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Abstract

Large-Scale multicast applications for the Internet require the availability of multicast

protocols that can support multicast groups with many thousand simultaneous members.

For this it is crucial that there exist mechanisms to e�ciently exchange control information

between the members of a group. In this paper, we present a new approach for distributing

control information within a multicast group which increases the scalability of multicast

applications. Multicast group members are organized as a logical n-dimensional hypercube,

and all control information is transmitted along the edges of the hypercube. We analyze the

scalability of the hypercube control topology and compare it with tree-based approaches.

We show that the hypercube balances the load per member for processing control informa-

tion better than existing topologies. We use actual data traces of the group membership in

an MBONE conference to gain insight into the transient changes of the load at each node.

In a subsequent companion technical report [19] we will present a set of soft-state protocol

mechanisms that maintain the hypercube topology without requiring any entity to have

global state information.

Key Words: Large Scale Multicast Applications (LSMA), IP Multicast, Multicast Communications,

Implosion Problem, Hypercubes.
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1 Introduction

Recently emerging large scale multicast applications have increased the need for advanced

multicast services on the Internet. These services are implemented on top of the basic connec-

tionless IP Multicast service, which does not guarantee reliable or in-sequence delivery [7].

In the basic multicast service, a user joins a multicast group simply by indicating interest

in receiving data sent to that group. Any packet that is transmitted to a multicast group

is forwarded to all members of the group. Mechanisms for error control, rate control, or in-

sequence delivery are not part of the basic service. To implement these mechanisms, multicast

group members must exchange control information with each other. However, the exchange of

control information in large multicast groups creates scalability problems.

Consider, for example, the implementation of a reliable multicast service. A unicast pro-

tocol with a single sender and a single receiver requires the receiver to send positive (ACKs)

or negative acknowledgment packets (NACKs) to the sender to indicate reception or loss of

data. If the same mechanisms are applied to large groups, the sender would soon be ooded by

the number of incoming ACKs or NACKs; this is referred to as the ACK Implosion Problem

[6, 13].

In recent years, many techniques and protocol mechanisms have been proposed to solve

the ACK implosion problem [2, 5, 6, 9, 10, 12, 13, 16, 17, 18, 21, 22, 23, 25, 27, 28, 31, 32, 34],

mostly in the context of providing a reliable multicast service. Early proposals were targeted

at local area networks and exploited the broadcast capabilities in such networks [25, 27]. In

packet-switching networks, we �nd two approaches to deal with the volume of control tra�c.

In one approach, control information is broadcast to all members of the multicast group; the

volume of control tra�c is limited based on the volume of data tra�c or on the size of the

multicast groups [3, 9, 26]. The drawback of this approach is that the each multicast member

has to reduce its control tra�c as the multicast group grows. In the second approach, the

group members are organized in a logical graph, henceforth called control topology. Control

information can only be exchanged between group members which are neighbors in the logical

graph. By merging control information received from their neighbors, the dissemination of

control information can be made e�cient. Control topologies that have been considered in

the literature include rings [5, 31] and trees [12, 17, 22, 34]. In Figure 1 we illustrate the

relationship between the network topology, basic multicast service, and control topologies.

This paper proposes a new approach for disseminating control information between the

members of a multicast groups. We propose to organize group members as nodes of an n-

dimensional hypercube, and disseminate control information in trees that are embedded in the

hypercube. We claim that the hypercube has excellent scalability properties, making it the

preferred choice for multicast applications with very large group sizes. Our key contributions

are as follows. We show how to construct a hypercube control topology with simple boolean

operations and present an algorithm to embed rooted spanning trees into the hypercube.

Further, we show that control topologies that are using trees do not balance the load for

processing control information well among the multicast group members. We believe that
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Figure 1: Multicast Framework.

this data point is important, as recent research on protocol support for scalable multicast

applications is focusing on tree-based control topologies [12, 17, 22, 34]. We show that the

hypercube is superior when it comes to balancing the load for processing control information

among multicast group members. Since poor load-balancing results in bottlenecks in the

control topology, better load-balancing improves the scalability to large multicast groups.

In this paper we do not address the relationship between multicast routing and the control

topology. While a coupling of routing and control topology improve the performance of a

multicast protocol, we believe that determining how such a coupling can be attained for the

hypercube is beyond the scope of this paper. Our proposed hypercube control topology and

the presented quantitative results are orthogonal to the degree to which routing and control

topology are coupled.

The remainder of the paper is structured as follows. In Section 2 we review the existing

proposals for disseminating control information to the members of a multicast group. In

Section 3 we present the hypercube as a new solution to disseminate control information in a

multicast group. In Section 4 we analyze the scalability properties of a hypercube and compare

them with those of other control topologies. In Section 5 we present an empirical evaluation of

various control topologies using actual traces from a large multicast session on the MBONE.

In Section 6 we present our conclusions and discuss future work.

2 Control Topologies for Multicast Communications

In this section we review currently used control topologies for disseminating control information

in multicast groups, focusing on the ability of these topologies to support large multicast
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groups. We assume the existence of a higher-layer protocol mechanism that separates data and

control. The hypercube is used only for transmitting control information; data is transmitted

using the basic IP multicast service. Throughout this paper we assume that many, possibly all,

multicast group members are transmitters of information. We assume that routers or network

caches are not involved in processing control information.

It is convenient to view the members of a multicast group as a set of nodes V . Nodes are

numbered in an arbitrary sequence, that is V = f1; 2; : : : ; Ng. We assume that each node can

directly communicate with any other member of the group.

2.1 No Control Topology

Several protocols that extend the basic IP Multicast service do not provide a topology for

disseminating control information. Instead, the control information from any node is broadcast

to all other nodes in the group. Such protocols must restrict the volume of control information,

since otherwise the scalability is severely impeded. The RTP protocol [26] limits the total

amount of control tra�c to 5% of the data tra�c. In [3], feedback from receivers to the

senders is adapted to the size of the multicast group.

Among reliable multicast protocols, a technique known as NACK suppression [9, 25] or

damping [27] is used to contain control tra�c without a control topology. Here, a multicast

group member with a control packet to send is forced to queue this packet for a random time

interval before it can be transmitted. If a member receives a control packet which matches

a queued packet, it cancels the transmission. For large group sizes, however, the random

queueing time must be set to a large value, resulting in slow feedback times for the control

information.

Yet another set of protocols without a control topology employ a central controlling station

which coordinates ordering and reliability [4, 8, 10]. Due to the load at the controlling station,

the scalability of such protocols is limited.

2.2 Ring Topology

Ring control topologies have been implemented to provide a reliable multicast service with

total ordering of messages [5, 31]. In these protocols, the multicast group is structured as a

logical ring, and a token is passed around the ring. Control messages are unicast between the

current holder of the token and other nodes. The scalability of ring topologies is only moderate

since control messages are always directed to the token holder, thus creating a bottleneck at

that node. Also, the time to pass the token around the ring increases with the group size,

resulting in decreased overall throughput.

2.3 Tree Topology

Tree topologies assume that the members of a multicast group are organized as a rooted span-

ning tree, and all control information is transmitted along the edges of a tree. For each multicast
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group member, there is one spanning tree where this member is the root of the tree. We use

Tk to denote the spanning tree with node k as root. Node l transmits a control message to the

root node k by passing the message to its immediate ancestor in Tk, the tree rooted at k. Tree

topologies achieve scalability by exploiting the hierarchical structure of a tree. For example,

by `merging' acknowledgments at the internal nodes of a tree, the number of acknowledgments

received by a group member is limited to the number of children; thus, ACK implosion is

avoided. A drawback of tree-based topologies is the overhead in constructing and maintaining

the tree. Note that the tree must be dynamically modi�ed both in response to host failures

and to members joining and leaving the tree.

Several tree-based control topologies have been proposed for transmission of control infor-

mation [11, 17, 22, 25, 34], mostly for multicast groups with only a single sender. We discuss

the K-ary shared tree [17] or Pivot tree [18].

The shared tree topology is derived from a single balanced K-ary tree with root r. If some

other node k 6= r becomes the root, then the tree is re-hung with node k as new root [17].

Re-hanging trees with a new root is illustrated in Figure 2. In Figure 2(a) we show a binary

(2-ary) tree with node 1 as root. Figure 2(b) depicts the same tree, `re-hung' for node 10 as

root node. Re-hanging a tree does not increase the number of children of each node, however,

after re-hanging, the tree may no longer be balanced. Note that the longest path to the root

in the re-hung tree in Figure 2(b) is twice as long as in the original tree in Figure 2(a).
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(a) Original Tree Rooted at Node 1.
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(b) Re-hung Tree Rooted at Node 10.

Figure 2: Shared Binary Tree.

Among the currently considered topologies, tree-based topologies seem to be most suited to

support large multicast groups. However, the trees created by re-hanging a shared tree burden

some nodes with an unproportionally high load for processing control information. In the next

section we propose a new control topology, derived from a hypercube, that o�ers better load
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balancing, and as a result, has better scalability properties than tree-based solutions.

3 The Hypercube Control Topology

In this section we propose the hypercube as a new control topology for multicast communi-

cations. We propose to organize the members of a multicast group as the nodes of a logical

n-dimensional hypercube. We present a method for embedding spanning trees into the hyper-

cube and use these spanning trees for disseminating control information.

3.1 Hypercube and Tree Embeddings

An n-dimensional hypercube is a graph with N = 2n nodes where each node is labeled by a

bit string kn : : : k1 (ki 2 f0; 1g). Nodes in the hypercube are connected by an edge if their bit

strings di�er in exactly one position. In Figure 3 we depict hypercubes of dimensions n = 1 to

n = 4.

Hypercubes have been studied extensively by the parallel computing community; they

are deemed attractive as a multiprocessor architecture because of their symmetry, the short

distances between nodes, and the number of alternative routes. The literature on hypercubes

is rich, and we refer to [14, 15, 24] as excellent sources on the topic.

We propose to organize the members of a multicast group as the nodes of a hypercube.

Then we embed spanning trees into the hypercube and disseminate control information along

the edges of the spanning trees. The advantage of using trees embedded into the hypercube over

the re-hung shared trees [17] will become clear in Section 4 where we analyze the performance

of control topologies.

Past research on parallel algorithms has produced numerous algorithms for embedding trees

in hypercubes (see [15] for an overview). The goal of these these algorithms is to assign a parallel

computation, represented as a tree, into a multicomputer with an hypercube interconnection

network. These algorithms make a number of assumptions that are not applicable in the

context of a multicast group. First, most algorithms assume a static hypercube. Second, with

few exceptions [29, 30], these algorithms assume a complete hypercube, i.e., N = 2n. Both

assumptions are not realistic for multicast groups with a dynamically changing membership.

For multicast communications, we have to consider incomplete hypercubes with N < 2n

nodes. This results in a requirement that the embedded spanning trees in an incomplete

hypercube with node set V only contain nodes in V . We refer to such trees as completely

contained in the incomplete hypercube. Furthermore, we have to consider that the multicast

group membership changes dynamically. Since adding and removing nodes may degenerate

the compact structure of a hypercube, we need to have mechanisms in place that keep the

dimension of the hypercube as small as possible; we refer to this property as compactness.
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Figure 3: n-dimensional Hypercubes.

3.2 Gray Ordering of Hypercube Nodes

The key to ensure complete containment of all spanning trees and maintain compactness of

the incomplete hypercube is the selection of an appropriate ordering of the nodes.

The standard ordering of hypercube nodes interprets the label of a node as a binary

number. Speci�cally, the number a =
Pn

i=1 ai � 2
i�1 is associated with the node labeled

Bin(a) := an : : : a1 (ai 2 f0; 1g). With the ordering imposed by the numbers, compact-

ness can be achieved by ensuring that in a multicast group with N members the positions

Bin(0); Bin(1); : : : ; Bin(N � 1) are always occupied. However, using this ordering there it is

not clear how to construct spanning trees that satisfy the complete containment condition.

We propose to use a di�erent ordering of the nodes, which is based on an ordering obtained

by interpreting node labels using Gray codes. A Gray code, denoted by `G(�)', is de�ned by

the following properties [24]:

� The values are unique. That is, if G(i) = G(j)) i = j.

� G(i) and G(i+ 1) di�er in only one bit, for 0 � i < 2d�1 � 1.

� G(2d�1 � 1) and G(0) di�er in only one bit.

In other words, a Gray code corresponds to a Hamiltonian walk on the hypercube [15].

Let Bin(i) denote the label of the ith node in the binary ordering, it is easy to verify that

the following generates a Gray code:

G(i) := Bin(i)
Bin(i=2)
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where `
' is the XOR operator and `x=2' is an integer division by 2. We use G�1(�) to denote

the inverse of G(�), that is, G�1(G(i)) = i.

Clearly, with this ordering compactness can be enforced by ensuring that the members of

a hypercube with K nodes occupy positions G(0); G(1); : : : ; G(N � 1).

Example: Consider the ordering of nodes in a 3-dimensional hypercube. Refer to Figure 3

for the labeling of nodes. In the following table, we show the position number i, the binary

interpretation Bin(i), and the Gray code G(i):

Position Number i 0 1 2 3 4 5 6 7

Bin(i) 000 001 010 011 100 101 110 111

G(i) 000 001 011 010 110 111 101 100

Thus, using the standard ordering Bin(i) a multicast group with K = 5 members would

occupy the following positions in the hypercube: 000; 001; 010; 011; 100. In contrast, using a

Gray code G(i) occupies the following positions: 000; 001; 011; 010; 110.

3.3 Tree Embedding in Gray-ordered Hypercubes

We now present an algorithm to embed spanning trees into hypercubes that use Gray codes for

ordering the nodes. The embedding of spanning trees in the hypercube is calculated locally:

A node with label G(x) directly obtains the address of its parent node in the tree with root

G(r). The ability to calculate the embedded tree in a distributed fashion will be exploited in

[19] where we present protocol mechanisms to maintain a hypercube topology.

For a Gray-ordered hypercube which preserves compactness as shown in the previous sub-

section, we present an algorithm that always generates a completely contained spanning tree.

The algorithm is presented in Figure 4 and consists of a single procedure `Parent'. Given two

node labels I and R, the procedure computes the label of the parent of node I in the spanning

tree with R. The procedure Parent simply ips a single bit in label I. If I is smaller than R in

the Gray ordering the parent of I is obtained by ipping the least signi�cant bit in I where I

and R di�er. Otherwise, the procedure ips the most sign�ciant bit in I where I and R di�er.

If each node performs the procedure Parent for a root node R, we obtain a spanning tree with

root R embedded into the hypercube.

In Figures 5 and 6 we show the embeddings of the spanning trees in a 3-dimensional

hypercube for root nodes 1 and 5, respectively. Intentionally, we have depicted an incomplete

hypercube with N = 7 < 23 nodes.

All trees that are constructed by procedure `Parent' have the following set of properties.

The properties follow directly from the procedure and are shown without proof.

Property 1: A node and its parent always have a Hamming distance of 1.

Property 2: The path length between a node and a root is given by their Hamming

distance.
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Input: Label of the i-th node in the Gray encoding:

G(i) := I = In : : : I2I1,

and the label of the r-th node ( 6= i) in the Gray encoding:

G(r) := R = Rn : : : R2R1.

Output: Label of the parent node of node I in the embedded tree rooted at R.

1. Procedure Parent (I; R)

2. If (G�1(I) < G�1(R))

3. // Flip the least signi�cant bit where I and R di�er.

4. Parent := InIn�1 : : : Ik+1(1� Ik)Ik�1 : : : I2I1
5. with k = mini (Ii 6= Ri).

6. Else // (G�1(I) > G�1(R))

7. // Flip the most signi�cant bit where I and R di�er.

8. Parent := InIn�1 : : : Ik+1(1� Ik)Ik�1 : : : I2I1
9. with k = maxi (Ii 6= Ri).

10. Endif

Figure 4: Tree Embedding Algorithm.

Property 3: In a hypercube with N nodes, all trees have a depth of dlog2(N)e. If

N = 2n, the embedding results in a binomial tree.1

Property 4: If Parent (I;R) is the p-th node in the Gray encoding, then the following

holds: p � maxfi; rg.

Property 4 of the algorithm guarantees complete containment of all embedded trees. Next

we analyze the properties of the proposed hypercube control topology and compare it against

tree-based solutions.

4 Analysis of Scalability Properties

To gain insight into the scalability property of the hypercube control topology, we conduct

a performance comparison of the hypercube with the K-ary shared tree discussed in Subsec-

tion 2.3. We derive a set of performance measures that are computed as averages over rooted

spanning trees. For each node, there is one spanning tree where this node is the root. The

spanning trees with some node `x' as root are obtained as follows:

� Hypercube: A tree with node x as root is embedded in an n-dimensional hypercube

using the Algorithm in Figure 4.

� Shared K-ary Tree: A given K-ary tree, the `original tree' (see Section 2), is re-hung

with node x as root.

1A binomial tree of height 0 is a single node. For all i > 0, a binomial tree of height i is a tree formed by

connecting the roots of two binomial trees of height i� 1 with an edge and designating one of these roots to be

the root of the new tree (cited from [24]).
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Figure 5: Embedding a Tree with Node 1 as Root.
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Figure 6: Embedding a Tree with Node 5 as Root.

In our analysis we assume that that communication within a multicast group is symmetric,

i.e., on the average, each member of the group generates the same amount of tra�c. In contrast,

an asymmetric groups is characterized by few members of the group generating most or all of

the tra�c.2

The scope of our investigation is limited to quantitative aspects of disseminating control

information. We do not consider the e�ects of protocol processing or routing issues. Further-

more, we consider generic transmission of control messages without assumptions on a particular

control function (ow control, error control, etc.) as in [17, 20, 23, 33].

4.1 Performance Measures

We de�ne a set of performance measures which reect the load for processing control infor-

mation at a multicast group member. In all con�gurations considered, control information is

transmitted along the edges of a rooted spanning tree. Recall that we use Tl to denote the

spanning tree with node l 2 V as root.

2A multicast web server is an extreme example of an asymmetric group; here, the server is the only member

of the group that generates tra�c.
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For most control function, a good indicator for the load at a node in a control tree is the

number of its children. We de�ne:

wk(Tl) := Number of children of node k 2 V in tree Tl.

Since control functions may incur a load at a node that is proportional to the size of the

subtree rooted as this node, we de�ne:

vk(Tl) := Number of descendants of node k 2 V in tree Tl (including node k),

where the descendants of node k in tree Tl are the nodes that

have node k on their path to root l.

Finally, since the path length in a control tree indicates the delay of passing control infor-

mation in the tree, we de�ne a measure that expresses this delay:

pk(Tl) := Length of the path from node k to root node l in Tl.

We de�ne more concise measures by taking the average over all trees Tl with l 2 V , denoted

as wk, vk, and pk. These measures are de�ned as follows:

wk :=
1
N

PN
l=1wk(Tl) Average number of direct children of node k 2 V in a span-

ning tree.

vk :=
1
N

PN
l=1 vk(Tl) Average size of the subtree of node k 2 V .

pk :=
1
N

PN
l=1 pk(Tl) Average path length from node k to the root.

To further condense the amount of data, we take the averages and maxima of the above

values and obtain:

wavg :=
1

N

NX
k=1

wk vavg :=
1

N

NX
k=1

vk pavg :=
1

N

NX
k=1

pk

wmax := max
k

wk vmax := max
k

vk pmax := max
k

pk

We use the values of wmax, vmax, and pmax to calculate measures for the degree of load

balancing of a topology. Speci�cally, we use the ratios wmax=wavg , vmax=vavg , and pmax=pavg
to compare the worst-case node and average node for a control topology. Our expectation is

that a control topology with good scalability properties must balance the load incurred at a

node, which is reected in the need for low maximum-to-average ratios.

In the following we present the results of the above measures for the K-ary tree and the

hypercube. The complete set of derivations are presented in the appendix of this paper.

11



4.2 Analysis of the n-dimensional Hypercube

The performance measures for the hypercube can be calculated by taking advantage of the

highly symmetric topology and the properties of the Gray code. In Appendix A we show the

complete set of derivations. For a full hypercube, that is, N = 2n, we obtain the following

exact formulas:

wavg = 1�
1

N

wmax = 2�
log2N + 2

N

vavg =
1

2
log2N + 1

vmax =
1

8
(log2N)2 +

3

8
log2N + 1

pavg =
1

2
log2N

pmax =
1

2
log2N

We have also derived bounds for these performance measures in the incomplete hypercube,

that is, N < 2n. While these bounds, derived in Appendix B, are not sharp, they exhibit the

same growth behavior as the exact expressions for the full hypercube. Therefore, we will deal

only with the exact expression in our numerical examples.

4.3 Analysis of the Shared K-ary Tree

Recall that control trees in the shared K-ary tree are obtained from a single tree by re-hanging

this tree with di�erent nodes as root [17, 18]. In Figure 2 we showed an example of re-hanging

a binary tree.

AsK is increased, the maximum path length from a node to the (re-hung) root is decreased.

This, however, increases the load on the node that is the root in the original tree. In the extreme

case, we have N = K and obtain a star topology where re-hanging the tree always results in

N � 1 nodes hanging o� the original root of a star topology.

Let us assume for simplicity that all leaves of the tree are occupied, i.e., there exists a d � 0

with N =
Pd

l=0K
l. Then we obtain:

wavg = 1�
1

N

wmax = K +
1

N

vavg = 2d+
K � 5

K � 1
+

6d

N(K � 1)
+

4(K � 2)

N(K � 1)2
+

4(d+ 1)

N2(K � 1)2

vmax =

8>>>><
>>>>:

5N

8
+
1

4
�

11

8N
if K = 2

(K � 1)N

K
+

2

K
�

1

KN
otherwise
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pavg = 2d�
4

K � 1
+

6d

N(K � 1)
+

4(K � 2)

N(K � 1)2
+

4(d+ 1)

N2(K � 1)2

pmax = 2d�
3

K � 1
+

3(d + 1)

N(K � 1)

The derivations for these performance measures are given in Appendix C.

4.4 Discussion

We now use the derived measures to demonstrate how the shared tree and hypercube control

topologies scale when the size of a multicast group grows large.

Let us �rst examine the number of children of a node, wavg and wmax. Since, for all

spanning trees, the average number of children is wavg < 1, i.e., on the average a node in a

control tree has only one child, we only compare the ratios wmax=wavg :

K-ary Tree: wmax=wavg �!N!1 K

Hypercube: wmax=wavg �!N!1 2

Thus, in a K-ary tree there is a node that has, on the average, K times as many children as

the average node. The hypercube, in contrast, is better load-balanced. Here, the di�erence

between the worst-case and the average case is only a factor of 2. (In the K-ary tree, the

maximum is attained for the root in the original K-ary tree. The hypercube attains the

maximum at the node with label 00...0).

In Figure 7(a) we present a graph where we plot the values for vavg by varying the number

of nodes N . We present results for the shared K-ary tree (with K = 2; 5; 10; 100) and the

hypercube. In the �gure we see that, in a K-ary shared tree, vavg decreases for increased

values of K. Note that, over the entire range of values, vavg for the hypercube is smaller for

the 10-ary tree.

The comparison of the ratios vmax=vavg , depicted in Figures 7(b), reveals a problem with

load balancing for the shared tree topologies. Since vmax increases linearly in N , all shared

trees have a bottleneck at the node were the maximum is attained. For large values of K,

scalability problems arise even for small group sizes. For all trees, the maximum-to-average

ratio exceeds 100 when the number of nodes has more than a thousand nodes. In a direct

comparison with the K-ary tree, the value of vmax=vavg for the hypercube appears almost

insigni�cant.

In Figures 8(a) and 8(b) we present the results for the path lengths. It is interesting to

note that the average path to the root is shorter in the hypercube than in a 10-ary tree. For the

entire range of values shown, the embedded trees from the hypercube have less than 10 children

per node, resulting in longer path length. However, due to re-hanging the shared 10-ary tree

will result { on the average { in longer paths length to the root. Figure 8(b) shows that load

balancing is not an issue when considering the path lengths. As the size of the multicast group

is increased, the ratio pmax=pavg quickly approaches 1 in all topologies.

13
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Figure 7: Comparison of Average Number of Descendants.
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Figure 8: Comparison of the Average Path Lengths.

In summary, the hypercube appears very suitable to support large multicast groups. A

comparison with shared K-ary tree showed that the hypercube has all the advantages, and

none of the disadvantages of the shared K-ary tree. Particularly, the hypercube provides

an excellent balance of the average and worst-case load at the nodes. The load-balancing

indicators wmax=wavg and vmax=vavg clearly demonstrate that the shared tree topology has

problems when scaled to very large group sizes. Figure 7(b) illustrates that the load-balancing

problems of the shared K-ary seem to be independent of the selection of K. In contrast, the

hypercube topology does not have these scalability problems.
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5 Empirical Evaluation of Dynamic Behavior

In this section, we present an empirical evaluation of the hypercube control topology. We

measure the dynamic behavior of the hypercube control topology, and compare the results

with the K-ary shared tree topology.

The basis for our empirical evaluation are data traces of an MBONE session obtained with

the Mlisten tool [1]. The authors of [1] have made available detailed traces of the multicast

group membership of MBONE sessions. The traces that are the basis for our evaluation are

the video transmission sessions for the NASA's STS-80C space shuttle mission measured over

a period of 27 days (657 hours) from November 8, 1996 to December 4, 1996.

The varying size of the group membership over the measurement period from 120 hours

to 600 hours is shown in Figure 9. Over the entire length of the experiment, the MBONE

sessions had 1,874 di�erent hosts participating with a maximum of 169 simultaneous users (at

t = 252 hours into the experiment). Note in Figure 9 the occasional drops in the group size,

e.g., at t = 319 hours. Even though these drops are likely due to artifacts of the measurement

experiments, we assume that Figure 9 reects the actual group size.

We use this trace to track the dynamic behavior of the performance measures from Sub-

section 4.1 which indicate the average load and the degree of load balancing.

As before, we perform a comparison between the hypercube topology and the shared K-

ary tree. In all topologies, we assume that, whenever the group membership has changed,

the resulting topology is as compact as possible. In tree topologies, we keep the tree depth

minimal, and in the hypercube topology, we attempt to minimize the hypercube dimension.

For a hypercube this means we assume that compactness is always maintained. For the tree,

our scheme ensures that all nodes at level 0 (root) to d are �lled before �lling any node at

level d + 1. This assumption ensures that we always present the most optimistic results for

the shared K-ary tree. Actual algorithms for restructuring shared K-ary trees, e.g., [17], may

yield worse results.

Next we discuss the outcome of the experiment:

� Number of children of a node: In Figure 10 we depict the ratio wmax=w which reects
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the skewness of load balancing.3 Note that the ratio is lowest for the hypercube. For K-ary

trees, the ratio increases as the maximum number of children of a node is increased.

� Number of descendants of a node: In Figure 11 we depict the values for the ratio

vmax=v. (The values of v are � 4 for the hypercube, � 10 for the binary tree, � 6 for the 5-ary

tree, and � 3 for the Star network). The hypercube clearly emerges as the topology with the

best load balancing properties.

� Path Length in Control Topology: Since for all topologies considered, the maximum

value pmax is within a constant from the average p (see Section 4), we only show the values for

p. In Figure 12 we see that the average path length in the hypercube topology is less than 4

hops, less than that for the 5-ary tree.

6 Conclusions

We have presented a new approach for disseminating control information between the members

of a multicast groups. In our approach, we organize the members of a multicast group in a

logical hypercube and assign each multicast group member a number that is derived from

a Gray code. The Gray encoding enables each node to locally calculate the next hop for

transmitting control information. We analyzed the scalability properties of our approach in

symmetric multicast groups, i.e, where each group member is a sender. In a comparison with

an K-ary shared tree control topology we showed that the hypercube is superior in balancing

the load of control information among all nodes.

The �ndings of this paper have encouraged us to continue our research on using hypercubes

for scalable multicast applications. We are currently devising a set of protocol mechanism for

maintaining the hypercube topology in a packet-switching network. Shortly, we will present a

soft-state protocol that can maintain a hypercube without requiring any network entity to be

aware of the global state of the multicast group. The protocol is be self-healing in the sense that

it has built-in mechanism for recovering from node or link failures. With the protocol, we can

conduct measurement experiments that enable us to do performance comparisons with actual

multicast protocols. Also, in future work we will investigate the relationship between routing

and control topology, and attempt to trade-o� the geographical location (physical address)

and node label (logical address) of multicast group members.
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APPENDIX: Proofs of Scalability Properties

This appendix contains the formal proofs of the scalability properties of the shared K-

ary tree and the hypercube as presented in Section 4. We derive the following performance

measures for both the shared K-ary tree and the n-dimensional hypercube.

wavg wmax vavg vmax pavg pmax

In Appendix A we show the derivations for a complete hypercube, that is, an n-dimensional

hypercube with N = 2n nodes. In Appendix B we derive bounds for the performance measures

for incomplete hypercubes with N < 2n nodes. In Appendix C, we analyze a complete shared

K-ary tree with N =
Pd

l=0K
l nodes.

A The n-dimensional Hypercube (N = 2
n)

In this section, we prove the properties for trees that are embedded into an n-dimensional

hypercube. Recall from Section 3 that all trees embedded into a hypercube with our embedding

algorithm are binomial trees. In Figure 13 we illustrate the topology of binomial trees. In the

following we assume that the hypercube is complete, i.e., N = 2n.

A.1 Number Of Children

A.1.1 Total Average Number of Children wavg

The quantity wavg is obtained from a general property of trees. Clearly, each node in a tree

except the root node is a child node. Thus, the number of children nodes in any tree is given by

N � 1, and the average number of children per node is (N � 1)=N . Therefore, wavg is obtained

as

wavg = 1�
1

N
(1)

A.1.2 Maximum Average Number of Children wmax

We claim that the maximum average in a hypercube occurs for the node that is labeled `00..0',

and call this node 0. To obtain wmax we now calculate the number of children of this node

0 in the embedded tree with root node R. We distinguish three di�erent label types for root

node R and perform the calculation independently for each type. The labels are as follows:

Case 1: The label of R contains two or more 1's.

Case 2: The label of R contains a single 1.

Case 3: The label of R is all 0's, i.e., 0 is the root.
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We consider each of the cases separately.

Case 1: In this case, the root has j1 leading zeroes, and j2 trailing zeroes (j1; j2 � 0). Let `x'

denote either a `0' or a `1', the root R has the following label

R = 00:::00| {z }
j1

1 xx : : : xx 1 00:::00| {z }
j2

(2)

If S is a child of 0 when R is the root then, by de�nition of our procedure Parent(), the label

of S must have one 1 in one of the j1 leading positions or j2 trailing positions.

R = 00:::00| {z }
j1

1 xx : : : xx 1 00:::00| {z }
j2

0 = 00:::00| {z }
j1

0 00 : : : 00 0 00:::00| {z }
j2

S = 00:1:00| {z }
j1

0 00 : : : 00 0 00:::00| {z }
j2

or

R = 00:::00| {z }
j1

1 xx : : : xx 1 00:::00| {z }
j2

0 = 00:::00| {z }
j1

0 00 : : : 00 0 00:::00| {z }
j2

S = 00:::00| {z }
j1

0 00 : : : 00 0 00:1:00| {z }
j2

Thus, node 0 has j = j1 + j2 children. For each value of j, there are (j + 1)2n�j�2 di�erent

values of R. (To verify our claim that no node has more children, one can convince oneself

that any node 6= 0 cannot have more children in the depicted case.) By multiplying each value

with the number of children and summing up the results, we obtain

C1 :=
n�2X
j=0

j(j + 1)2n�j�2 (3)

After some algebraic manipulations and with N = 2n we obtain

C1 = 2N � n2 � n� 2 (4)

Case 2: In this case the label of the root R only contains a single 1. Assuming that R has j1
leading 0's, we obtain

R = 00:::00| {z }
j1

1 00:::00| {z }
n�j1�1

(5)

Similar to the previous case, we obtain the following relationship between R, 0, and a child S

of 0 in the embedded tree with node R

R = 00:::00| {z }
j1

1 00:::00| {z }
n�j1�1

0 = 00:::00| {z }
j1

0 00:::00| {z }
n�j1�1

S = 00:1:00| {z }
j1

0 00:::00| {z }
n�j1�1

or

R = 00:::00| {z }
j1

1 00:::00| {z }
n�j1�1

0 = 00:::00| {z }
j1

0 00:::00| {z }
n�j1�1

S = 00:::00| {z }
j1

0 00:1:00| {z }
n�j1�1

There are n possible values of R, and for each, there are n� 1 possible values of S. Hence,

the sum of children for this case is

C2 := n2 � n (6)
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Figure 13: Binomial Trees.

Again, to support our claim that no other node has more children, one can verify that all nodes

6= 0 cannot have more children in this case.

Case 3: If 0 itself is the root, the sum of children is directly obtained as

C3 := n (7)

Taking the average over all three we can write down the solution for wmax.

wmax =
C1 + C2 + C3

N
(8)

=
1

N

h
(2N � n� 2� n2) + (n2 � n) + n

i
(9)

= 2�
n+ 2

N
(10)

A.2 Number of Descendants

A.2.1 Total Average Number of Descendants vavg

Consider the binomial trees for n = 1; 2; 3 shown in Figure 13, obtained when executing our

embedding algorithm for a hypercube with n dimensions. Let us introduce W (k) to denote the

sum of descendants of all nodes in a binomial tree of size k. For k = 1 we see by inspecting

Figure 13 that the total sum of descendants is 3: the root node has two descendants and the

child node has one descendant. Therefore,

W (1) = 3 (11)

Since a binomial tree of size k is obtained by taking two binomial trees with size k � 1 and
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interconnecting them at the root (see Figure 13), we obtain W (k) from W (k�1) as follows:

W (k) = 2W (k�1) + 2k�1 (12)

We can resolve the recursion in Eqns. (11) and (12) to

W (k) = 2k + k2k�1 (13)

Since vavg is simply W (k)=2k and with N = 2n we obtain

vavg =W (n)=2n =
1

2n

h
2n + n2n�1

i
(14)

=
n

2
+ 1 (15)

A.2.2 Maximum Average Number of Descendants vmax

We claim that the maximum average occurs for the node with label address 00..0, and call

this node 0. (We do not provide a proof, however, it is not hard to see that in each of the

cases that we will consider, no node can have more descendants than node 0.) Proceeding in a

similar fashion as for the proof of maximum average number of children in Subsection A.1.2,

we address the question of calculating, for any embedded tree with root R, the number of

descendants of node 00...0, or 0. Again we consider three di�erent scenarios:

Case 1: The label of R contains two or more 1's.

Case 2: The label of R contains a single 1.

Case 3: The label of R is all 0's, i.e., 0 is the root.

Case 1: The root has the following structure, with j1 leading zeroes and j2 trailing zeroes.

R = 00:::00| {z }
j1

1 xx : : : xx 1 00:::00| {z }
j2

Let S be a descendant of 0 in the embedded tree with R as root. Then S must have all 0's

in the middle portion, and have 1's in only the leading and trailing portions as shown below

(again, an `x' indicates either a '1' or a `0').

R = 00:::00| {z }
j1

1 xx:::xx 1 00:::00| {z }
j2

0 = 00:::00| {z }
j1

0 00 : : : 00 0 00:::00| {z }
j2

S = xx:::xx| {z }
j1

0 00:::00 0 xx:::xx| {z }
j2

We see that for each value of j with j = j1 + j2, every node with n� j 0's in the middle part

is a descendant of 0. Thus, node 0 has 2j descendants where j = j1 + j2. For each value of j,
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there are (j + 1)2n�j�2 di�erent values of R. Thus, for each value of j, the total number of

descendants that 0 has, is (j + 1)2n�2. Summing over all values of j, we have.

D1 :=
n�2X
j=0

2j(j + 1)2n�j�2 (16)

After some simpli�cations we obtain

D1 = 2n�3n(n� 1) (17)

Case 2: Now consider that root R has exactly one 1 in its label, with j � 1 leading 0's.

R = 00:::00| {z }
j1

1 00:::00| {z }
n�j1�1

Here, the relationship between R, 0, and S is the following.

R = 00:::00| {z }
j1

1 00:::00| {z }
n�j1�1

0 = 00:::00| {z }
j1

0 00:::00| {z }
n�j1�1

S = xx:::xx| {z }
j1

0 xx:::xx| {z }
n�j1�1

Note that there are n possible labels for R, each with a di�erent position for the 1. For

each of these, there are 2n�1 possible values of S. Hence, the total number of descendants in

this case is

D2 := n2n�1 (18)

Case 3: Finally, we consider that 0 itself is the root. The number of descendants are all nodes

in the embedded tree, that is

D3 := 2n (19)

The average for 0 therefore is,

vmax =
D1 +D2 +D3

N
(20)

=
2n�3n(n� 1) + n2n�1 + 2n

N
(21)

With N = 2n, we can simplify this expression to

vmax =
n2

8
+
3n

8
+ 1 (22)

A.3 Path Length to the Root

By construction, the path length of a node in a tree that is embedded in the hypercube only

depends on the Hamming distance between the root and the node in question. For any root

node, the average path length is its average hamming distance to other nodes.
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A.3.1 Total Average Path Length to the Root pavg

We will show that for all trees it holds that pavg = vavg � 1.

By de�nition of pavg we have

pavg =
1

N2

X
x2V

X
r2V

px(Tr) (23)

Denote by Px;r the collection of nodes in a tree with root r that are on the path from x to r.

With Px;r we can rewrite the previous equation as

pavg =
1

N2

2
4X
r2V

X
x2V

0
@
0
@ X

y2Px;r

1

1
A� 1

1
A
3
5 (24)

=
1

N2

2
4X
r2V

X
x2V

0
@ X
y2Px;r

1

1
A
3
5� 1 (25)

By exchanging the order of summation we can write

pavg =
1

N2

2
4X
r2V

X
y2V

0
@ X

x : y2Px;r

1

1
A
3
5� 1 (26)

Noting that
P

x : y2Px;r 1 = vy(Tr) is the number of descendants of node y in the tree with root

r, we obtain

pavg =
1

N2

2
4X
r2V

X
y2V

vy(Tr)

3
5� 1 (27)

= vave � 1 (28)

Inserting the result from Eqn. (15) yields the result

pavg =
n

2
(29)

A.3.2 Maximum Average Path Length to the Root pmax

In a complete hypercube, the average path length to the root is the same for all embedded

trees. Hence, the average path length pavg is the same as the maximum pmax.

pmax = pavg =
n

2
(30)

B The incomplete n-dimensional Hypercube (N < 2
n)

For brevity, we only derive a set of relatively loose bounds. Although these bounds are only

crude approximations they exhibit the same growth behavior as the exact expressions for the

full hypercube.
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Let us use Xavg to denote either one of wavg, vavg, or pavg, and Xmax to denote either one

of wmax, vmax, and pmax. Furthermore, let X
(N)
avg and X

(N)
max denote the respective values for a

hypercube with N nodes. We will now derive bounds for X
(N)
avg and X

(N)
max for hypercubes with

N nodes and 2n�1 < N < 2n.

Let us �rst consider X
(N)
max. Assuming that the maximum is attained for node s, that is,

X
(N)
s = maxkX

(N)
k , we have

X(N)
max =

1

N

NX
r=1

X(N)
s (Tr) (31)

Clearly, we can increase the righthand side by adding terms.

X(N)
max <

1

N

2nX
r=1

X(N)
s (Tr) (32)

=
1

N
2n
 
1

2n

2nX
r=1

X(N)
s (Tr)

!
(33)

=
2n

N
X(2n)

max (34)

< 2X(2n)
max (35)

In the same way, we can derive a lower bound and obtain

X(N)
max >

1

2
X(2n�1)

max (36)

Now let us consider X
(N)
ave . With a similar derivation as above we can derive

X(N)
ave =

1

N2

NX
k=1

NX
r=1

X
(N)
k (Tr) (37)

<
1

N2

2nX
k=1

2nX
r=1

X
(N)
k (Tr) (38)

=
4n

N2
X(2n)

ave (39)

< 4X(2n)
ave (40)

The corresponding lower bound is

X(N)
ave >

1

4
X(2n�1)

ave (41)

Focusing only on the upper bounds, we can use the results for complete hypercubes from

Appendix A and obtain

w(N)
avg < 4�

2

N
(42)
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w(N)
max < 4�

log2N + 3

N
(43)

v(N)
ave < 2 log2N + 6 (44)

v(N)
max <

1

4
(log2N)2 +

5

4
log2N + 3 (45)

p(N)
avg < 2 log2N + 2 (46)

p(N)
max < log2N + 1 (47)

Some of the above bounds can be improved as follows:

w(N)
ave = 1�

1

N
(48)

p(N)
avg � p

(N)
max < log2N + 1 (49)

v(N)
ave = p(N)

ave + 1 � log2N + 1 (50)

Eqn. (48) follows from the exact expression for wavg from Subsection A.1.1. The tighter bound

in Eqn. (49) is obvious as the average is never larger than the maximum. Eqn. (50) exploits

that vave = pave + 1 as shown in Subsection A.3.1.

C The Shared K-ary Tree

C.1 Number Of Children

C.1.1 Total Average Number of Children wavg

In Subsection A.1.1 we showed that the following holds for all trees:

wavg = 1�
1

N
(51)

C.1.2 Maximum Average Number of Children wmax

The maximum wmax = maxk fwkg is attained for a node in the original tree with maximum

degree. (The degree of a node is the number edges connected to the node.) In a K-ary tree,

the maximal degree of any node is K + 1. If the tree is re-hung, a node with maximal degree

has K + 1 children if it is the root of the re-hung tree, and K children otherwise. Therefore,

wmax = K +
1

N
(52)

C.2 Number of Descendants

Before calculating the values vmax and vavg , we de�ne El, the number of nodes in a subtree of a

node which is at level l in the original tree. Since, by assumption, the node has K descendants

at level l + 1, K2 descendants at level l + 2, etc., a simple geometric progression yields

El = 1 +K +K2 + :::+Kd�l =
Kd�l+1 � 1

K � 1
(53)
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A(l)/K

Level  l

Subtree of node x

. . .
D
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A(l)/KA(l)/K

x

R

Level  l-1

Level  l+1

Level  0

Figure 14: Structuring of Subtrees for Calculation of vl.

C.2.1 Total Average Number of Descendants vavg

We now use El from Eqn. (53) to calculate the average number of descendants of a node

averaged over all re-hung trees. With a light abuse of notation, we denote by vl the average

number of descendants for a node which is at level l in the original tree.

Let us consider a K-ary tree (`original tree') and tag a node at level l. Such a tree is shown

in Figure 14. Here, the tagged node is labeled as node x, its ancestor node is node A, one of

its children is labeled as node D, and the root node is labeled node R. When such a tree is

re-hung, three types of trees may result:

1. The tagged node x is the root in the re-hung tree (see Figure 15(a)).

Here, the tagged node has N descendants. Among all N possible re-hung trees, there is

only one tree which has the tagged node as root.

2. The root node of the re-hung tree was a descendant of the tagged node in the original

tree. (For example, the root is node D or a descendant of node D).

There is one re-hung tree for each of the El � 1 descendants of node x. One such tree is

depicted in Figure 15(b). In each tree, the number of descendants of node node x consists

of all nodes in the tree except the nodes in the subtree of node x (in the original tree)

which contains the root in the re-hung tree. The number of descendants is N�(El�1)=K

nodes.

3. The root of the re-hung tree is neither the tagged node nor a descendant of the tagged

node in the original tree.
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There are a total of N � El such re-hung trees. Here, the descendants of node x in the

re-hung tree are the descendants of node x in the original tree.

With these considerations, we obtain vl by averaging over all N trees

vl =
1

N
[N + (El � 1)(N �

El � 1

K
)+El (N �El)] (54)

=
1

N

�
2El

�
N +

1

K

�
� (El)

2
�
1 +

1

K

�
�

1

K

�
(55)

Now we obtain vavg by averaging vl over all levels, that is,

vavg =
1

N

dX
l=0

K lvl (56)

With Eqn. (55) and some algebraic manipulations we get

vavg = 2d+
K � 5

K � 1
+

6d

N(K � 1)
+

4(K � 2)

N(K � 1)2
+

4(d+ 1)

N2(K � 1)2
(57)

C.2.2 Maximum Average Number of Descendants vmax

Not completely intuitively, the maximum average number of descendants is not always attained

for the root node of the original tree. Taking the maximum in Eqn. (55) we calculate for

su�ciently large N the level lmax with vlmax
= maxl vl as

lmax =

(
1 if K = 2

0 otherwise
(58)

Inserting lmax into Eqn. (55) we obtain

vmax = vlmax
=

8>>>><
>>>>:

5N

8
+
1

4
�

11

8N
if K = 2

(K � 1)N

K
+

1

KN
otherwise

(59)
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(a) Node x   is root in the re-hung tree.

(b) A node in the subtree of    Node x   is  root in the re-hung tree.

(c) The root in the re-hung tree is neither     Node x   nor a node in
      the subtree of   Node x.

Figure 15: Re-hung Trees as Used for the Derivation of vl.
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C.3 Path Length to the Root

C.3.1 Total Average Path Length to the Root pave

Since we derived in Subsection A.3.1 that pavg = vavg�1 holds for all trees, inserting Eqn. (57)

yields the result

pavg = 2d�
4

K � 1
+

6d

N(K � 1)
+

4(K � 2)

N(K � 1)2
+

4(d+ 1)

N2(K � 1)2
(60)

C.3.2 Maximum Average Path Length to the Root pmax

Let pl denote the average path length to the root of a tagged noded at level l in the original

tree, averaged over all positions of the root. (Again, we abuse notation and use the index to

indicate the level of a node.) For l = 0 we have

p0 =
1

N

dX
l=0

lK l (61)

= d�
1

K � 1
+

d+ 1

N(K � 1)
(62)

For l > 0, we can derive a relationship between pl and pl�1. Consider the tree shown in

Figure 14. Let us tag node x which is at level l. To obtain pl we calculate the average path

length from node x to the roots in the re-hung trees. Let us assume that we know pl�1, i.e.,

the average path length of a parent of node x (which is node A in Figure 14). We can use pl�1
to obtain the average path length if node x is the tagged node. If the root is in the subtree of

node x, including node x itself, then the path from node x to the root is one edge shorter, than

the path from node A to the root. Otherwise, the path is one edge longer. Therefore, we can

write

pl =
1

N
[Npl�1 �El + (N �El)] (63)

= pl�1 �
2

N

Kd�l+1 � 1

K � 1
+ 1 (64)

Resolving the recursive expression yields

pl = p0 �
2

N(K � 1)
[N �El � l] + l (65)

Since the average path length monotonically increases in l, the maximum occurs at l = d, i.e.,

pmax = pd = p0 �
2

N(K � 1)
[N �Ed � d] + d (66)

With Eqn. (62) and Ed = 1, we obtain

pmax = 2d�
3

K � 1
+

3(d+ 1)

N(K � 1)
(67)
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