathDestination, and FE.NextHop==RReq.Sender, removes FE 
from the forwarding table. 

4. Otherwise, if Node.SelfID==RReq.PathDestination, or there’s a neighbor entry NE 
with NE.NeighborID==RReq.PathDestination, or there’s a valid forwarding entry FE 
with FE.Destination==RReq.PathDestination, and FE.NextHop!=RReq.Sender, sends 
out a RouteReply message (3.6.2.4). 

 
3.6.2.4 Route Reply 

RouteReply Message is sent by an intermediate node or the destination to announce its 
having a route to some destination. Neighboring nodes will rely on this message to 
update their forwarding table, so as to establish or maintain the unicast path to that 
destination. A RouteReply message contains the following information: 

(Sender, NextHop, PathDestination) 
 
Sender: the sender of this message.  
NextHop: the next hop node from the view of the message sender. If the sender itself is 

the destination, this field is set to it’s ID; if the destination is one of the sender’s 
neighbors, this field is set to the destination’s ID; if the sender is having a valid 
forwarding entry for that destination, this field is set to the next hop field of that entry. 

PathDestnation: the destination of the unicast path. 
 
A RouteReply message is triggered when a node receive RouteRequest message for 

some destination and happens to know where the destination is (3.6.2.3, 3.). 
On receiving a RouteReply message RR, a node will do the following steps: 
1. If RR.Sender is not a neighbor, do nothing but return. 
2. Otherwise, if RR.NextHop==Node.SelfID, do nothing but return. 
3. Otherwise, if Node.SelfID==RR.PathDestination, do nothing but return. 
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4. Otherwise, if RR.PathDestination is one of this node’s neighbors, do nothing but 
return. 

5. Otherwise, if there is no forwarding entry FE with 
FE.Destination==RR.PathDestination, add an forwarding entry FE to the forwarding 
table, and set FE.Destination=RR.PathDestination, and FE.NextHop=RR.Sender, and 
FE.Timestamp=current time. 

6. Otherwise, if there a forwarding entry FE with 
FE.Destination==RR.PathDestination and FE.NextHop!=RR.Sender, set 
FE.NextHop=RR.Sender, and FE.Timestamp=current time. 

7. Otherwise, if there a forwarding entry FE with 
FE.Destination==RR.PathDestination and FE.NextHop==RR.Sender, set 
FE.Timestamp=current time. 

8. If either step 5. or 6. is executed, set RR.NextHop=RR.Sender, 
RR.Sender=Node.SelfID, and forward RR to all neighbors using broadcasting channel. 

 

4. Settings 
    At the end of the description of each setting, the corresponding configuration attribute 
is listed. 

4.1 Timers for Maintaining Spanning Tree 
 [Beacon-Period] Default = 1 second. This is the time period between two consecutive 

beacon messages sent by a node. (/Public/Node/SPT/BeaconTime) 
[Neighbor-Timeout] Default = 5 seconds. A neighborhood entry will be removed if it 

has not been updated for this specified timeout value. 
(/Public/Node/SPT/NeighborTimeout) 

[Adjacency-Timeout] Default = 20 seconds. An adjacency entry will be removed if it 
has not been updated for this specified timeout value. (/Public/Node/SPT/Adjacency-
Timeout) 

[Core-Timeout] Default = 20 seconds. A core table entry will be removed if the node 
has not received any beacon message carrying new Sequence Number for the Core ID of 
this entry for more than this specified timeout value. 
(/Public/Node/SPT/CoreHistoryTimeout) 

[Max-Message-Age] Default = 5 seconds. If the Sequence Number from some Core ID 
has not changed for more than this specified time value, any beacon message carrying the 
same Core ID and Sequence Number will not be said to be too old and not be processed. 
(/Public/Node/SPT/MsgMaxAge) 

[Reliable-Threshold] Default = 0.1. The threshold value that a link quality of a link 
must achieve to become a spanning tree edge. 
(/Public/Node/SPT/LinkQuality/ReliableThreshold) 

[Jump-Threshold] Default = 1. A new ancestor candidate must improve the metric by 
at least this threshold value. (/Public/Node/SPT/JumpThreshold) 

[Ping-Buf-Size] Default = 10. This is the size of the buffer the node uses to record the 
beacon recently received from an adjacent node. 
(/Public/Node/SPT/LinkQuality/PingBufSize) 
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4.2 Timers for Maintaining Unicast Path 
[Route-Cache-Timeout] Default=20s. This timer is used to timeout an old forwarding 

entry which is believed to be probably invalid. It can be set to Infinity, which means that 
a forwarding entry can never be removed because of being too old. The reason about why 
we don’t have to timeout a forwarding entry is that, we have another mechanism to detect 
and correct invalid route cache in an on-demand way (3.5.2). 
(/Public/Node/SPT/RouteCacheTimeout) 

 

4.3 SPT Logical Address Setting 
There are three different way to decide the logical address of a SPT node, depending 

on how the configuration XML file is composed: 
1) Use a specified SPT logical address 

<SPT> 
<Coords> 
<FIXED> 

          <coordinate>XX</coordinate> 
</FIXED> 

</Coords> 
</SPT> 

 
2) Use a random integer number smaller than the <base> as the logical address 

<SPT> 
<Coords> 
<RANDOM> 

          <base>XXX</base> 
</RANDOM> 

</Coords> 
</SPT> 
 
3) Use the IP address to generate a SPT logical address. The current system have to use 

TCP/IP to support this setting 
<SPT> 
<Coords> 
<USE_IP/> 

</Coords> 
</SPT> 

5. Message Formats 
    This section list the detailed message formats used in the Spanning Tree Protocol, 
including the protocol messages and data messages. Since the SPT protocol is 
implemented as a part of the Hypercast software, the message headers listed here are all 
Hypercast-related. 
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5.1 Protocol Message Formats 
The common format for all protocol messages is shown in Figure 10. 

 

 
Figure 10: Protocol Message Format 

 
The types of the SPT protocol message are:  

 
Message Type Type Field 
Beacon 0 
Goodbye 1 
RouteRequest 2 
RouteReply 3 

Table 8: Protocol Message Types 
 
The OverlayIDHash is a 4-byte long hash value which is derived from the OverlayID. 

It’s used to identify whether this protocol message is coming from a node inside the same 
overlay network. If no, the message will be dropped. 

5.1.1 Beacon Message 
Beacon message is sent by each node periodically to announce its existence and 

exchange tree information with adjacent nodes. 
A Beacon Message is sent by using underlying broadcasting channel. 
 

 
 

Figure 11: Beacon Message Format 
 
 
SenderID: The ID of the sender of this beacon message. 
PhysicalAddress: The physical address of the sender. 
CoreID: The Core ID of the sender. 
AncestorID: The ID of the sender’s ancestor. 
Cost: The path cost from the sender to the core. 
SequenceNumber: The newest sequence number generated by the core and received by 

the sender. 
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Adjacency Table: This table copies the IDs listed in the beacon sender’s adjacency 
table. So the length of a beacon message is variable, depending on the size of its 
adjacency table. A node’s ID is in the adjacency table of a beacon message means that 
the beacon sender has received beacon message from this node recently. 

5.1.2 Goodbye Message 
The Goodbye Message is sent by a leaving node to inform its neighbors. Any node 

receiving a Goodbye message will remove the message sender from its neighborhood 
table immediately. 

A Goodbye Message is sent by using underlying broadcasting channel. 
 

 
Figure12: Goodbye Message Format 

5.1.3 Route Request Message 
A RouteRequest Message is sent to all neighbors when a node doesn’t know where to 

forward a unicast data packet and has to flood it ahead. The previous hop of this data 
packet will use this message to clear the forwarding entry, while other neighbor will be 
triggered to send RouteReply message by this message if it knows where the destination 
is. 

 

 
Figure 13: RouteRequest Message 

 
SenderID: The ID of the sender of this message. 
PathDstID: The ID of the destination, to which a route is requested. 
 

5.1.4 Route Reply Message 
A RouteReply Message is used to actively build or repair a unicast path when some 

node sees a RouteRequest coming in for some destination, for which it knows where to 
forward the unicast data. 

 

 
Figure 14: Route Reply Message 

 
SenderID: The ID of the sender of this message. 
NextHopID: The next hop for the unicast destination from the view of the message 

sender. If the sender is the destination itself, this field will be set to the ID of itself. A 
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node receiving a RouteReply message with NextHopID set to it will simply ignore the 
message. 

PathDstID: The ID of the destination of the unicast path to be built.  
 

5.2 Data Message Formats 
    Here we present the header for the data packet forwarded in a spanning tree network. 
We only list the fields which are related to our protocol. In Hypercast software, a data 
packet header has a lot of common fields shared by different protocols, which are not 
listed here. 

5.2.1 Multicast Packet Header 
 

 
Figure 15: Multicast Data Packet Header 

 
Source: The ID of the multicast source node. 
Route Record: The list of nodes the packet has recently gone through. The Size of route 

record is limited by a maximum value, which is a parameter. The strategy of replacing 
when new node ID comes in and list is full, is FIFO. 

 
A node receiving a multicast packet will drop it if it finds that: 
1. The Previous Hop is not its neighbor. 
2. Or, its node ID is in the Route Record of the packet. 

5.2.2 Unicast Packet Header 
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Figure 17: Unicast Data Packet Header  
 
Source: The ID of the unicast source. 
Destination: The ID of the unicast destination. 
Route Record: The list of nodes the packet has recently gone through. The Size of route 

record is limited by a maximum value, which is a parameter. The strategy of replacing 
when new node ID comes in and list is full, is FIFO. 

 
A unicast packet can be forwarded in underlying broadcasting channel only when the 

forwarding node doesn’t know how to forward it, and trying to forward it to all other 
neighbors except the previous hop. 

A node receiving a unicast packet will drop it if it finds that: 
1. The Previous Hop is not its neighbor. 
2. Or, its node ID is in the Route Record of the packet. 
 

6. Interaction with Overlay Socket 

6.1 Interface Functions 
In Hypercast framework, the spanning tree protocol is run in the protocol node, and it’s 

the overlay socket that does the forwarding of data packets. On receiving a data packet 
from a neighbor, the overlay socket will query the protocol node about where to forward 
the packet by some specified interface functions, and do the forwarding accordingly. 

So the Route Record scheme we have mentioned before is implemented in the overlay 
socket, rather in the protocol node. And most of the data forwarding steps are also in the 
overlay socket. 

The interface functions related to data packet forwarding between the overlay socket 
and protocol node are listed below: 

 
Functions Comments 
getParent(Dst) 1. The overlay socket queries the node by 

this function to ask for the next hop to 
forward a unicast packet.  
 
2. The node can also use this function to 
learn when the socket needs to forward a 
unicast packet and what the destination is, 
and this the only information the node need 
to know for the unicast scheme. 
 
3. If the node knows where to forward the 
packet to destination, it simply returns the 
next hop; otherwise it returns a NULL 
value. 
 
4. If the overlay socket gets a NULL value 
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from the node, it will try to forward the 
packet to all other neighbors except the 
previous hop. 
 

getChildren(Src) 1. The overlay socket queries the node by 
this function to ask for a list of next hop 
neighbors to forward a multicast packet.  
 
2. The node can also use this function to 
learn when the socket needs to forward a 
multicast packet and what the multicast 
source is. 
 
3. The spanning tree protocol node always 
returns a NULL list here. 
 
4. Since the overlay socket always gets a 
NULL value by this function, it will try to 
forward the packet to all other neighbors 
except the previous hop. 
 

getAllNeighbors() The overlay socket queries the node by this 
function to ask for a list of all neighbors. 

Table 9: Interface Functions between Overlay Socket and Protocol Node 

6.2 Operations of Forwarding Engine 
The ways how the forwarding engine in OL_Socket operates to forward data are listed 

as pseudo codes: 
 
MulticastPacketReceived(p){ 
 If (p didn’t come from a neighbor)return; 
 If (my address is in the route record of p) return; 
 Children_list=node.getChildren(p.Src); 
  

If(Children_list==null) 
  Children_list=node.getAllNeighbors()-p.PrevHop; 
 
 Add my address to the route record of p 
 Forward p to each neighbor in the Children_list; 
  
 Deliver p to the application; 
} 
UnicastPacketReceived(p){ 
 If (p didn’t come from a neighbor) return; 
 If (my address is in the route record of p) return; 
 If (I am the destination){ 
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  Deliver p to the application; 
  return; 
 } 
 Nexthop=node.getParent(p.Dst); 
 If(Nexthop!=null){ 
  Add my address to the route record of p; 
  Forward p to Nexthop; 
 }else{ 
  Nexthop_list=node.getAllNeighbors()-p.PrevHop; 
  Add my address to the route record of p 
  Forward p to each neighbor in the Nexthop_list; 

} 
  
} 

7. States and State Transitions 

7.1 State Definitions 
 

State Name State Definition 
 

Stopped The node is not running 
Core The node is the core of the spanning tree 
Not Core Te node is not core of the spanning tree 

 
Table 10: Node States Definitions 

Stopped: Nodes in this state do nothing. Before a node transits from another state to 
Stopped state, a Goodbye message will be sent out.  

Core: After a node starts to join the network, it enters in this state. A node in IsCore 
state will periodically send out beacon message carrying an incremental sequence number. 

NotCore: After a node in IsCore state receives a valid beacon message containing a 
Core ID smaller than its ID, it enters the No Core state. In this state, a node will 
periodically send out beacon message carrying the sequence number it got from its 
ancestor. 

7.2 State Transition Diagram 
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Figure 19: Transition Diagram of Node States 

 
 

 

7.3 Actions of SPT Protocol 
The following tables summarize the actions taken by nodes when events like message 

arrival, timer expiration happen. 
Please note that, when we say “insert an entry into a table”, we imply that if an entry 

already exists, we only update the information carried by that entry. Similarly, “remove 
an entry” implies that an entry will be removed only when it already exists in the table. 
 
State: Stopped 
Event Action 
Join Group Reset tree information table, set ancestor to myself 

�Core 
 
State: Core 
Event Action 
Beacon message m 
received from s 

Update adjacency and reliability 
IF m doesn’t pass adjacency and reliability test 

return 
Update core table 
IF m doesn’t pass core table test 

return 
IF s is a better ancestor 

Set ancestor to s 
�Not Core 
return 

ELSE 
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IF s is my descendant 
    Insert s into neighborhood table 
ELSE 
    Remove s from neighborhood table 

Goodbye message 
received from s 

IF s is one of the neighbors 
Remove s from neighborhood table 

Beacon Timer expires Check neighborhood table, adjacency table, core table, backup 
ancestor table and forwarding table, to remove expiring or 
invalid entries. 
 
Broadcast Beacon message m to all adjacent nodes. 
The sequence number in m is generated incrementally. 

 
State: Not Core 
Event Action 
Beacon message m 
received from s 

Update adjacency and reliability 
IF m doesn’t pass adjacency and reliability test 

return 
Update core table 
IF m doesn’t pass core table test 

return 
IF s is a better ancestor 

Set ancestor to s 
update tree information table 
remove old ancestor entry, insert s as the ancestor entry into 

neighborhood table 
return 

ELSE 
IF s is current ancestor 
    IF m carries a Core ID larger than my ID 
        IF a backup ancestor is found 
            Set ancestor to this backup ancestor 
        ELSE 
            Reset tree information table, set ancestor to myself 
            � Core 
    ELSE 
        Update ancestor information with m 
ELSE 
    IF s is my descendant 
        Insert s into neighborhood table 
    ELSE 
        Remove s from neighborhood table 
        Insert s into backup ancestor table 

Goodbye message 
received from s 

IF s is one of the neighbors 
Remove s from neighborhood table 
IF s is current ancestor 
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    IF a backup ancestor is found 
        Set ancestor to this backup ancestor 
    ELSE 
        Reset tree information table, set ancestor to myself 
        � Core 
 

Beacon Timer expires Check neighborhood table, adjacency table, core table, backup 
ancestor table and forwarding table, to remove expiring or 
invalid entries. 
 
IF the ancestor entry is removed 

IF a backup ancestor is found 
    Set ancestor to this backup ancestor 
ELSE 
    Reset tree information table, set ancestor to myself 
    � Core 

 
Broadcast Beacon message m to all adjacent nodes. 
The sequence number in m uses the sequence number stored in 
tree information table 

 
State: Core, Not Core 
Event Action 
Leave Group Broadcast Goodbye to all neighbors 

�Stopped 
Multicast data packet 
d received 

IF myself is in the route record of d 
    return 
IF d was not sent by one of my neighbors 

return  
 
Insert myself into the route record of d, while maintaining the 
maximum size of route record. 
 
IF using underlying unicast channel 

Forward d to every neighbors except the previous hop 
ELSE 
    IF has more than one neighbor 

    Broadcast d to all adjacent nodes 
Unicast data packet d 
received 

IF myself is in the route record of d 
    return 
 
IF d was not sent by one of my neighbors 

IF I am the destination 
    Deliver d 
return 
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IF I am the destination 
Deliver d 
return 

 
Insert myself into the route record of d, while maintaining the 
maximum size of route record. 
 
IF destination is core 

Forward d to my ancestor 
return 

IF destination is one of my neighbors 
Forward d to destination node 
return 

IF can find the next hop for the destination in forwarding table 
IF the next hop node is one of my neighbors 
    Update the timestamp of the entry 
    Forward d to the next hop node 
    return 
ELSE 
    Remove the invalid forwarding entry 

 
Send RouteRequest message for the destination to all neighbors 
Forward d to all neighbors except the previous hop 
 

RouteRequest message 
rreq received from s 

IF the sender is not a neighbor 
    return 
IF rreq’s path destination is core node 
    return 
 
IF there is a forwarding entry for the path destination, and the 
next hop is equal to the sender of rreq 

Remove the forwarding entry 
return 

IF I am the path destination 
Send out RouteReply message 
return 

IF path destination is one of my neighbors 
    Send out RouteReply message 
return 

IF there’s a valid and updated forwarding entry for the 
destination 

Send out RouteReply message 
return 

  
RouteReply message 
rr received from s 

IF the sender of rr is not one of my neighbors 
    return 
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IF rr’s path destination is core 
    return 
IF rr’s next hop is myself 
    return 
IF myself is the rr’s path destination 
    return 
IF the rr’s path destination is one of my neighbors 
    return 
 
IF there’s no forwarding entry for the destination 

Add an entry for that destination 
Set the entry’s next hop to rr’s sender 
Forward rr to all neighbors 
return 

IF there’s a forwarding entry for the destination 
IF the entry’s next hop is not rr’s sender 
    Set the entry’s next hop to rr’s sender 
    Update the entry’s timestamp 
    Forward rr to all neighbors 
    return 
ELSE 
    Only update the entry’s timestamp 

 
  
 


