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Glossary of Terms 
 

 
broadcast transmission – sending a message to all hosts 
 
heartbeat – time interval at which nodes communicate with each other.  The default 
value is 2 seconds. 
 
IP Multicast – a multicast protocol which builds a virtual network on top of the existing 
physical network, developed by Steve Deering in the late 1980s 
 
MBONE – Multicast Backbone.  A collection of multicast capable routers on the Internet 
backbone, which forward IP Multicast messages 
 
multicast transmission – sending a message to a subgroup of hosts 
 
overlay protocol – a protocol responsible for constructing and maintaining a multicast 
group 
 
overlay topology – the topology created by an overlay protocol 
 
router – a network node which takes messages from one network and forwards them 
onto a different network 
 
unicast transmission – sending a message to a single destination host 
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Abstract 
 

 
Unicast transmission is appropriate for many Internet applications such as e-mail, web 

browsing, and file transfer because these applications involve interaction between a 

single sender and a single receiver.  However, other classes of applications, which 

involve a sender transmitting the same data to multiple receivers, require a different 

transmission paradigm.  Multicast protocols address this class of applications by 

efficiently distributing data from a single sender to multiple receivers.   However, 

existing reliable multicast protocols cannot efficiently handle multicast groups with many 

senders.  To address this problem, a novel protocol called HyperCast was developed, 

which efficiently handles multicast groups with many senders.  This paper describes the 

redesign of HyperCast and its overlay protocol structure.  Large-scale experiments on 

two overlay protocols Hypercube and DelaunayTriangulation verify that they scale to 

multicast group sizes of 10,000 nodes.  
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Chapter 1:  Introduction 

Collaborative Internet applications, such as videoconferencing, shared document editors, 

shared file distributors, and distributed search engines, must send data to more than one 

destination host [5].  Efficiently distributing data in such applications requires members 

to join multicast groups for communication.  Multicasting allows the sending hosts to 

deliver data efficiently to a set of receivers [14].  Supporting large multicast groups 

requires an efficient way to exchange control information between group members in 

order to construct and maintain the multicast group, and distribute application data to the 

multicast group members.  This project redesigned a new multicast protocol HyperCast 

and verified through experiments that it scales to 10,000 nodes on the Internet. 

 

1.1 Ways of Transmitting Messages in a Network 

There are three ways in which messages can be transmitted in a network.  They are 

unicast, multicast, and broadcast transmission.  In unicast transmission the sending host 

sends a message to a single receiving host [14].  The sender must know the unique 

address of the receiver.  If the sender does not know the address of the receiver, then the 

message cannot be sent.  Most Internet applications like e-mail, File Transfer Protocol 

(FTP), and Web browsing rely on unicast transmission. 

 

In multicast transmission the sending host sends a message to a subset of all the hosts in 

the network [14].  The subset or group of receivers is identified by a unique multicast 

group address, which the sender must know.  The underlying multicast protocol is 
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responsible for delivering the message to all multicast group members, and therefore the 

sender does not have to know the address of all the individual receivers.  Internet 

applications like videoconferencing, distributed white boards, and distributed search 

engines rely on multicast transmission. 

 

In broadcast transmission the sending host sends a message to all hosts in the network 

[14].  The sender sends the message to a well-known broadcast address.  All hosts on the 

network listen to this broadcast address and pick up any messages.  As in multicast 

transmission, the sender does not have to know the addresses of any of the hosts in the 

network.  In fact broadcasting is used mostly to discover other hosts and their addresses 

in a network. 

 

The three different ways of transmitting messages in a network are illustrated in Figure 

1-1.  Unicast transmission is depicted in Figure 1-1(a) by the single arrow from the 

sender to one receiver.  Figure 1-1(b) depicts multicast transmission by extending several 

arrows from the sender to a subset of hosts.  Broadcast transmission is represented in 

Figure 1-1(c) by extending arrows from the sender to all hosts in the network. 

Host

Sender Host

Host

Host

(b)

Host

Sender Host

Host

Host

(c)

Host

Sender Host

Host

Host

(a)
 

 

Figure 1-1: Three ways of transmitting messages: unicast (a), multicast (b), broadcast (c) 
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1.2 Advantages of Using Multicast Protocols 

The Internet, a packet switched network, is designed for unicast transmission, the 

delivery of data packets from a single sender to a single receiver.  Unicast is appropriate 

for the majority of Internet applications such as e-mail, web browsing, and file transfer 

because these applications involve the interaction between a single sender and a single 

receiver [9].  However, for other classes of applications, which involve a sender 

transmitting the same data to multiple receivers, unicast is inefficient because unicast 

traffic increases proportionally with the number of receivers. 

 

The problem with unicast transmission is that the sender has to send a copy of the 

message transmitted, to each receiver.  As shown in Figure 1-2, although the path from 

the sender to the receivers is partially shared, multiple copies of the same message must 

be sent over the shared path.  Multicast transmissions take a more scalable approach by 

addressing a set of receivers rather than a single destination [1].  In Figure 1-3, the sender 

transmits only one copy of the message over the shared path and lets the routers make 

multiple copies of the message when the paths to the receivers divide.  Multicast 

messages are therefore addressed to a multicast group as a whole. 
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Sender

Receiver

Receiver

Receiver  
 

Figure 1-2: Unicast transmission 

 

Sender

Receiver

Receiver

Receiver  
 

Figure 1-3: Multicast transmission 

 

 

Multicasting emerged on the Internet with the development of the IP Multicast protocol 

by Steve Deering in the late 1980s, and the Internet Multicast Backbone (MBONE) [9].  

IP Multicast constructs a virtual path in a multicast group from the sender to the 

receivers, along which the sender transmits messages.  The MBONE is a collection of 

multicast capable routers on the Internet backbone, which forward IP Multicast messages. 

 

1.3 Problems With Existing Multicast Protocols 

Multicast protocols can be broken down into two categories: one-to-many and many-to-

many.  In one-to-many multicast protocols, a single or a few group members (hosts) 

disseminate messages in a multicast group.  In many-to-many multicast protocols, most or 

all group members (hosts) can disseminate messages in the multicast group.  Most 

existing reliable multicast protocols efficiently address the case in which only one or a 

few members distribute data in a multicast group [4].  Many-to-many reliable multicast 

protocols have problems handling large multicast groups and therefore do not scale well 

to group sizes of more than a few hundred members. 
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The major problem with scalable multicast applications is the need to exchange control 

information between multicast group members in order to maintain the multicast group 

[3].  Since the control messages need to be reliable, acknowledgements (ACKS) for 

messages received or negative acknowledgements (NACKS) for messages missing must 

be sent from the receivers to the sender.  If each sender and receiver in a multicast group 

directly exchanges messages to ensure reliability, than the ACKS or NACKS returning to 

the sender are proportional to the number of group members.  For large groups, this 

implosion overwhelms the sender and therefore it is not scalable.  This problem is known 

as the ACK/NACK implosion problem.  

 

Several protocols have been proposed to solve the ACK/NACK implosion problem, most 

of which rely on organizing group members in a tree [1].  In this topology the sending 

node is the root of the tree.  Messages are sent down the tree from each parent to its 

children.  ACKS or NACKS are then sent up the tree from children to their parent.  Each 

receiving parent combines the received ACKS or NACKS from its children into one 

packet that it sends up the tree to its parent.  This process is continued until the original 

sender is reached.  The acknowledgement tree method is scalable because the number of 

ACKS or NACKS received is proportional to the number of children.  As long as well-

balanced trees – trees in which the end nodes are at about the same distance from the root 

– can be constructed, the ACK/NACK implosion problem can be avoided. 
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Receiver Receiver 

Receiver Receiver 

Sender 

 

Figure 1-4: Well-balanced acknowledgement tree in which the sender is the root of the tree. 

 

Tree topologies are appropriate for one-to-many sender applications because a well-

balanced tree can be constructed such that the sending node is the root of the tree.  

However, this topology is inefficient for groups with many senders.  If a node other than 

the root wants to send data, then a new tree must be constructed or the existing tree re-

hung.  Constructing a new tree is very costly in terms of time and is therefore not a good 

solution.  Re-hanging the tree incurs little overhead however, the resulting tree may not 

be well-balanced and therefore it can suffer from a long delay [4.1]. 

 

Liebeherr and Sethi address this problem, with the overlay protocol named Hypercube, 

by arranging multicast group members in a logical N-dimensional hypercube on top of a 

physical topology [4;17].  By exploring the symmetric properties of the hypercube, well-

balanced acknowledgement trees can be quickly constructed for any node.  The ability to 

construct well-balanced acknowledgement tree with little overhead makes the Hypercube 

protocol scalable. Figure 1-5 illustrates that Hypercube takes group members from a 

physical topology and organizes them in a logical hypercube topology. 
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Figure 1-5: Hypercube, Arranges nodes in a logical N-dimensional hypercube  

on top of a physical topology. 

 

A hypercube is an N-dimensional structure with 2N nodes, N*2N-1 edges and each node 

has N neighbors [4, 12].  Figure 1-6 shows examples of 1, 2, and 3 dimensional 

hypercubes.  As Figure 1-6 depicts, the 1-dimensional hypercube has 21=2 nodes, 1*21-

1=1 edges and each node has 1 neighbor.  The 2-dimensional hypercube has 22=4 nodes, 

2*22-1=4 edges and each node has 2 neighbors.  The 3-dimensional hypercube has 23=8 

nodes, 3*23-1=12 edges and each node has 3 ne ighbors.  
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N=1 N=2 N=3  

Figure 1-6: Depicts N-dimensional Hypercubes [17] 

 

Building message transmission trees from any node in Hypercube is very easy.  Figure 

1-7 and Figure 1-8 show transmission trees built from two separate nodes.  Nodes in a 

hypercube have a physical address, the IP address of the host, and a logical address used 

by the logical topology.  
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Figure 1-7: Transmission tree with root 000  
[17] 
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1.4 Previous Work 

The HyperCast protocol designed by J. Liebeherr and B. Sethi was first implemented by 

Tyler Beam in his masters thesis [1].  It was implemented in Java and successfully tested 

group sizes up to 1,024 nodes.  The success of his project initiated other related work, 

which addressed some of the limitations of Hypercube.   

 

Nicolas Christin and Michael Lack developed Unicast Hypercube, a variation on the 

Hypercube protocol, which does not rely on IP Multicast to manage a multicast group.  

Michael Nahas, developed DelaunayTriangulation, a protocol, which relies on Delaunay 

triangulations to construct and manage a multicast group. Unlike Hypercube 

DelaunayTriangulation, adds joining multicast group members in parallel [19].  Christin 

and Nahas’ papers on these protocols are not yet published and therefore the protocols are 

not described in this paper. 

 

Recent work on this project focused on combining our overlay protocols and constructing 

an application interface that applications can use.  To achieve this, the work was divided 

in the following three parts.  First, additional experiments needed to be performed to 

verify that Hypercube scales well to very large numbers.  Beam tested group sizes only 

up to 1,024 nodes.  Before moving on we needed to verify that Hypercube scales to even 

bigger numbers, 10,000 nodes.  During the summer of 2000, along with a post-doctorate 

Dongwen Wang, we successfully reached a Hypercube with 10,000 nodes.  Data on these 

large-scale experiments was collected during Fall 2000 and Spring 2001. 
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Second, Hypercube and what later was extended to include the HyperCast overlay 

protocol, design and implementation needed to be more flexible, modular, and scalable.  

It was redesigned and re-implemented during the summer and fall of 2000 by Liebeherr, 

Nahas, Wang, and the author.  Following good object oriented design techniques we 

separated the protocol from the implementation detail and still managed to keep a clear 

relationship between the two [16].  We also incorporated observations from the 

experiments to make the protocol more scalable. 

 

Third, work began on HyperCast, an attempt to merge previous work and provide a 

mechanism for applications to use it.  HyperCast provides a socket- like interface to 

applications through which they can join and send data in a multicast group.  Currently, 

we have an initial implementation of HyperCast and several test applications like a 

multicast File Transfer Protocol (FTP), a game, and a media streamer. 

 

Very recently, Nahas and the author successfully scaled DelaunayTriangulation to 

10,000 nodes.  Preliminary data on these large-scale experiments was collected and is 

presented in this paper.  More extensive testing on the DelaunayTriangulation will follow 

in the near future. 

 

1.5 Preview of the Rest of the Report 

Chapter 2 or this technical report, presents the design of HyperCast and the design of its 

overlay protocol structure.  Chapter 3 presents the large-scale experiments data on two 

overlay protocols, Hypercube and DelaunayTriangulation.  Chapter 4 provides the 
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conclusion, which includes a summary, interpretation for the data collected, and 

suggestions for future work.  Appendix A provides the large-scale experiments data. 
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Chapter 2:  Design of HyperCast 

The goal of HyperCast is to provide a means for applications, such as e-mail, 

videoconferencing, distributed whiteboards, to join multicast groups in order to send and 

receive data in those groups.  HyperCast abstracts the complexity of multicasting from 

applications by providing a simple socket like interface.  For an application to join a 

multicast group, it specifies the multicast group address when it creates a HyperCast 

socket.  Once it joins a multicast group, it can send and receive data with simple 

commands.  Figure 2-1 shows the abstraction that applications see.  Applications A, B 

and C join the multicast group by opening a HyperCast socket.  Once they are part of the 

group, they can send and receive data to each other without knowledge of the underling 

structure and mechanism. 

 

Multicast Group

A HyperCast
Socket

BHyperCast
Socket

CHyperCast
Socket

 
Figure 2-1: Applications’ view of HyperCast 

 

A HyperCast socket is functionally composed of two main parts: an application data- 

handling part and a multicast overlay part.  The application data-handling part is 

responsible for providing an interface to applications and for sending and receiving 
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application data.  The multicast overlay part is responsible for the exchange of control 

information between group members in order to build and maintain the multicast group. 

 
2.1 HyperCast Socket 

Figure 2-2 shows the components of a HyperCast socket.  As mentioned earlier, 

applications communicate with the socket through its interface.  The application may 

manipulate a socket object only through its interface, which allows the application to join 

and leave a group, send and receive data, look up statistical information, etc.  Other  

components are not visible to the application. 

 

HyperCast Socket

HyperCast Socket Interface

Adapter

S
tatsistics

Stats
Interface

Application
Data

Protocol
Messages

Overlay
Node

Forwarding
Engine

Adapter
Interface

Adapter
Interface

Overlay Node
Interface Message

Store
(for ordering and

acknowledgements)

Application
Receive
Buffer

Application
Send

Buffer

Adapter

 

Figure 2-2: HyperCast socket components 
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The application data-handling part consists of the application send buffer, application 

receive buffer, forwarding engine, message store, and the adapter for application data.  

The applications send and receive buffers are a place to temporarily store outgoing and 

incoming data.  The forwarding engine, routes incoming and outgoing data between the 

two buffers, the application data adapter, and the message store.  The message store is 

used for depositing data packets to acknowledge previous packets and to ensure data 

transmission reliability.  The adapter of application data transmits data on the physical 

network.  It knows about the details necessary to actually transmit data.  There are 

various types of adapters that can be used depending on the physical network that the 

socket is running.  For example, if it’s running on the Internet then it uses an IP_Adapter 

(Internet Protocol Adapter).  If it is running on a simulator, then it uses a S_Adapter 

(Simulator Adapter).  A more detailed discussion of this topic is provided in the next 

section.  Finally, the statistics object stores statistical information about the socket, like 

the number of bytes sent, bytes received, etc., which can be queried by the application. 

 

The multicast overlay part consists of the overlay protocol node (OL_Node) and its 

protocol message Adapter.  The overlay protocol builds and maintains the multicast 

group.  This part is essential to HyperCast, because the overlay protocol is directly 

responsible for the scalability of HyperCast.  Much of the past work has been devoted to 

the Hypercube protocol.  The next section provides a detailed design description of the 

overlay protocol structure.  Beside Hypercube there are two additional protocols:  

Unicast Hypercube, which unlike Hypercube it does not rely on IP Multicasting, and 
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DelaunayTriangulation, which maps the logical topology closer to the physical topology.  

The protocol message adapter transmits overlay control data on the physical network.  

Like the application data adapter, it can be switched with other adapter when running on 

different physical networks. 

 

2.2 Overlay Protocol Structure 

The goal of the overlay protocol is to provide a means for building and maintaining a 

multicast group.  A HyperCast socket attaches itself to the overplay topology by creating 

an overlay node (OL_Node) object in its socket.  Once the OL_Node is created, it 

becomes part of the overlay topology.  OL_Node abstracts away the complexity of the 

overlay topology from the HyperCast socket by providing a simple interface to it.  For a 

HyperCast socket to join an overlay topology, all it has to do is specify the overlay 

topology address when it creates an OL_Node object.  Once OL_Node joins the overlay 

topology, HyperCast socket can find out the address of its neighbors from its OL_Node 

to send and receive data from them.   

 

Figure 2-3 shows the abstraction that the HyperCast socket sees.  A HyperCast socket 

joins the overlay topology by creating an OL_Node, represented by the solid circles, 

inside the socket.  From its OL_Node a HyperCast socket finds out about its neighbors.  

Each HyperCast socket has an OL_Node inside it, which correspond with the OL_Node 

in Figure 2-2.  Note that the watermarked part of Figure 2-3 is left there to provide a high 

level picture of how everything fits. 
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Multicast Group

A HyperCast
Socket

BHyperCast
Socket

CHyperCast
Socket

 

Figure 2-3: HyperCast socket’s view of the overlay topology 

 

2.3 Overlay Protocol Node 

While the original overlay protocol Hypercube 1.0 successfully tested multicast group 

sizes up to 1,024 nodes, it had some limitations.   These limitations were addressed in the 

redesign of the overlay protocol and implemented in Hypercube 1.6.  The new design 

separates the protocol abstraction from how it is implemented, is very modular and easy 

to extend other versions from it, and provides a clear relationship between objects 

through the extensive use of inheritance.  The relationships between objects and the 

modular design is very important since we wanted this design to be easily compatible 

with future overlay protocols, not just Hypercube, and to run on different physical 

networks, not just the Internet. 

 

From a conceptual level, an overplay protocol can be defined as a set of nodes and the 

interaction or behavior between those nodes.  The overlay protocol is illustrated in Figure 

2-4 by the cloud, which contains nodes, represented by the solid circles, and their 

interaction or the topology they construct, represented by the lines connecting them.  
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From this model we learn that an overlay protocol needs to have a node object and 

behavior associated with that node.  This philosophy is carried over to our design. 

 

Node

Overlay 
Protocol

Node

Overlay 
Protocol

 

Figure 2-4: Conceptual view of an overlay protocol 

 

All overlay protocol nodes have in common a set of functions or interface.  This common 

interface is abstracted in an interface node (I_Node).  In addition, each overlay protocol 

has a specialized version of I_Node, which encapsulates its specific behavior.  For 

example Hypercube has hypercube nodes (HC_Node) and DelaunayTriangulation has 

delaunay triangulation nodes (DT_Node).  HC_Node and DT_Node are more specialized 

versions of I_Node, and are derived from I_Node.  HC_Node and DT_Node are said to 

inherit from I_Node.  Figure 2-5 illustrates this relationship.  The arrows extending from 

HC_Node and DT_Node to I_Node indicate that HC_Node and DT_Node inherit from 

I_Node. 
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I_Node

HC_Node HC_Node
 

Figure 2-5: Node hierarchy 

 

Up to this point everything is abstract.  HC_Node and DT_Node describe the basic notion 

of the protocol, but do not contain enough information to actually create a node.  The 

information needed to actually create the nodes is dependent on the physical network that 

it runs on.  For example an HC_Node is created differently on an IP network like the 

Internet than on a simulator network.  This is illustrated in Figure 2-6.  To create an 

HC_Node on the Internet we derive a more specialized version of HC_Node, 

IP_HC_Node (Internet Protocol HC_Node), which contains this implementation detail.   

Michael Nahas developed a simulator in which we can run and test protocols [18].  If we 

want to run HC_Node in the simulator, all we have to do is add the simulator detail in 

S_HC_ Node and inherit from HC_Node.   

 

Basic notion of 
a HC_Node

Implementation
detail

I_Node

HC_Node HC_Node

IP_HC_Node S_HC_Node

 

Figure 2-6: Node hierarchy with implementation detail 
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This implementation detail is contained in an Adapter object.  We built a similar 

hierarchy for Adapters as for Nodes.  An I_Adapter specifies the basic interface provided 

by all adaptors.  This includes such functions as getPhysicalAddress(), which all adapters 

support.  Figure 2-7 shows the hierarchy for Internet Protocol (IP) adaptors. 

 

I_Adapter

I_UnicastAdapter

I_MulticastAdapter

IP_MulticastAdapter

IP_UnicastAdapter

 

Figure 2-7: Adapter hierarchy 

 

I_Adapter is the most general interface.  From I_Adapter we derive an I_UnicastAdapter 

interface, which only supports unicast transmission.  If we are only interested in unicast 

transmission, then we derive IP_UnicastAdapter from the I_UnicastAdapter interface 

which contains all implementation details to send and receive unicast data.  A multicast 

adapter, in addition to transmitting unicast data can transmit multicast data.  Therefore an 

IP_MulticastAdapter inherits from both the I_MulticastAdapter interface and the 

IP_UnicastAdapter. 
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Each network topology is implemented differently and therefore uses different addressing 

schemes.  Not surprisingly, we created an address hierarchy.  In Figure 2-8, I_Address 

once again is the most general interface.  I_PhysicalAddress is for physical topologies, 

like the Internet and the simulator, and I_LogicalAddress is for logical topologies like 

Hypercube and DelaunayTriangulation.   

 

I_Address

I_PhysicalAddress I_LogicalAddress

IP_Address S_Address HC_Address DT_Address
 

Figure 2-8: Address hierarchy 

 

Messages or packets are exchanged between nodes in the logical topologies.  To allow 

for this we need to define message objects.  Figure 2-9 shows the hierarchy for logical 

topology messages. 

 

I_Message

HC_Message DT_Message
 

Figure 2-9: Message hierarchy 
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We now revisit the node hierarchy in Figure 2-10, and show how the relationship 

between Nodes and Adapters.  Besides the I_Node interface, each protocol node needs to 

have an adapter.  Adapters provide the send and receive functions that the protocols use 

to send and receive data.  Although an HC_Node object cannot be created because it is an 

abstract object, it still needs to have the send and receive functions so that the function 

calls may be used by the protocol.  HC_Node uses IP Multicasting so it has an 

I_MulticastAdapter.  DT_Node does not use IP Multicasting, so it has an 

I_UnicastAdapter.  IP_HC_Node and S_HC_Node can both be created and therefore 

contain the implementation specific adapters IP_MulticastAdapter and 

S_MulticastAdapter. 

 

I_Node

IP_HC_Node

IP_MulticastAdapter

HC_Node

I_MulticastAdapter

DT_Node

I_UnicastAdapter

S_HC_Node

S_MulticastAdapter
 

Figure 2-10: Node hierarchy with adapters 
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Chapter 3:  Large Scale Experiments 

Hypercube and DelaunayTriangulation theoretically scale to thousands and even millions 

of nodes [4].  Because the theoretical model does not take into consideration many 

outside factors, such as implementation inefficiencies, implementation errors, and 

limitations of programming languages, it was uncertain how these protocols would 

perform in practice and therefore it was necessary to test them. 

 

The scalability properties of the original Hypercube 1.0 implementation are shown by 

Tyler Beam in his Master’s Thesis, for up to 1,024 nodes [1].  His results closely match 

the theoretical predictions.  While in our new implementation, Hypercube 1.6, the basic 

protocol did not change, the underlying implementation structure has been fundamentally 

modified.  Scalable software is very sensitive, where even minor changes can have 

significant implications.  Therefore, it was necessary to verify that our new design did not 

introduce any problems.  In addition we wanted to increase the number of nodes by an 

order of magnitude to 10,000 nodes.  With Hypercube 1.6 scaling to 10,000 nodes, we are 

more confident that it will scale to hundreds of thousands or even millions of nodes.   

 

Unlike Hypercube, DelaunayTriangulation was not previously tested on the Internet.  

Michael Nahas tested the protocol in his simulator with up to 512 nodes [19].  Given the 

fact that these tests were not performed on a real network and that the number of nodes 

was relatively small, it was even more necessary than with Hypercube to verify that 

DelaunayTriangulation scales on a real network. 
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3.1 Testbed 

The testbed for the experiments is Centurion, a large computer cluster at the University of 

Virginia [6].  The part of the cluster used for the experiments is composed of 110 

machines running the Linux operating system.  These machines are Dual 400 MHz 

Pentium II with 128 MB of RAM and are connected with a 100Mbits/sec Ethernet 

switched network.  In addition to the machines mentioned above, there are several other 

machines called frontends.  Users log on to one of the Centurion frontends, to submit jobs 

to the rest of the cluster.   

 

3.2 Performing an Experiment 

In addition to the protocol (Hypercube or DelaunayTriangulation) nodes, two programs 

are involved in running an experiment.  The first program, Runcontrol, starts the 

experiment, monitors the experiment, collects data and ends the experiment.  The second 

program, Runserver, creates protocol nodes on the physical machines and acts as an 

intermediary between Runcontrol, and the nodes it created.  For DelaunayTriangulation 

each Runserver creates up to 100 nodes with 1 Runserver started on each machine for a 

total of 100 nodes.  For Hypercube each Runserver creates 32 nodes and up to 3 

Runservers are started on each machine, for a total of 96 nodes per machine.  For 

Hypercube to run these many nodes on a machine, we had to optimize the protocol 

implemented in Java using the TowerJ static compiler [7].  The TowerJ static compiler 

takes Java bytecode and converts it to optimized native machine code.  The conversion 

allowed us to run two to three times more node per machine [10].  
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Figure 3-1 shows the setup for an experiment.  Runcontrol, represented by the desktop 

computer, runs on one of the Centurion frontend machines.  Runservers, represented by 

the tower computers, are started on the rest of the machines.  Each Runserver creates 

protocol nodes, which are indicated by the small circles under the Runservers.  

Information is exchanged between Runcontrol and Runserver during the experiment, 

which is depicted by the double-pointing arrows.  

 

 

Figure 3-1: The schematic representation of an experiment. 

 

The first step in performing an experiment is to log on to Centurion through one of the 

frontend machines.  Second, the availability and load of the rest of the Centurion 

machines is checked.  Machines that are down or that are used heavily by other people 

cannot be used for the experiment.  Third, the frontend machine starts Runcontrol and 

... 

Runcontrol 
(frontend machine) 

Runservers 

Protocol 
Nodes 

Computer

ServerServer Server
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commands the rest of the machines to remotely start Runservers.  Fourth, it is necessary 

to carefully monitor the experiment while it is running to make sure that nothing goes 

wrong.  Some of these experiments can take up to 20 hours to complete, which presents a 

challenge for the monitor.  If something does go wrong with the experiment, it can take 

down all machines on which it is running.  Users from all over the world share these 

machines and the failure of a significant portion of Centurion will affect most current 

users.  Finally, once the protocol reaches a stable state, data is collected and the 

experiment ends. 

 

3.3 Types of Experiments 

For the large-scale experiments, we were interested to verify that the protocols scale, and 

the time it takes them to grow from 0 to N nodes, where N is large. For Hypercube we 

also analyzed the effect of new nodes joining an already stable Hypercube. 

 

3.3.1 Time to Stabilize Hypercube 

This experiment tests whether or not the protocol scales to large numbers, i.e. with group 

membership of 10,000 nodes.  It also shows the rate at which the Hypercube grows as a 

function of its size.  In addition it illustrates the effect of adding a large number of joining 

nodes to an existing Hypercube, and whether or not such a perturbation can cause the 

Hypercube to collapse. 
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3.3.1.1 Description of the Experiment 

In part one of the experiment, we started with an initially empty Hypercube and measured 

the time it takes the protocol to stabilize with N number of nodes.  N was increased in 

powers of two from 32 nodes to 10,000 nodes.  The protocol is considered stable when all 

N nodes have successfully joined the Hypercube and are in the stable state. 

 

In part two of the experiment, we started with M number of nodes already stable in the 

Hypercube, and N the number of joining nodes.  We are interested in large-scale 

experiments so M was varied in powers of 2 from 210 = 1024 nodes to 214 = 8196 nodes.  

The number of joining nodes N, was independently varied in powers of 2 from 210 = 1024 

nodes to 214 = 8196 nodes.  Because our testbed could support only a little over 10,000 

nodes, M and N were varied such that M + N ≤ 10,240 = 211 + 213 nodes. 

 

3.3.1.2 Data and Interpretation 

The results for part one of the experiment are graphed in Figure 3-2.  The relationship 

between the number of nodes (x-axis) and the time to stabilize the Hypercube (y-axis) is 

linear.  This is expected since nodes are added to the Hypercube one at a time.   
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Figure 3-2: Time to stabilize a Hypercube with N nodes 

 

The average time to add a node to the Hypercube is shown in the Figure 3-3.  The graph 

is logarithmic to clearly show the average time to add a node for the wide range of the 

number of nodes joining.  As it is apparent from the figure, this number fluctuates 

slightly around 3.5 heartbeats.  This means that every 3.5 heartbeats a node is added to 

the Hypercube and reaches a stable state.  The 3.5 heartbeats comes from the state 

diagram of Hypercube.  A new node goes through 3 states before it is in a stable state: 

joining, incomplete, and stable [1].  The rest of the 0.5 heartbeats comes from such things 

as overhead, multiple nodes try to join at the same time, and packets being lost. 
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Figure 3-3: Average time to add a node to the Hypercube  

 

The results for part two of the experiment are graphed in Figure 3-4.  The number of 

stable nodes and the number of joining nodes are independently varied.  As it is apparent 

from the graph, the time to stabilize is independent of the number of nodes already stable 

in the Hypercube.  This is expected since as Figure 3-3 shows, the average time to add a 

node to the Hypercube is independent of the size of the Hypercube.  The exponential 

curve on the Nbr. Joining Nodes axis, depicts a linear growth since it is a log scale and 

therefore agrees with the linear relationship is Figure 3-2. 
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Figure 3-4: Adding nodes to an existing Hypercube 

 

3.3.2 Time to Stabilize DelaunayTriangulation 

This experiments is testing weather or not the protocol scales to large numbers, i.e. with 

group membership of 10,000 nodes.  It also shows the rate at which 

DelaunayTriangulation grows as a function of its size.  In addition it illustrates the 

average traffic per node per heartbeat while the DelaunayTriangulation is being 

constructed. 
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3.3.2.1 Description of the Experiment 

We start with an initially empty DelaunayTriangulation and measure the time it takes the 

protocol to stabilize with N number of nodes.  N is doubled each time from 312 nodes all 

the way up to 10,000 nodes.  The protocol is considered stable when all N nodes have 

successfully joined the DelaunayTriangulation and are in the stable state. 

 

3.3.2.2 Data and Interpretation 

The results for part one of the experiment are graphed in Figure 3-5.  The relationship 

between the number of nodes (x-axis) and the time to stabilize the 

DelaunayTriangulation (y-axis) is not very clear, but appears to be partially linear.  The 

protocol seems to grow at an inverse square rate up to about 5,000 nodes.  However, this 

rate seems to become linear around 10,000 nodes.  It is difficult to tell exactly what the 

relationship is from these preliminary results because there is insufficient data at this 

time.  Additional future tests with a wider variety of data points should clearly reveal the 

time to stabilize relationship. 
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Figure 3-5: Time to stabilize a DelaunayTriangulation with N nodes 

 

This growth trend is better illustrated in Figure 3-6, which plots the average time to add a 

node as a function of the DelaunayTriangulation size.  The time to add a node to the 

DelaunayTriangulation seems to decrease exponentially up to about 5,000 nodes.  This 

agrees with the fact that nodes are being added in parallel.  However, after about 5,000 

nodes, the average time to add a node seems to level of between 0.01 and 0.02 heartbeats. 
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Figure 3-6: Average time to add a node to the DelaunayTriangulation 

 

The number of bytes sent and received at each node per heartbeat is graphed in Figure 

3-7.  The fact that the amount of traffic sent and received at each node is a constant as a 

function of the number of nodes present, shows that the protocol scales well.  This is 

expected since each node has an average of less than 6 neighbors, for any given group 

size [19]. 
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Figure 3-7: Average bytes sent and received per node per second 
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Chapter 4:  Conclusion 

Existing scalable multicast protocols do not efficiently handle multicast groups with 

many senders.  Protocols that do address situations with many senders do not scale above 

a few hundred members.  HyperCast fills this gap by allowing for very large multicast 

groups with many senders. 

 

4.1 Summary 

This paper presented the design of HyperCast from a very high level as seen by 

applications to the level of individual objects that make up HyperCast.  HyperCast 

provides a socket- like interface abstraction to applications, which hides the complexity of 

the protocol.  HyperCast socket is functionally composed of two parts:  an application 

data handling part and an overlay part.  The overlay part is responsible for building and 

maintaining the multicast group.  OL_Node provides an interface abstraction to 

HyperCast socket, which hides the complexity of the overlay protocol.  OL_Node can 

run different overlay protocols like Hypercube or DelaunayTriangulation.  Next, the 

design of the overlay protocol or OL_Node is presented.  This design provides a clear 

relationship between the different objects making up an overlay protocol through the 

extensive use of inheritance.  This design framework provides a very easy method for 

extending or modifying existing protocols and the introduction of new protocols.  Some 

of these are changing the Adapter to run on different physical networks, running unicast 

or IP Multicast versions and switching the protocol node to run a different overlay 

protocol. 
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Large-scale experiments were performed on two overlay protocols Hypercube and 

DelaunayTriangulation.  The Hypercube experiments verify that the protocol scales to 

10,000 nodes.  The time required by the protocol to reach 10,000 nodes was 35,000 

heartbeats or 19.4 hours with the heartbeat set to 2 seconds.  The DelaunayTriangulation 

experiments in turn show that it also scales to 10,000 nodes.  The time required by the 

protocol to stabilize is 155 heartbeats or 5.2 minutes with the heartbeat set to 2 seconds. 

 

4.2 Interpretation 

The socket- like interface provided by HyperCast to applications makes it very easy to 

use.  In fact from an application’s perspective it is no different than using any other 

socket.  The flexibility of the overlay protocol structure, makes HyperCast a “dynamic” 

protocol that can be very easily extended to fit individual needs.  As with Object Oriented 

languages like C++ and Java, it is the ability to extend these languages through the 

creation of new objects types that makes them so powerful and successful.  HyperCast 

follows the same principle by giving the users great flexibility and the ability to very 

easily extend it. 

 

In our Hypercube experiments, we successfully tested group members with 10,000 nodes.  

Although this is an order of magnitude increase from Beam’s 1,024 node experiments, 

the data trends remained the same.  For example, the rate at which nodes are added to the 

hypercube is the same for 10, 1000, and 10000 nodes, about 3.5 heartbeats per node.  In 

addition Figure 3-4 shows that the perturbation of adding a large number of joining nodes 
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to a stable hypercube is very small and does not cause it to collapse.  These continuing 

trends for large experiments provide a high degree of confidence that the protocol scales 

to even larger numbers.  One of the advantages of Hypercube is that each node is 

guaranteed to have log2 N neighbors, which ensures that the complexity at each node 

grows logarithmically.  This also implies that the maximum distance from any node to 

any other node is log2 N hops away.  The drawback to this protocol is that nodes are 

added one at a time and therefore take a long time to stabilize a large hypercube.  This 

makes it also very hard to test and debug, because the turnaround time between making 

modification to the code and testing it can take over 15 hours.  Although Hypercube takes 

relatively a long time to stabilize, it provides some very strong guarantees once it is stable 

and therefore it can be used in applications, which stay up for a long time.  Such 

applications might include distributed search engines and large parallel computers. 

 

Although DelaunayTriangulation was previously untested on the Internet, we were able 

to scale it up to 10,000 nodes in a surprisingly very short amount of time.  It only took 

several weeks as opposed to several months with Hypercube.  Part of the success was 

because we already had all necessary resources available and running, gained experience 

from running Hypercube experiments, and had a short turnaround time between making 

modifications to the code and testing it.  One of the main advantages of 

DelaunayTriangulation is that joining nodes can be added in parallel and therefore 

stabilizes very fast.  However, unlike Hypercube, DelaunayTriangulation does not 

guarantee a maximum number of neighbors for each node nor a maximum number of 

hops from one node to another.  On average and in most cases, nodes have less than 6 
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neighbors but in some cases this number can be very high [19].  Because of the fast time 

to stabilize, DelaunayTriangulation can be used by applications that require fast 

construction of multicast groups.  Usually these applications involve a lot of user 

interaction such as videoconferencing or whiteboards.   

 

4.3 Recommendations and Future Work 

The very recent success of scaling DelaunayTriangulation to 10,000 nodes did not 

provide enough time to thoroughly test it.  Preliminary data was collected and presented 

in this paper, but a lot more experiments remain to be performed.  Some interesting 

experiments are to measure the average and maximum burst rates at which nodes contact 

the web server as a function of the group size, observe how the protocol behaves if a 

large number of nodes fail, and the effect of varying the heartbeat.  My hypothesis is that 

DelaunayTriangulation can reach group sizes well over 10,000 nodes on Centurion, since 

there were still resources available when we run DelaunayTriangulation with 10,000 

nodes. 

 

The next step in large-scale experiments is to test these protocols over wide area 

networks.  Unlike in local area networks, computers in wide area networks can be very 

far from one another and therefore the delay between machines is a lot higher.  This can 

have interesting effects on the protocols. 

 

The data store component of HyperCast socket is used to provide reliability by merging 

ACK or NACK packets before sending them up the message tree.  For very small groups, 
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a node can wait to hear back from all its children before merging and sending ACKS or 

NACKS up the tree.  However, for very large groups, some children may be a lot slower 

than others at responding.  In fact if nodes fail, they may not even get an ACK or NACK.  

How long a node should wait before it merges and sends ACK or NACK replies, is a 

difficult question to answer.  There is no perfect solution or policy to this problem since 

the unreliability tends to increase with the size of the group.  What constitutes a good 

solution changes with group size.  Because of this constant change an approach worth 

exploring is to devise a general policy.  One solution might be to change the policy 

automatically as the group size changes.  Another might be to have the sender specify the 

policy in the message packet sent, and have the nodes return ACKS or NACKS based on 

that policy. 

 

Hypercube and DelaunayTriangulation have their advantages and disadvantages.  An 

interesting research problem is to combine the two protocols in such a way as to explore 

their advantages.  Use DelaunayTriangulation to quickly reach a stable state, and once it 

is stable run a mapping algorithm, which converts DelaunayTriangulation to Hypercube.  

This would take advantage of DelaunayTriangulation’s fast stabilization time and 

Hypercube’s steady state guarantees. 
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Appendix A – Experiments Data 

In electronic form. 

 
 


