

HyperCast: A Super-Scalable Many-to-Many
Multicast Protocol for Distributed Internet

Applications

Multicast Group

A HyperCast
Socket

BHyperCast
Socket

CHyperCast
Socket

A Thesis
In TCC 402
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment

Of the Requirements for the Degree
Bachelor of Science in Computer Science

by

Konrad Lorincz

October 1, 2001

On my honor as a University student, on this assignment I have neither given nor received

unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Approved Date
 Technical Advisor - Jörg Liebeherr

Approved Date
 TCC Advisor - Rosanne L. Welker

 i

Table of Contents

Table of Contents... i

Table of Figures.. ii

Glossary of Terms ... iii

Abstract... iv

Chapter 1: Introduction.. 1

1.1 Ways of Transmitting Messages in a Network ... 1
1.2 Advantages of Using Multicast Protocols ... 3
1.3 Problems With Existing Multicast Protocols ... 4
1.4 Previous Work... 9
1.5 Preview of the Rest of the Report... 10

Chapter 2: Design of HyperCast ... 12

2.1 HyperCast Socket ... 13
2.2 Overlay Protocol Structure.. 15
2.3 Overlay Protocol Node.. 16

Chapter 3: Large Scale Experiments.. 22

3.1 Testbed ... 23
3.2 Performing an Experiment .. 23
3.3 Types of Experiments ... 25

3.3.1 Time to Stabilize Hypercube... 25
3.3.2 Time to Stabilize DelaunayTriangulation .. 29

Chapter 4: Conclusion ... 34

4.1 Summary... 34
4.2 Interpretation ... 35
4.3 Recommendations and Future Work.. 37

References... 39

Appendix A – Experiments Data ... 41

 ii

Table of Figures

Figure 1-1: Three ways of transmitting messages: unicast (a), multicast (b), broadcast (c)

... 2
Figure 1-2: Unicast transmission .. 4
Figure 1-3: Multicast transmission ... 4
Figure 1-4: Well-balanced acknowledgement tree in which the sender is the root of the

tree... 6
Figure 1-5: Hypercube, Arranges nodes in a logical N-dimensional hypercube 7
Figure 1-6: Depicts N-dimensional Hypercubes [17]... 8
Figure 1-7: Transmission tree with root 000 [17].. 8
Figure 1-8: Transmission tree with root 111 [17].. 8
Figure 2-1: Applications’ view of HyperCast .. 12
Figure 2-2: HyperCast socket components ... 13
Figure 2-3: HyperCast socket’s view of the overlay topology ... 16
Figure 2-4: Conceptual view of an overlay protocol .. 17
Figure 2-5: Node hierarchy... 18
Figure 2-6: Node hierarchy with implementation detail ... 18
Figure 2-7: Adapter hierarchy... 19
Figure 2-8: Address hierarchy... 20
Figure 2-9: Message hierarchy.. 20
Figure 2-10: Node hierarchy with adapters... 21
Figure 3-1: The schematic representation of an experiment... 24
Figure 3-2: Time to stabilize a Hypercube with N nodes ... 27
Figure 3-3: Average time to add a node to the Hypercube ... 28
Figure 3-4: Adding nodes to an existing Hypercube .. 29
Figure 3-5: Time to stabilize a DelaunayTriangulation with N nodes 31
Figure 3-6: Average time to add a node to the DelaunayTriangulation 32
Figure 3-7: Average bytes sent and received per node per second 33

 iii

Glossary of Terms

broadcast transmission – sending a message to all hosts

heartbeat – time interval at which nodes communicate with each other. The default
value is 2 seconds.

IP Multicast – a multicast protocol which builds a virtual network on top of the existing
physical network, developed by Steve Deering in the late 1980s

MBONE – Multicast Backbone. A collection of multicast capable routers on the Internet
backbone, which forward IP Multicast messages

multicast transmission – sending a message to a subgroup of hosts

overlay protocol – a protocol responsible for constructing and maintaining a multicast
group

overlay topology – the topology created by an overlay protocol

router – a network node which takes messages from one network and forwards them
onto a different network

unicast transmission – sending a message to a single destination host

 iv

Abstract

Unicast transmission is appropriate for many Internet applications such as e-mail, web

browsing, and file transfer because these applications involve interaction between a

single sender and a single receiver. However, other classes of applications, which

involve a sender transmitting the same data to multiple receivers, require a different

transmission paradigm. Multicast protocols address this class of applications by

efficiently distributing data from a single sender to multiple receivers. However,

existing reliable multicast protocols cannot efficiently handle multicast groups with many

senders. To address this problem, a novel protocol called HyperCast was developed,

which efficiently handles multicast groups with many senders. This paper describes the

redesign of HyperCast and its overlay protocol structure. Large-scale experiments on

two overlay protocols Hypercube and DelaunayTriangulation verify that they scale to

multicast group sizes of 10,000 nodes.

Technical Report Chapter 1: Introduction

 1

Chapter 1: Introduction

Collaborative Internet applications, such as videoconferencing, shared document editors,

shared file distributors, and distributed search engines, must send data to more than one

destination host [5]. Efficiently distributing data in such applications requires members

to join multicast groups for communication. Multicasting allows the sending hosts to

deliver data efficiently to a set of receivers [14]. Supporting large multicast groups

requires an efficient way to exchange control information between group members in

order to construct and maintain the multicast group, and distribute application data to the

multicast group members. This project redesigned a new multicast protocol HyperCast

and verified through experiments that it scales to 10,000 nodes on the Internet.

1.1 Ways of Transmitting Messages in a Network

There are three ways in which messages can be transmitted in a network. They are

unicast, multicast, and broadcast transmission. In unicast transmission the sending host

sends a message to a single receiving host [14]. The sender must know the unique

address of the receiver. If the sender does not know the address of the receiver, then the

message cannot be sent. Most Internet applications like e-mail, File Transfer Protocol

(FTP), and Web browsing rely on unicast transmission.

In multicast transmission the sending host sends a message to a subset of all the hosts in

the network [14]. The subset or group of receivers is identified by a unique multicast

group address, which the sender must know. The underlying multicast protocol is

Technical Report Chapter 1: Introduction

 2

responsible for delivering the message to all multicast group members, and therefore the

sender does not have to know the address of all the individual receivers. Internet

applications like videoconferencing, distributed white boards, and distributed search

engines rely on multicast transmission.

In broadcast transmission the sending host sends a message to all hosts in the network

[14]. The sender sends the message to a well-known broadcast address. All hosts on the

network listen to this broadcast address and pick up any messages. As in multicast

transmission, the sender does not have to know the addresses of any of the hosts in the

network. In fact broadcasting is used mostly to discover other hosts and their addresses

in a network.

The three different ways of transmitting messages in a network are illustrated in Figure

1-1. Unicast transmission is depicted in Figure 1-1(a) by the single arrow from the

sender to one receiver. Figure 1-1(b) depicts multicast transmission by extending several

arrows from the sender to a subset of hosts. Broadcast transmission is represented in

Figure 1-1(c) by extending arrows from the sender to all hosts in the network.

Host

Sender Host

Host

Host

(b)

Host

Sender Host

Host

Host

(c)

Host

Sender Host

Host

Host

(a)

Figure 1-1: Three ways of transmitting messages: unicast (a), multicast (b), broadcast (c)

Technical Report Chapter 1: Introduction

 3

1.2 Advantages of Using Multicast Protocols

The Internet, a packet switched network, is designed for unicast transmission, the

delivery of data packets from a single sender to a single receiver. Unicast is appropriate

for the majority of Internet applications such as e-mail, web browsing, and file transfer

because these applications involve the interaction between a single sender and a single

receiver [9]. However, for other classes of applications, which involve a sender

transmitting the same data to multiple receivers, unicast is inefficient because unicast

traffic increases proportionally with the number of receivers.

The problem with unicast transmission is that the sender has to send a copy of the

message transmitted, to each receiver. As shown in Figure 1-2, although the path from

the sender to the receivers is partially shared, multiple copies of the same message must

be sent over the shared path. Multicast transmissions take a more scalable approach by

addressing a set of receivers rather than a single destination [1]. In Figure 1-3, the sender

transmits only one copy of the message over the shared path and lets the routers make

multiple copies of the message when the paths to the receivers divide. Multicast

messages are therefore addressed to a multicast group as a whole.

Technical Report Chapter 1: Introduction

 4

Sender

Receiver

Receiver

Receiver

Figure 1-2: Unicast transmission

Sender

Receiver

Receiver

Receiver

Figure 1-3: Multicast transmission

Multicasting emerged on the Internet with the development of the IP Multicast protocol

by Steve Deering in the late 1980s, and the Internet Multicast Backbone (MBONE) [9].

IP Multicast constructs a virtual path in a multicast group from the sender to the

receivers, along which the sender transmits messages. The MBONE is a collection of

multicast capable routers on the Internet backbone, which forward IP Multicast messages.

1.3 Problems With Existing Multicast Protocols

Multicast protocols can be broken down into two categories: one-to-many and many-to-

many. In one-to-many multicast protocols, a single or a few group members (hosts)

disseminate messages in a multicast group. In many-to-many multicast protocols, most or

all group members (hosts) can disseminate messages in the multicast group. Most

existing reliable multicast protocols efficiently address the case in which only one or a

few members distribute data in a multicast group [4]. Many-to-many reliable multicast

protocols have problems handling large multicast groups and therefore do not scale well

to group sizes of more than a few hundred members.

Technical Report Chapter 1: Introduction

 5

The major problem with scalable multicast applications is the need to exchange control

information between multicast group members in order to maintain the multicast group

[3]. Since the control messages need to be reliable, acknowledgements (ACKS) for

messages received or negative acknowledgements (NACKS) for messages missing must

be sent from the receivers to the sender. If each sender and receiver in a multicast group

directly exchanges messages to ensure reliability, than the ACKS or NACKS returning to

the sender are proportional to the number of group members. For large groups, this

implosion overwhelms the sender and therefore it is not scalable. This problem is known

as the ACK/NACK implosion problem.

Several protocols have been proposed to solve the ACK/NACK implosion problem, most

of which rely on organizing group members in a tree [1]. In this topology the sending

node is the root of the tree. Messages are sent down the tree from each parent to its

children. ACKS or NACKS are then sent up the tree from children to their parent. Each

receiving parent combines the received ACKS or NACKS from its children into one

packet that it sends up the tree to its parent. This process is continued until the original

sender is reached. The acknowledgement tree method is scalable because the number of

ACKS or NACKS received is proportional to the number of children. As long as well-

balanced trees – trees in which the end nodes are at about the same distance from the root

– can be constructed, the ACK/NACK implosion problem can be avoided.

Technical Report Chapter 1: Introduction

 6

Receiver Receiver

Receiver Receiver

Sender

Figure 1-4: Well-balanced acknowledgement tree in which the sender is the root of the tree.

Tree topologies are appropriate for one-to-many sender applications because a well-

balanced tree can be constructed such that the sending node is the root of the tree.

However, this topology is inefficient for groups with many senders. If a node other than

the root wants to send data, then a new tree must be constructed or the existing tree re-

hung. Constructing a new tree is very costly in terms of time and is therefore not a good

solution. Re-hanging the tree incurs little overhead however, the resulting tree may not

be well-balanced and therefore it can suffer from a long delay [4.1].

Liebeherr and Sethi address this problem, with the overlay protocol named Hypercube,

by arranging multicast group members in a logical N-dimensional hypercube on top of a

physical topology [4;17]. By exploring the symmetric properties of the hypercube, well-

balanced acknowledgement trees can be quickly constructed for any node. The ability to

construct well-balanced acknowledgement tree with little overhead makes the Hypercube

protocol scalable. Figure 1-5 illustrates that Hypercube takes group members from a

physical topology and organizes them in a logical hypercube topology.

Technical Report Chapter 1: Introduction

 7

Figure 1-5: Hypercube, Arranges nodes in a logical N-dimensional hypercube

on top of a physical topology.

A hypercube is an N-dimensional structure with 2N nodes, N*2N-1 edges and each node

has N neighbors [4, 12]. Figure 1-6 shows examples of 1, 2, and 3 dimensional

hypercubes. As Figure 1-6 depicts, the 1-dimensional hypercube has 21=2 nodes, 1*21-

1=1 edges and each node has 1 neighbor. The 2-dimensional hypercube has 22=4 nodes,

2*22-1=4 edges and each node has 2 neighbors. The 3-dimensional hypercube has 23=8

nodes, 3*23-1=12 edges and each node has 3 ne ighbors.

Technical Report Chapter 1: Introduction

 8

N=1 N=2 N=3

Figure 1-6: Depicts N-dimensional Hypercubes [17]

Building message transmission trees from any node in Hypercube is very easy. Figure

1-7 and Figure 1-8 show transmission trees built from two separate nodes. Nodes in a

hypercube have a physical address, the IP address of the host, and a logical address used

by the logical topology.

110

010

000 001

011

111

101

000

010001

101 110 011

111

110

010

000 001

011

111

101

000

010001

101 110 011

111

Figure 1-7: Transmission tree with root 000
[17]

110

010

000 001

011

111

101

111

110101 011

010 001

000

110

010

000 001

011

111

101

111

110101 011

010 001

000

Figure 1-8: Transmission tree with root 111
[17]

Technical Report Chapter 1: Introduction

 9

1.4 Previous Work

The HyperCast protocol designed by J. Liebeherr and B. Sethi was first implemented by

Tyler Beam in his masters thesis [1]. It was implemented in Java and successfully tested

group sizes up to 1,024 nodes. The success of his project initiated other related work,

which addressed some of the limitations of Hypercube.

Nicolas Christin and Michael Lack developed Unicast Hypercube, a variation on the

Hypercube protocol, which does not rely on IP Multicast to manage a multicast group.

Michael Nahas, developed DelaunayTriangulation, a protocol, which relies on Delaunay

triangulations to construct and manage a multicast group. Unlike Hypercube

DelaunayTriangulation, adds joining multicast group members in parallel [19]. Christin

and Nahas’ papers on these protocols are not yet published and therefore the protocols are

not described in this paper.

Recent work on this project focused on combining our overlay protocols and constructing

an application interface that applications can use. To achieve this, the work was divided

in the following three parts. First, additional experiments needed to be performed to

verify that Hypercube scales well to very large numbers. Beam tested group sizes only

up to 1,024 nodes. Before moving on we needed to verify that Hypercube scales to even

bigger numbers, 10,000 nodes. During the summer of 2000, along with a post-doctorate

Dongwen Wang, we successfully reached a Hypercube with 10,000 nodes. Data on these

large-scale experiments was collected during Fall 2000 and Spring 2001.

Technical Report Chapter 1: Introduction

 10

Second, Hypercube and what later was extended to include the HyperCast overlay

protocol, design and implementation needed to be more flexible, modular, and scalable.

It was redesigned and re-implemented during the summer and fall of 2000 by Liebeherr,

Nahas, Wang, and the author. Following good object oriented design techniques we

separated the protocol from the implementation detail and still managed to keep a clear

relationship between the two [16]. We also incorporated observations from the

experiments to make the protocol more scalable.

Third, work began on HyperCast, an attempt to merge previous work and provide a

mechanism for applications to use it. HyperCast provides a socket- like interface to

applications through which they can join and send data in a multicast group. Currently,

we have an initial implementation of HyperCast and several test applications like a

multicast File Transfer Protocol (FTP), a game, and a media streamer.

Very recently, Nahas and the author successfully scaled DelaunayTriangulation to

10,000 nodes. Preliminary data on these large-scale experiments was collected and is

presented in this paper. More extensive testing on the DelaunayTriangulation will follow

in the near future.

1.5 Preview of the Rest of the Report

Chapter 2 or this technical report, presents the design of HyperCast and the design of its

overlay protocol structure. Chapter 3 presents the large-scale experiments data on two

overlay protocols, Hypercube and DelaunayTriangulation. Chapter 4 provides the

Technical Report Chapter 1: Introduction

 11

conclusion, which includes a summary, interpretation for the data collected, and

suggestions for future work. Appendix A provides the large-scale experiments data.

Technical Report Chapter 2: Design of HyperCast

 12

Chapter 2: Design of HyperCast

The goal of HyperCast is to provide a means for applications, such as e-mail,

videoconferencing, distributed whiteboards, to join multicast groups in order to send and

receive data in those groups. HyperCast abstracts the complexity of multicasting from

applications by providing a simple socket like interface. For an application to join a

multicast group, it specifies the multicast group address when it creates a HyperCast

socket. Once it joins a multicast group, it can send and receive data with simple

commands. Figure 2-1 shows the abstraction that applications see. Applications A, B

and C join the multicast group by opening a HyperCast socket. Once they are part of the

group, they can send and receive data to each other without knowledge of the underling

structure and mechanism.

Multicast Group

A HyperCast
Socket

BHyperCast
Socket

CHyperCast
Socket

Figure 2-1: Applications’ view of HyperCast

A HyperCast socket is functionally composed of two main parts: an application data-

handling part and a multicast overlay part. The application data-handling part is

responsible for providing an interface to applications and for sending and receiving

Technical Report Chapter 2: Design of HyperCast

 13

application data. The multicast overlay part is responsible for the exchange of control

information between group members in order to build and maintain the multicast group.

2.1 HyperCast Socket

Figure 2-2 shows the components of a HyperCast socket. As mentioned earlier,

applications communicate with the socket through its interface. The application may

manipulate a socket object only through its interface, which allows the application to join

and leave a group, send and receive data, look up statistical information, etc. Other

components are not visible to the application.

HyperCast Socket

HyperCast Socket Interface

Adapter

S
tatsistics

Stats
Interface

Application
Data

Protocol
Messages

Overlay
Node

Forwarding
Engine

Adapter
Interface

Adapter
Interface

Overlay Node
Interface Message

Store
(for ordering and

acknowledgements)

Application
Receive
Buffer

Application
Send

Buffer

Adapter

Figure 2-2: HyperCast socket components

Technical Report Chapter 2: Design of HyperCast

 14

The application data-handling part consists of the application send buffer, application

receive buffer, forwarding engine, message store, and the adapter for application data.

The applications send and receive buffers are a place to temporarily store outgoing and

incoming data. The forwarding engine, routes incoming and outgoing data between the

two buffers, the application data adapter, and the message store. The message store is

used for depositing data packets to acknowledge previous packets and to ensure data

transmission reliability. The adapter of application data transmits data on the physical

network. It knows about the details necessary to actually transmit data. There are

various types of adapters that can be used depending on the physical network that the

socket is running. For example, if it’s running on the Internet then it uses an IP_Adapter

(Internet Protocol Adapter). If it is running on a simulator, then it uses a S_Adapter

(Simulator Adapter). A more detailed discussion of this topic is provided in the next

section. Finally, the statistics object stores statistical information about the socket, like

the number of bytes sent, bytes received, etc., which can be queried by the application.

The multicast overlay part consists of the overlay protocol node (OL_Node) and its

protocol message Adapter. The overlay protocol builds and maintains the multicast

group. This part is essential to HyperCast, because the overlay protocol is directly

responsible for the scalability of HyperCast. Much of the past work has been devoted to

the Hypercube protocol. The next section provides a detailed design description of the

overlay protocol structure. Beside Hypercube there are two additional protocols:

Unicast Hypercube, which unlike Hypercube it does not rely on IP Multicasting, and

Technical Report Chapter 2: Design of HyperCast

 15

DelaunayTriangulation, which maps the logical topology closer to the physical topology.

The protocol message adapter transmits overlay control data on the physical network.

Like the application data adapter, it can be switched with other adapter when running on

different physical networks.

2.2 Overlay Protocol Structure

The goal of the overlay protocol is to provide a means for building and maintaining a

multicast group. A HyperCast socket attaches itself to the overplay topology by creating

an overlay node (OL_Node) object in its socket. Once the OL_Node is created, it

becomes part of the overlay topology. OL_Node abstracts away the complexity of the

overlay topology from the HyperCast socket by providing a simple interface to it. For a

HyperCast socket to join an overlay topology, all it has to do is specify the overlay

topology address when it creates an OL_Node object. Once OL_Node joins the overlay

topology, HyperCast socket can find out the address of its neighbors from its OL_Node

to send and receive data from them.

Figure 2-3 shows the abstraction that the HyperCast socket sees. A HyperCast socket

joins the overlay topology by creating an OL_Node, represented by the solid circles,

inside the socket. From its OL_Node a HyperCast socket finds out about its neighbors.

Each HyperCast socket has an OL_Node inside it, which correspond with the OL_Node

in Figure 2-2. Note that the watermarked part of Figure 2-3 is left there to provide a high

level picture of how everything fits.

Technical Report Chapter 2: Design of HyperCast

 16

Multicast Group

A HyperCast
Socket

BHyperCast
Socket

CHyperCast
Socket

Figure 2-3: HyperCast socket’s view of the overlay topology

2.3 Overlay Protocol Node

While the original overlay protocol Hypercube 1.0 successfully tested multicast group

sizes up to 1,024 nodes, it had some limitations. These limitations were addressed in the

redesign of the overlay protocol and implemented in Hypercube 1.6. The new design

separates the protocol abstraction from how it is implemented, is very modular and easy

to extend other versions from it, and provides a clear relationship between objects

through the extensive use of inheritance. The relationships between objects and the

modular design is very important since we wanted this design to be easily compatible

with future overlay protocols, not just Hypercube, and to run on different physical

networks, not just the Internet.

From a conceptual level, an overplay protocol can be defined as a set of nodes and the

interaction or behavior between those nodes. The overlay protocol is illustrated in Figure

2-4 by the cloud, which contains nodes, represented by the solid circles, and their

interaction or the topology they construct, represented by the lines connecting them.

Technical Report Chapter 2: Design of HyperCast

 17

From this model we learn that an overlay protocol needs to have a node object and

behavior associated with that node. This philosophy is carried over to our design.

Node

Overlay
Protocol

Node

Overlay
Protocol

Figure 2-4: Conceptual view of an overlay protocol

All overlay protocol nodes have in common a set of functions or interface. This common

interface is abstracted in an interface node (I_Node). In addition, each overlay protocol

has a specialized version of I_Node, which encapsulates its specific behavior. For

example Hypercube has hypercube nodes (HC_Node) and DelaunayTriangulation has

delaunay triangulation nodes (DT_Node). HC_Node and DT_Node are more specialized

versions of I_Node, and are derived from I_Node. HC_Node and DT_Node are said to

inherit from I_Node. Figure 2-5 illustrates this relationship. The arrows extending from

HC_Node and DT_Node to I_Node indicate that HC_Node and DT_Node inherit from

I_Node.

Technical Report Chapter 2: Design of HyperCast

 18

I_Node

HC_Node HC_Node

Figure 2-5: Node hierarchy

Up to this point everything is abstract. HC_Node and DT_Node describe the basic notion

of the protocol, but do not contain enough information to actually create a node. The

information needed to actually create the nodes is dependent on the physical network that

it runs on. For example an HC_Node is created differently on an IP network like the

Internet than on a simulator network. This is illustrated in Figure 2-6. To create an

HC_Node on the Internet we derive a more specialized version of HC_Node,

IP_HC_Node (Internet Protocol HC_Node), which contains this implementation detail.

Michael Nahas developed a simulator in which we can run and test protocols [18]. If we

want to run HC_Node in the simulator, all we have to do is add the simulator detail in

S_HC_ Node and inherit from HC_Node.

Basic notion of
a HC_Node

Implementation
detail

I_Node

HC_Node HC_Node

IP_HC_Node S_HC_Node

Figure 2-6: Node hierarchy with implementation detail

Technical Report Chapter 2: Design of HyperCast

 19

This implementation detail is contained in an Adapter object. We built a similar

hierarchy for Adapters as for Nodes. An I_Adapter specifies the basic interface provided

by all adaptors. This includes such functions as getPhysicalAddress(), which all adapters

support. Figure 2-7 shows the hierarchy for Internet Protocol (IP) adaptors.

I_Adapter

I_UnicastAdapter

I_MulticastAdapter

IP_MulticastAdapter

IP_UnicastAdapter

Figure 2-7: Adapter hierarchy

I_Adapter is the most general interface. From I_Adapter we derive an I_UnicastAdapter

interface, which only supports unicast transmission. If we are only interested in unicast

transmission, then we derive IP_UnicastAdapter from the I_UnicastAdapter interface

which contains all implementation details to send and receive unicast data. A multicast

adapter, in addition to transmitting unicast data can transmit multicast data. Therefore an

IP_MulticastAdapter inherits from both the I_MulticastAdapter interface and the

IP_UnicastAdapter.

Technical Report Chapter 2: Design of HyperCast

 20

Each network topology is implemented differently and therefore uses different addressing

schemes. Not surprisingly, we created an address hierarchy. In Figure 2-8, I_Address

once again is the most general interface. I_PhysicalAddress is for physical topologies,

like the Internet and the simulator, and I_LogicalAddress is for logical topologies like

Hypercube and DelaunayTriangulation.

I_Address

I_PhysicalAddress I_LogicalAddress

IP_Address S_Address HC_Address DT_Address

Figure 2-8: Address hierarchy

Messages or packets are exchanged between nodes in the logical topologies. To allow

for this we need to define message objects. Figure 2-9 shows the hierarchy for logical

topology messages.

I_Message

HC_Message DT_Message

Figure 2-9: Message hierarchy

Technical Report Chapter 2: Design of HyperCast

 21

We now revisit the node hierarchy in Figure 2-10, and show how the relationship

between Nodes and Adapters. Besides the I_Node interface, each protocol node needs to

have an adapter. Adapters provide the send and receive functions that the protocols use

to send and receive data. Although an HC_Node object cannot be created because it is an

abstract object, it still needs to have the send and receive functions so that the function

calls may be used by the protocol. HC_Node uses IP Multicasting so it has an

I_MulticastAdapter. DT_Node does not use IP Multicasting, so it has an

I_UnicastAdapter. IP_HC_Node and S_HC_Node can both be created and therefore

contain the implementation specific adapters IP_MulticastAdapter and

S_MulticastAdapter.

I_Node

IP_HC_Node

IP_MulticastAdapter

HC_Node

I_MulticastAdapter

DT_Node

I_UnicastAdapter

S_HC_Node

S_MulticastAdapter

Figure 2-10: Node hierarchy with adapters

Technical Report Chapter 3: Large Scale Experiments

 22

Chapter 3: Large Scale Experiments

Hypercube and DelaunayTriangulation theoretically scale to thousands and even millions

of nodes [4]. Because the theoretical model does not take into consideration many

outside factors, such as implementation inefficiencies, implementation errors, and

limitations of programming languages, it was uncertain how these protocols would

perform in practice and therefore it was necessary to test them.

The scalability properties of the original Hypercube 1.0 implementation are shown by

Tyler Beam in his Master’s Thesis, for up to 1,024 nodes [1]. His results closely match

the theoretical predictions. While in our new implementation, Hypercube 1.6, the basic

protocol did not change, the underlying implementation structure has been fundamentally

modified. Scalable software is very sensitive, where even minor changes can have

significant implications. Therefore, it was necessary to verify that our new design did not

introduce any problems. In addition we wanted to increase the number of nodes by an

order of magnitude to 10,000 nodes. With Hypercube 1.6 scaling to 10,000 nodes, we are

more confident that it will scale to hundreds of thousands or even millions of nodes.

Unlike Hypercube, DelaunayTriangulation was not previously tested on the Internet.

Michael Nahas tested the protocol in his simulator with up to 512 nodes [19]. Given the

fact that these tests were not performed on a real network and that the number of nodes

was relatively small, it was even more necessary than with Hypercube to verify that

DelaunayTriangulation scales on a real network.

Technical Report Chapter 3: Large Scale Experiments

 23

3.1 Testbed

The testbed for the experiments is Centurion, a large computer cluster at the University of

Virginia [6]. The part of the cluster used for the experiments is composed of 110

machines running the Linux operating system. These machines are Dual 400 MHz

Pentium II with 128 MB of RAM and are connected with a 100Mbits/sec Ethernet

switched network. In addition to the machines mentioned above, there are several other

machines called frontends. Users log on to one of the Centurion frontends, to submit jobs

to the rest of the cluster.

3.2 Performing an Experiment

In addition to the protocol (Hypercube or DelaunayTriangulation) nodes, two programs

are involved in running an experiment. The first program, Runcontrol, starts the

experiment, monitors the experiment, collects data and ends the experiment. The second

program, Runserver, creates protocol nodes on the physical machines and acts as an

intermediary between Runcontrol, and the nodes it created. For DelaunayTriangulation

each Runserver creates up to 100 nodes with 1 Runserver started on each machine for a

total of 100 nodes. For Hypercube each Runserver creates 32 nodes and up to 3

Runservers are started on each machine, for a total of 96 nodes per machine. For

Hypercube to run these many nodes on a machine, we had to optimize the protocol

implemented in Java using the TowerJ static compiler [7]. The TowerJ static compiler

takes Java bytecode and converts it to optimized native machine code. The conversion

allowed us to run two to three times more node per machine [10].

Technical Report Chapter 3: Large Scale Experiments

 24

Figure 3-1 shows the setup for an experiment. Runcontrol, represented by the desktop

computer, runs on one of the Centurion frontend machines. Runservers, represented by

the tower computers, are started on the rest of the machines. Each Runserver creates

protocol nodes, which are indicated by the small circles under the Runservers.

Information is exchanged between Runcontrol and Runserver during the experiment,

which is depicted by the double-pointing arrows.

Figure 3-1: The schematic representation of an experiment.

The first step in performing an experiment is to log on to Centurion through one of the

frontend machines. Second, the availability and load of the rest of the Centurion

machines is checked. Machines that are down or that are used heavily by other people

cannot be used for the experiment. Third, the frontend machine starts Runcontrol and

...

Runcontrol
(frontend machine)

Runservers

Protocol
Nodes

Computer

ServerServer Server

Technical Report Chapter 3: Large Scale Experiments

 25

commands the rest of the machines to remotely start Runservers. Fourth, it is necessary

to carefully monitor the experiment while it is running to make sure that nothing goes

wrong. Some of these experiments can take up to 20 hours to complete, which presents a

challenge for the monitor. If something does go wrong with the experiment, it can take

down all machines on which it is running. Users from all over the world share these

machines and the failure of a significant portion of Centurion will affect most current

users. Finally, once the protocol reaches a stable state, data is collected and the

experiment ends.

3.3 Types of Experiments

For the large-scale experiments, we were interested to verify that the protocols scale, and

the time it takes them to grow from 0 to N nodes, where N is large. For Hypercube we

also analyzed the effect of new nodes joining an already stable Hypercube.

3.3.1 Time to Stabilize Hypercube

This experiment tests whether or not the protocol scales to large numbers, i.e. with group

membership of 10,000 nodes. It also shows the rate at which the Hypercube grows as a

function of its size. In addition it illustrates the effect of adding a large number of joining

nodes to an existing Hypercube, and whether or not such a perturbation can cause the

Hypercube to collapse.

Technical Report Chapter 3: Large Scale Experiments

 26

3.3.1.1 Description of the Experiment

In part one of the experiment, we started with an initially empty Hypercube and measured

the time it takes the protocol to stabilize with N number of nodes. N was increased in

powers of two from 32 nodes to 10,000 nodes. The protocol is considered stable when all

N nodes have successfully joined the Hypercube and are in the stable state.

In part two of the experiment, we started with M number of nodes already stable in the

Hypercube, and N the number of joining nodes. We are interested in large-scale

experiments so M was varied in powers of 2 from 210 = 1024 nodes to 214 = 8196 nodes.

The number of joining nodes N, was independently varied in powers of 2 from 210 = 1024

nodes to 214 = 8196 nodes. Because our testbed could support only a little over 10,000

nodes, M and N were varied such that M + N ≤ 10,240 = 211 + 213 nodes.

3.3.1.2 Data and Interpretation

The results for part one of the experiment are graphed in Figure 3-2. The relationship

between the number of nodes (x-axis) and the time to stabilize the Hypercube (y-axis) is

linear. This is expected since nodes are added to the Hypercube one at a time.

Technical Report Chapter 3: Large Scale Experiments

 27

Time to Stabilize

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2000 4000 6000 8000 10000 12000

Nbr. Nodes Joining

T
im

e
(h

ea
rt

b
ea

ts
)

Figure 3-2: Time to stabilize a Hypercube with N nodes

The average time to add a node to the Hypercube is shown in the Figure 3-3. The graph

is logarithmic to clearly show the average time to add a node for the wide range of the

number of nodes joining. As it is apparent from the figure, this number fluctuates

slightly around 3.5 heartbeats. This means that every 3.5 heartbeats a node is added to

the Hypercube and reaches a stable state. The 3.5 heartbeats comes from the state

diagram of Hypercube. A new node goes through 3 states before it is in a stable state:

joining, incomplete, and stable [1]. The rest of the 0.5 heartbeats comes from such things

as overhead, multiple nodes try to join at the same time, and packets being lost.

Technical Report Chapter 3: Large Scale Experiments

 28

Avg. Time to Add a Node

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

10 100 1000 10000 100000

Nbr. Nodes Joining

A
v

g
. T

im
e

 t
o

 A
d

d
 a

 N
o

d
e

(h
ea

rt
b

ea
ts

)

Figure 3-3: Average time to add a node to the Hypercube

The results for part two of the experiment are graphed in Figure 3-4. The number of

stable nodes and the number of joining nodes are independently varied. As it is apparent

from the graph, the time to stabilize is independent of the number of nodes already stable

in the Hypercube. This is expected since as Figure 3-3 shows, the average time to add a

node to the Hypercube is independent of the size of the Hypercube. The exponential

curve on the Nbr. Joining Nodes axis, depicts a linear growth since it is a log scale and

therefore agrees with the linear relationship is Figure 3-2.

Technical Report Chapter 3: Large Scale Experiments

 29

0
1024

2048
4096

8192

0

1024

2048

4096
8192

0

5000

10000

15000

20000

25000

30000

35000

T
im

e
to

 S
ta

b
ili

ze

(h
ea

rt
b

ea
ts

)

Nbr. Joining
Nodes

Nbr. Stable
Nodes

Adding Nodes to an Existing Hypercube

Figure 3-4: Adding nodes to an existing Hypercube

3.3.2 Time to Stabilize DelaunayTriangulation

This experiments is testing weather or not the protocol scales to large numbers, i.e. with

group membership of 10,000 nodes. It also shows the rate at which

DelaunayTriangulation grows as a function of its size. In addition it illustrates the

average traffic per node per heartbeat while the DelaunayTriangulation is being

constructed.

Technical Report Chapter 3: Large Scale Experiments

 30

3.3.2.1 Description of the Experiment

We start with an initially empty DelaunayTriangulation and measure the time it takes the

protocol to stabilize with N number of nodes. N is doubled each time from 312 nodes all

the way up to 10,000 nodes. The protocol is considered stable when all N nodes have

successfully joined the DelaunayTriangulation and are in the stable state.

3.3.2.2 Data and Interpretation

The results for part one of the experiment are graphed in Figure 3-5. The relationship

between the number of nodes (x-axis) and the time to stabilize the

DelaunayTriangulation (y-axis) is not very clear, but appears to be partially linear. The

protocol seems to grow at an inverse square rate up to about 5,000 nodes. However, this

rate seems to become linear around 10,000 nodes. It is difficult to tell exactly what the

relationship is from these preliminary results because there is insufficient data at this

time. Additional future tests with a wider variety of data points should clearly reveal the

time to stabilize relationship.

Technical Report Chapter 3: Large Scale Experiments

 31

Time to Stabilize

0.00

20.00

40.00

60.00

80.00
100.00

120.00

140.00

160.00

180.00

0 2000 4000 6000 8000 10000 12000

Nbr. Nodes

T
im

e
(h

ea
rt

b
ea

ts
)

Figure 3-5: Time to stabilize a DelaunayTriangulation with N nodes

This growth trend is better illustrated in Figure 3-6, which plots the average time to add a

node as a function of the DelaunayTriangulation size. The time to add a node to the

DelaunayTriangulation seems to decrease exponentially up to about 5,000 nodes. This

agrees with the fact that nodes are being added in parallel. However, after about 5,000

nodes, the average time to add a node seems to level of between 0.01 and 0.02 heartbeats.

Technical Report Chapter 3: Large Scale Experiments

 32

Avg. Time to Add a Node

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 2000 4000 6000 8000 10000 12000
Nbr. Nodes

A
vg

. T
im

e
to

 A
d

d
 a

 N
o

d
e

(h
ea

rt
b

ea
ts

)

Figure 3-6: Average time to add a node to the DelaunayTriangulation

The number of bytes sent and received at each node per heartbeat is graphed in Figure

3-7. The fact that the amount of traffic sent and received at each node is a constant as a

function of the number of nodes present, shows that the protocol scales well. This is

expected since each node has an average of less than 6 neighbors, for any given group

size [19].

Technical Report Chapter 3: Large Scale Experiments

 33

Avg. Traffic at Each Node

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

Nbr. Nodes

A
vg

. T
ra

ff
ic

 p
er

 N
od

e
pe

r
S

ec

(b
yt

es
/h

ea
rt

b
ea

t)

Figure 3-7: Average bytes sent and received per node per second

Technical Report Chapter 4: Conclusion

 34

Chapter 4: Conclusion

Existing scalable multicast protocols do not efficiently handle multicast groups with

many senders. Protocols that do address situations with many senders do not scale above

a few hundred members. HyperCast fills this gap by allowing for very large multicast

groups with many senders.

4.1 Summary

This paper presented the design of HyperCast from a very high level as seen by

applications to the level of individual objects that make up HyperCast. HyperCast

provides a socket- like interface abstraction to applications, which hides the complexity of

the protocol. HyperCast socket is functionally composed of two parts: an application

data handling part and an overlay part. The overlay part is responsible for building and

maintaining the multicast group. OL_Node provides an interface abstraction to

HyperCast socket, which hides the complexity of the overlay protocol. OL_Node can

run different overlay protocols like Hypercube or DelaunayTriangulation. Next, the

design of the overlay protocol or OL_Node is presented. This design provides a clear

relationship between the different objects making up an overlay protocol through the

extensive use of inheritance. This design framework provides a very easy method for

extending or modifying existing protocols and the introduction of new protocols. Some

of these are changing the Adapter to run on different physical networks, running unicast

or IP Multicast versions and switching the protocol node to run a different overlay

protocol.

Technical Report Chapter 4: Conclusion

 35

Large-scale experiments were performed on two overlay protocols Hypercube and

DelaunayTriangulation. The Hypercube experiments verify that the protocol scales to

10,000 nodes. The time required by the protocol to reach 10,000 nodes was 35,000

heartbeats or 19.4 hours with the heartbeat set to 2 seconds. The DelaunayTriangulation

experiments in turn show that it also scales to 10,000 nodes. The time required by the

protocol to stabilize is 155 heartbeats or 5.2 minutes with the heartbeat set to 2 seconds.

4.2 Interpretation

The socket- like interface provided by HyperCast to applications makes it very easy to

use. In fact from an application’s perspective it is no different than using any other

socket. The flexibility of the overlay protocol structure, makes HyperCast a “dynamic”

protocol that can be very easily extended to fit individual needs. As with Object Oriented

languages like C++ and Java, it is the ability to extend these languages through the

creation of new objects types that makes them so powerful and successful. HyperCast

follows the same principle by giving the users great flexibility and the ability to very

easily extend it.

In our Hypercube experiments, we successfully tested group members with 10,000 nodes.

Although this is an order of magnitude increase from Beam’s 1,024 node experiments,

the data trends remained the same. For example, the rate at which nodes are added to the

hypercube is the same for 10, 1000, and 10000 nodes, about 3.5 heartbeats per node. In

addition Figure 3-4 shows that the perturbation of adding a large number of joining nodes

Technical Report Chapter 4: Conclusion

 36

to a stable hypercube is very small and does not cause it to collapse. These continuing

trends for large experiments provide a high degree of confidence that the protocol scales

to even larger numbers. One of the advantages of Hypercube is that each node is

guaranteed to have log2 N neighbors, which ensures that the complexity at each node

grows logarithmically. This also implies that the maximum distance from any node to

any other node is log2 N hops away. The drawback to this protocol is that nodes are

added one at a time and therefore take a long time to stabilize a large hypercube. This

makes it also very hard to test and debug, because the turnaround time between making

modification to the code and testing it can take over 15 hours. Although Hypercube takes

relatively a long time to stabilize, it provides some very strong guarantees once it is stable

and therefore it can be used in applications, which stay up for a long time. Such

applications might include distributed search engines and large parallel computers.

Although DelaunayTriangulation was previously untested on the Internet, we were able

to scale it up to 10,000 nodes in a surprisingly very short amount of time. It only took

several weeks as opposed to several months with Hypercube. Part of the success was

because we already had all necessary resources available and running, gained experience

from running Hypercube experiments, and had a short turnaround time between making

modifications to the code and testing it. One of the main advantages of

DelaunayTriangulation is that joining nodes can be added in parallel and therefore

stabilizes very fast. However, unlike Hypercube, DelaunayTriangulation does not

guarantee a maximum number of neighbors for each node nor a maximum number of

hops from one node to another. On average and in most cases, nodes have less than 6

Technical Report Chapter 4: Conclusion

 37

neighbors but in some cases this number can be very high [19]. Because of the fast time

to stabilize, DelaunayTriangulation can be used by applications that require fast

construction of multicast groups. Usually these applications involve a lot of user

interaction such as videoconferencing or whiteboards.

4.3 Recommendations and Future Work

The very recent success of scaling DelaunayTriangulation to 10,000 nodes did not

provide enough time to thoroughly test it. Preliminary data was collected and presented

in this paper, but a lot more experiments remain to be performed. Some interesting

experiments are to measure the average and maximum burst rates at which nodes contact

the web server as a function of the group size, observe how the protocol behaves if a

large number of nodes fail, and the effect of varying the heartbeat. My hypothesis is that

DelaunayTriangulation can reach group sizes well over 10,000 nodes on Centurion, since

there were still resources available when we run DelaunayTriangulation with 10,000

nodes.

The next step in large-scale experiments is to test these protocols over wide area

networks. Unlike in local area networks, computers in wide area networks can be very

far from one another and therefore the delay between machines is a lot higher. This can

have interesting effects on the protocols.

The data store component of HyperCast socket is used to provide reliability by merging

ACK or NACK packets before sending them up the message tree. For very small groups,

Technical Report Chapter 4: Conclusion

 38

a node can wait to hear back from all its children before merging and sending ACKS or

NACKS up the tree. However, for very large groups, some children may be a lot slower

than others at responding. In fact if nodes fail, they may not even get an ACK or NACK.

How long a node should wait before it merges and sends ACK or NACK replies, is a

difficult question to answer. There is no perfect solution or policy to this problem since

the unreliability tends to increase with the size of the group. What constitutes a good

solution changes with group size. Because of this constant change an approach worth

exploring is to devise a general policy. One solution might be to change the policy

automatically as the group size changes. Another might be to have the sender specify the

policy in the message packet sent, and have the nodes return ACKS or NACKS based on

that policy.

Hypercube and DelaunayTriangulation have their advantages and disadvantages. An

interesting research problem is to combine the two protocols in such a way as to explore

their advantages. Use DelaunayTriangulation to quickly reach a stable state, and once it

is stable run a mapping algorithm, which converts DelaunayTriangulation to Hypercube.

This would take advantage of DelaunayTriangulation’s fast stabilization time and

Hypercube’s steady state guarantees.

Technical Report References

 39

References

[1] Beam, Tyler K. “HyperCast: A Protocol for Maintaining a Logical Hypercube-
Based Network Topology.” Master’s Thesis. University of Virginia. 1999.

[2] Francis, Paul. “Yallcast: Extending the Internet Multicast Architecture.” NIT
Information Sharing Platform Laboratories. September 1999. Available:
http://www.yallcast.com/.

[3] Liebeherr, Jörg., and Beam, Tyler K. “HyperCast: A Protocol for Maintaining
Multicast Group Members in a Logical Hypercube Topology.” Proceedings of the First
International Workshop on Networked Group Communication (NGC '99), in: Lecture
Notes in Computer Science, Vol. 1736, pp. 72-89, July, 1999.

[4] Liebeherr, Jörg., and Sethi, B. S. “Towards Super-Scalable Multicast.” Technical
Report. CATT 98-121. Polytechnic University. January 1998.

[5] Mauve, Martin., and Hilt, Volker. “An Application Developer’s Perspective on
Reliable Multicast for Distributed Interactive Media.” University of Mannheim, 1999.

[6] Centurion computer cluster. “Centurion” March 2001. Available:
http://legion.virginia.edu/centurion/

[7] TowerJ corporation. “TowerJ” March 2001. Available: http://www.towerj.com/.

[8] Levine, B. “A Comparison of Known Super-Scalable Multicast Protocols”.
Masters Thesis. University of California Santa Cruz, June 1996.

[9] Tanenbaum, Andrew. Computer Networks. 3rd ed. Prentice Hall. Upper Saddle
River, NJ, 1996.

[10] Lorincz, Konrad. “TowerJ vs. JVM Performance Report”. University of Virginia.
March 2001. Available:
http://www.cs.virginia.edu/~kel9m/Research/HyperCast/TowerJPerformanceReport/.

[11] R. Yavatkar, J. Griffioen and M. Sudan. “A Reliable Dissemination Protocol for
Interactive Collaborative Applications”. Proceedings of ACM Multimedia ’95, November
1995.

[12] Quinn, Michael J., Parallel Computing Theory and Practice. New York, NY:
McGraw Hill, 1994.

[14] Peterson, Larry L., and Davie, Bruce S. Computer Networks A Systems
Approach. San Francisco, CA: Morgan Kaufman Publishers, 2000.

Technical Report References

 40

[16] Strustrup, Bjarne. The C++ Programming Language. 3rd ed. Reading, MS:
Addison Wesley, 1997.

[17] Liebeherr, Jörg., and Sethi, B. S. “A Scalable Control Topology for Multicast
Communications”. Proceedings of IEEE Infocom 1998.

[18] LoToS network simulator March 2001. Available:
http://www.cs.virginia.edu/~jorg/research/hypercast/.

[19] Liebeherr, Jörg., and Nahas, Michael. “Application- layer Multicast with Delaunay
Triangulations”. Submitted to IEEE Globecom 2001. March 2001.

Technical Report Appendix A – Experiments Data

 41

Appendix A – Experiments Data

In electronic form.

