
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0  ©  2 0 0 6  I E E E J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 5 1

focus

the specified join points. For example, the
PCD in the DisplayUpdate aspect in figure
1a specifies all calls to methods in the
FigureElement class hierarchy named moveBy
or whose names start with set. The advice up-
dates a graphical display after any such call
completes.

We’ve devised a practical design approach
that can significantly improve the modularity of
programs written using AspectJ-style AOP. Our
approach employs crosscut programming inter-
faces, or XPIs. XPIs are explicit, abstract inter-
faces that decouple aspects from details of ad-
vised code.3 Without limiting the possibilities
for AO advising or requiring new programming
languages or mechanisms, our approach better
modularizes aspects and advised code. It allows
for their separate and parallel evolution and
produces a better correspondence between pro-
grams and designs.

The problem 
Our approach emerged from an experiment

using common AOP methods to improve the de-
sign of HyperCast,4 a 300-class, 50,000-LOC
Java system for multicast overlay networks. The
common approach for developing aspects is to
write PCDs directly against the implementations
of the code to be advised. Some AOP methodol-
ogists even argue that designers should be able
to write programs without knowing aspect
modules’ actual or potential integration, a goal
called obliviousness.5 This idea has found cur-
rency in the practitioner-oriented press.6

We found that such approaches led to pro-
grams that were unnecessarily hard to develop,
understand, and change. First, our designers
had to inspect all the code to identify the rele-
vant join points for the PCDs to encompass.
Second, these join points weren’t exposed consis-
tently, so we needed complex PCDs and advice

Modular Software Design
with Crosscutting
Interfaces

A
spect-oriented programming (AOP) languages such as AspectJ1

offer new mechanisms and possibilities for decomposing systems
into modules and composing modules into systems. The key
mechanism in AspectJ is the advising of crosscutting sets of join

points. An aspect module uses a pointcut descriptor (PCD) to declaratively
specify sets of points in program executions (join points) where anonymous
methods (advice2) should run. An advice can run before, after, or around 

aspect-oriented programming 

William G. Griswold and Macneil Shonle, University of California, San Diego

Kevin Sullivan, Yuanyuan Song, Nishit Tewari, and Yuanfang Cai, 
University of Virginia

Hridesh Rajan, Iowa State University

Crosscut
programming
interfaces can
significantly
improve modularity
in the design 
of programs
employing 
AspectJ-style 
aspect-oriented
programming.



bodies to effect the desired advising. Moreover,
apparently innocuous changes or extensions to
the code base could then change the matched
join points, violating assumptions the aspects
made. Also, the resulting class and aspect ab-
stractions didn’t reflect the underlying concep-
tual design adequately.

HyperCast’s protocols are state machines. We
needed aspects to advise state transitions. Al-
though the aspects did modularize policy deci-
sions on how to respond to transitions, the state
machines themselves weren’t exposed as explicit,
design-level abstractions.

Our approach
After some thought, we realized that a sec-

ond category of crosscutting concerns existed,
ingrained into HyperCast and distinct from
those modularized in aspects—namely, Hyper-
Cast’s core protocols and other crosscutting ab-
stract behaviors. We needed to expose these be-
haviors through interfaces against which we

could write aspects. Benefits would include im-
provements to both abstraction (for example,
the program would reflect key abstractions in
the designers’ minds and conversations) and
modularity (for example, parallel development,
modular evolution, and modular reasoning).

To develop and test this idea, we repeated
our experiment using abstract interfaces, called
XPIs, that expose PCDs and impose contracts
and design rules.7 We found that aspects were
easier to develop, aspect code was separated
better from the details of advised code, and the
overall conceptual design was clearer.

Unlike our earlier, more theoretical work,3

in this article we show how to realize XPIs as
syntactic constructs in AspectJ, with weakest
precondition invariants defining the semantics.

An XPI has four elements: the XPI’s name,
a scope over which the XPI abstracts join
points, one or more sets of abstract join points,
and a partial implementation. We express each
abstract set of join points as

■ a PCD signature declaring a name and ex-
posed parameters, and

■ a semantic specification stating precondi-
tions that must be satisfied at each point
where an advice can run (called a provides
clause) and postconditions that must be
satisfied after an advice runs (called a re-
quires clause).

The partial implementation comprises, for
each set of abstract join points,

■ a join-point pattern that matches the cor-
responding concrete join points;

■ a before, an after, or an around desig-
nator; and

■ a corresponding set of constraints (design
rules).

The constraints prescribe how code must be writ-
ten to ensure that all and only the desired points
in program execution match the given pattern.
The rest of the XPI implementation is in the
code’s conformance to the stated design rules.

In AspectJ, these elements are declared in a
stylized aspect. (In AspectJ, before, after,
or around designators are associated not with
PCDs per se but only with advice constructs
that use PCDs.) Some invariants can be checked
with separate pluggable aspects.

An XPI, like an API, abstracts changeable

5 2 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

FigureElement

Display

DisplayUpdate
+update()

+after(): FigureElementStateTransition()

<<interface>>

Point

+x : int
+y : int

Line

#p1 : Point
#p2 : Point

+setX()
+setY()
+getX() : int
+getY() : int
+moveBy()

+setP1()
+setP2()
+getP1() : Point
+getP2() : Point
+moveBy()

+moveBy()

1*

Figure 1. Building a
figure editor in the 
traditional aspect-
oriented manner: 
(a) a display-updating
aspect and (b) the 
resulting design.

public aspect DisplayUpdate {

pointcut FigureElementStateTransition():

call (* FigureElement+.set*(..))

|| call (* FigureElement+.moveBy(..));

after(FigureElement f):

FigureElementStateTransition() && target(f) {

Display.update();

}

}

(a)

(b)



and complex design decisions and operates as a
decoupling contract between providers and
users. Unlike an API, an XPI abstracts a cross-
cutting behavior rather than a localized proce-
dure implementation. In the case of AspectJ-
style AOP, an XPI abstracts advised join points,
as we mentioned before. To paraphrase David
Parnas,8 XPIs modularize crosscutting design
decisions that are complex or likely to change.
You then implement an XPI not by providing a
procedure implementation, but by writing PCD
patterns and shaping code to expose specified
behaviors through join points matching the

given patterns. Designers need not know about
specific aspects, such as logging, but they must
decide which abstractions to expose as XPIs to
facilitate aspect development and evolution.
The method that we found to work is to expose
key domain abstractions that the class design
doesn’t adequately capture. So, to design XPIs,
you don’t need any explicit references to as-
pects, although you can check the XPIs’ useful-
ness against anticipated aspects.

For examples of other approaches to as-
pect-oriented mechanisms for software design,
see the sidebar.

J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 5 3

Most research on improving program modularity through
aspect-oriented mechanisms focuses on language models and
expressiveness rather than software design methodology. Two
recent developments that address design more directly are rele-
vant here.

Join-point scoping
David Larochelle and his colleagues proposed a mecha-

nism based on a pointcut descriptor (PCD) for hiding a cross-
cutting set of join points, thus preventing aspects from advising
them.1 Daniel Dantas and David Walker’s AspectML provides
advice access controls to a function definition’s parameters,
hence modifying the join-point signature of calls on the func-
tion.2 Our crosscut programming interface (XPI) approach
doesn’t provide a hiding mechanism; rather, it specifies the 
exposure of given abstract execution phenomena. Combining
such approaches might produce interesting support mecha-
nisms for software design.

Jonathan Aldrich, among others, has proposed language
constructs—and, by implication, a design method—for module-
based join-point interfaces. Open Modules expose only PCD-
selected join points on private state.3 It enables the exposure of
join points such that a module state that’s intended to be hid-
den can’t be advised. Simply, a module must declare a pointcut
to export join points on its private state. Thus, Open Modules
let a module implementation evolve without reworking aspects.
However, the resulting interface is limited to crosscutting the
module’s implementation. Capturing the broadly crosscutting
concepts in our HyperCast case study (see the main article)
would be awkward at best. Also, Open Modules don’t make
clear the constraints that would have to be observed in writing
new code to avoid inadvertently compromising the advising
PCD semantics.

Aspect-aware interfaces
Gregor Kiczales and Mira Mezini recognized the need to

program against crosscutting interfaces. In aspect-aware inter-

faces (AAIs), aspects extend the interfaces of modules they ad-
vise.4 Specifically, this approach computes aspects’ dependences
on a system’s join points and shows these dependences as anno-
tations on the explicit interfaces of advised code.

Revealing such dependences can support modular reason-
ing and change. A programmer can see how join points are
being advised and avoid making changes that invalidate
those uses. Before stable modular interfaces emerge (for ex-
ample, in Extreme Programming-style development5), AAIs
can serve as a valuable substitute—they inform, even if they
don’t decouple and abstract. Likewise, the cross-references
that AAIs provide could help guide refactoring activities, per-
haps resulting in XPIs.

Yet AAIs don’t clearly express concerns in conceptual de-
sign. Instead of textually distinct interface constructs, they
merely consist of scattered annotations. Nor do they provide
textually localized interface definitions where behavior con-
tracts can be documented or against which clients can be pro-
rammed. In addition, modularity support is limited. The display
of dependences between existing code and PCDs can’t tell de-
velopers how to shape new code to correctly expose behaviors
to those PCDs or how to write new PCDs to capture the existing
code’s desired behaviors.

References
1. D. Larochelle et al., “Join Point Encapsulation,” Proc. Workshop Software

Eng. Properties of Languages for Aspect Technologies (SPLAT), 2003, www.
daimi.au.dk/~eernst/splat03.

2. D.S. Dantas and D. Walker, Aspects, Information Hiding and Modularity,
tech. report TR-696-04, Princeton Univ., Nov. 2003.

3. J. Aldrich, “Open Modules: Modular Reasoning about Advice,” Proc. 2005
European Conf. Object-Oriented Programming (ECOOP 05), LNCS 3586,
Springer 2005, pp. 144–168.

4. G. Kiczales and M. Mezini, “Aspect-Oriented Programming and Modular
Reasoning,” Proc. 27th Int’l Conf. Software Eng. (ICSE 05), ACM Press,
2005, pp. 49–58.

5. K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999.

Related Work on Aspect-Oriented Mechanisms for Software Design



XPIs let you
insulate

aspects from
the details of
the code they

advise and
constrain that
code to expose
behaviors in

specified ways.

Two designs for a figure editor
Two designs for the classic figure editor ex-

ample1 illustrate our approach and its poten-
tial benefits. We evaluate how well the designs
manifest fundamental design concerns, abstract
irrelevant details, and accommodate change.

A traditional AO design
Consider a simple tool for editing drawings

comprising points and lines (figure elements),
where a display depicts each figure element, al-
ways reflecting the figure elements’ current
states. The FigureElement class provides an
interface for the concrete subclasses Point and
Line. The Display class manages the display
and provides a method, update(), to display
all figure elements’ current states. The specifi-
cation requires a call to update() whenever a
figure element’s abstract state changes.

Researchers have used this example to illus-
trate crosscutting concerns, scattering and tan-
gling, and how AOP addresses these issues.
The crosscutting concern in this case is the pol-
icy that states when the abstract state of a
FigureElement changes, the Display must
be updated. Implementing this policy in an OO
style leads to scattered update() calls through-
out FigureElement subclass implementations
and to the tangling of these calls into code con-
cerned with FigureElement updating.

The Observer design pattern could remove
the explicit calls by enabling a display manager
to register for a callback to update() on a
state change event. However, this approach
still requires that event-related code be scat-
tered and tangled in the FigureElement code
and elsewhere. AOP provides an alternative to
such preparation in support of display updat-
ing. The DisplayUpdate aspect (see figure 1a)
satisfies the update specification.

We implemented this aspect using the com-
mon approach we described in the section “The
problem.” We studied the FigureElement
code to find points where changes in the
FigureElement abstract state occur. We gener-
alized and described this set of points in the form
of a PCD, FigureElementStateTransition().
This PCD captures calls to mutator methods
of Line and Point and to moveBy(), which
moves a figure element by a certain offset.
Figure 1b presents a UML model of this de-
sign. As is typical in straightforward AOP, the
DisplayUpdate aspect depends on implemen-
tation details of the Point and Line classes.

Such a design raises three concerns. First,
we had to write the Point and Line imple-
mentations before we wrote the aspect, which
limited the available parallelism in develop-
ment. Second, the aspect implementer had to
study the Point and Line implementations to
be able to write the aspect correctly. The lack
of an abstraction layer between the aspect and
the advised code adds to the cognitive load on
the aspect implementer. The aspect lets the
FigureElement writer ignore display up-
dating, but the aspect writer can’t ignore
FigureElement’s low-level details. Third, the
aspect’s correctness depends on unstable de-
tails of the Point and Line implementations.
So, apparently innocuous changes could com-
promise the design.

An AO design with XPIs
By employing XPIs, the designer seeks to not

only insulate aspects from the details of the code
they advise but also constrain that code to ex-
pose specified behaviors in specified ways. In the
process, important crosscutting concerns that
were previously embedded in the implementa-
tion become manifest as XPIs in the program. In
the figure-editing case, an XPI will separate the
DisplayUpdate aspect from FigureElement
details. Our XPI reifies the concept a transition
has occurred in a FigureElement’s abstract
state. It provides simple PCDs by which aspects
can advise all such actions without depending
on the underlying source code. In addition, it
constrains the system implementer to implement
all and only all abstract state changes in a way
that matches the PCD patterns.

The XPI’s syntactic part exposes two named
PCDs:joinpoint()andtopLevelJoinpoint().
The PCD signature (name and parameters)
constitutes the abstract interface. The part of
the PCD that matches points in the code is
part of the XPI’s hidden implementation (see
figure 2a). It’s only here that dependences on
details of the underlying code arise.

We document the semantics informally in the
following prose. The joinpoint() PCD ex-
poses all FigureElement state transitions. This
abstraction is implemented, in a sense, by the
pattern that matches calls to FigureElement
mutators. The system designer is constrained to
ensure that the PCD pattern matches all and
only such FigureElement mutator calls and
that state transitions occur only as a result of
such calls. The topLevelJoinpoint() PCD

5 4 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e



J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 5 5

Figure 2. Building a figure editor using crosscut programming interfaces (XPIs): (a) the XXFFiigguurreeEElleemmeennttCChhaannggee
XPI and (b) a separate contract-checking aspect.

public aspect XFigureElementChange {
/*
The purpose of the joinpoint() PCD is to expose all and only FigureElement abstract
state transitions. We require that all such transitions be implemented by calls to
FigureElement mutators with names that match the PCDs of this XPI, and we assume that
any such call causes such a state transition. Advisors of this XPI may not change the
state of any FigureElement directly or indirectly. The topLevelJoinpoint() PCD exposes
all and only “top level” transitions in the abstract states of compound FigureElement
objects.

*/
public pointcut joinpoint(FigureElement fe):

target(fe)
&& (call(void FigureElement+.set*(..))

|| call(void FigureElement+.moveBy(..))
|| call(FigureElement+.new(..)));

public pointcut topLevelJoinpoint(FigureElement fe):
joinpoint(fe) && !cflowbelow(joinpoint(FigureElement));

protected pointcut staticscope():
within(FigureElement+);

protected pointcut staticmethodscope():
withincode (void FigureElement+.set*(..))
|| withincode(void FigureElement+.moveBy(..))
|| withincode (FigureElement+.new(..));

}

(a)

/*
Checks the contracts for the XFigureElementChange XPI.

*/
public aspect FigureElementChangeContract {

/*
PROVIDES: XPI matches all calls and only calls to FigureElement mutators

*/
declare error:

(!XFigureElementChange.staticmethodscope()
&& set(int FigureElement+.*)):

“Contract violation: must set FigureElement”
+ “ field inside setter method!”;

/*
REQUIRES: advisers of this XPI must not change the abstract state of any 
FigureElement object

*/
private pointcut advisingXPI(): adviceexecution();

before(): cflow(advisingXPI())
&& XFigureElementChange.joinpoint(FigureElement) {
ErrorHandling.signalFatal(“Contract violation:”

+ “ advisor of XFigureElementChange cannot”
+ “ change FigureElement instances”);

}
}

(b)



exposes all and only changes to the states of
compound FigureElement objects (such as
Lines) but not changes to their components
(namely, Points).

An XPI’s semantics can include behavioral
constraints on aspects. In our example, we re-
quire that no advisor of this XPI cause a side
effect on a FigureElement object. This con-
straint in effect prohibits an advice from call-
ing FigureElement mutators either directly
or indirectly.

Like APIs, XPIs enable a degree of contract
checking.9 When included in the program’s
build, the aspect in figure 2b constrains develop-
ers to modify a FigureElement’s internal state
from only within the FigureElement muta-
tors. To a degree, it also ensures that the aspects
using the XFigureElementChange XPI can’t

modify any FigureElement’s abstract state.
The aspect can’t, however, verify the program-
mer’s adherence to the naming requirements.

Figure 3 presents a DisplayUpdate aspect
using this XPI and the resulting UML model. The
aspect now depends only on the abstract, pub-
lic PCD signatures of XFigureElementChange,
not on implementation details of the Point
and Line classes. These classes contribute to
implementing the XFigureElementChange
XPI by ensuring that method names match the
given PCDs if they have the specified change
semantics.

Analyzing the designs
To compare the two designs, we first change

public data members to private ones,10 forcing
updates to occur through advisable method
calls. We then extend FigureElement to in-
clude Color.

Data member access. In our original design,
the coordinates in the Point class were 
public, permitting this implementation of 
Line.moveBy():

public void moveBy(int dx, int dy) {

p1.x += dx;

p1.y += dy;

p2.x += dx;

p2.y += dy;

}

Making the fields private drives the
Line.moveBy() designer to change to this
implementation:

public void moveBy(int dx, int dy) {

p1.moveBy(dx, dy);

p2.moveBy(dx, dy);

}

Consider the DisplayUpdate aspect 
implemented without the XPI. When 
Line.moveBy() is invoked, the advice is in-
voked three times: once for the call to 
Line.moveBy() and once for each call to
Point.moveBy() in the body of Line.
moveBy(). The apparently innocuous change
broke the aspect’s assumption about Line’s
otherwise-hidden implementation.11

The XPI approach avoids such problems
by establishing interfaces that impose design
rules. Aspects can assume that the rules are

5 6 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

FigureElement

Display

DisplayUpdate
+update()

+after(): toplevelJoinpoint()

<<interface>>

Point

–x : int
–y : int

Line

#p1 : Point
#p2 : Point

+setX()
+setY()
+getX() : int
+getY() : int
+moveBy()

+setP1()
+setP2()
+getP1() : Point
+getP2() : Point
+moveBy()

+moveBy()

XFigureElementChange
<<interface>>

+PCD:joinpoint()
+PCD:topLevelJoinpoint()

1

*

Figure 3. Separating 
an aspect from 
implementation details:
(a) a display-updating 
aspect using an XPI
and (b) the resulting
aspect-oriented design.

public aspect DisplayUpdate {

after():

XFigureElementChange.topLevelJoinpoint

(FigureElement) {

updateDisplay();

}

public void updateDisplay() {

Display.update();

}

}

(a)

(b)



followed, and code within the XPI’s scope
must conform to its terms. The reverse also ap-
plies: aspects must conform to the XPI’s terms,
and the code can assume that the rules are fol-
lowed. It’s important that XPIs have both syn-
tax, in the form of convenient abstract PCDs,
and semantics. Our XPI specifies that the PCD
must match join points that indicate a change in
a FigureElement’s abstract state. Under this
XPI, DisplayUpdate uses the provided con-
venient PCD (and promises not to inject
changes into a FigureElement). Also, Line’s
implementer will implement Line.moveBy()
so that the PCD captures its join point.

Adding color to figure elements. The second
change is behavioral, adding Color as a Line
attribute with getter and setter methods,
with the requirement that all observers of a
FigureElement update when a Line’s color
changes.

In the non-XPI approach, one of two unde-

sirable scenarios is necessary to ensure that the
display updates properly. In one scenario, the
Color implementer must be aware of the
DisplayUpdating aspect and its PCD imple-
mentation to determine how to name the
Color setter method so that the PCD will
match it. In the other scenario, the aspect im-
plementer must change the DisplayUpdating
PCD to match whatever choice the Color im-
plementer makes. As the number of aspects in-
creases, these scenarios become increasingly
problematic.

In the XPI case, the Color implementer
need only be aware of the figure element state
change XPI and its constraint that only a
method whose name is moveBy or starts with
set can change a state. The XPI’s presence
thus guides the implementer in choosing names
for methods and in making other decisions that
can influence PCD matching. In this case, the
implementer must name the method something
such as setColor, rather than changeColor;

J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 5 7

The advantage
of using an

aspect is that
code changes

can be localized
to the aspect,
even if their

effects aren’t.

IEEE Intelligent Systems delivers the

latest peer-reviewed research on all

aspects of artificial intelligence, fo-

cusing on the development of prac-

tical, fielded applications. Contribu-

tors include leading experts in

■ Intelligent Agents

■ The Semantic Web

■ Natural Language Processing

■ Robotics

■ Machine Learning

For the low annual rate of $67,

you’ll receive six bimonthly issues of

IEEE Intelligent Systems. Upcoming

issues will address topics such as

■ IS and the Web

■ Self-Managing Systems

■ The Future of AI

Don’t let the future
pass you by

Visit  www.computer.org/ intel l igent/subscribe.htmVisi t  www.computer.org/ intel l igent/subscribe.htm IE
EESubscribe to IEEE Intelligent Systems 



merely doing so exposes color changes as ab-
stract state changes through the XPI. To our
knowledge, no prior work clearly guides pro-
grammers to design code for ease of advising.

Extending the new design
XPIs can facilitate adding a classic non-

functional aspect, property enforcement.
Adding a property and its implementation to a
system is an important issue. To explore it in
the context of XPIs, we add a feature that
maintains a geometric invariant in the figure
editor: Lines must not be degenerate. That is,
the two points that define a line can’t have
identical coordinates. Enforcing this invariant
requires that no Line is degenerate when it’s
first created and that no change to a Point in
a Line makes it degenerate. This is an in-

stance of the more general problem of main-
taining invariants for compound structures
under changes to their respective parts.

Invariant enforcement essentially changes a
Point’s originally specified behavior by con-
ditioning a Point mutator’s effects on that
Point’s participation in a Line. Such a
change could require broad changes in the
software’s implementation. The advantage of
using an aspect is that it does localize the code
needed to effect the behavioral change in the
Point class. However, it doesn’t necessarily
obviate the need for changes elsewhere in the
code to accommodate that change in behavior.
With this observation in mind, we argue that
the use of XPIs, while not a panacea, can im-
prove a designer’s ability to express and use
abstractions that both manage these complex
effects and reflect key abstractions in the con-
ceptual design.

We assume that the designer will use an as-
pect module to implement the invariant en-
forcement. An appropriate XPI to write the as-
pect against doesn’t already exist. So, we need
to determine the domain abstraction for de-
coupling the aspect’s development from the
normal case’s development and then write that
XPI. One abstraction we need is that of a
change to a Point that is part of a Line.
Given this, the aspect can then implement the
policy prevent changes to Points in Lines
that would create any degeneracies.

The precise invariant we seek for the given
design is that a Line can’t have two end
Points at the same coordinates. Modifying a
Line by calling method Line.setP1(Point)
or Line.setP2(Point) can violate this in-
variant. So can directly modifying the coordi-
nates of a Point that belongs to a Line, with-
out direct reference to the Line. However, a
key concept absent from the original system is
the relation between Points and Lines. For
instance, no field in Point stores a containing
Line. A subtlety is that some Points are part
of a Line and some aren’t. (And in a real sys-
tem, a point might be a part of many lines.)

So, the first part of our solution creates a
representation of a new Point-Line relation.
We use an aspect to introduce a parent field
into Point to record the Line to which a
Point belongs, if any (see figure 4). The as-
pect uses the XFigureElementChange XPI,
updating the parent field as appropriate
when a Line is created or one of its Points is

5 8 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 4. The PPooiinnttLLiinneeRReellaattiioonn aspect records the LLiinnee to which
a PPooiinntt belongs.

public aspect PointLineRelation {

private Line Point.parent;

public boolean Point.partOfLine() {

return parent != null;

}

public Line Point.getParent() {

return parent;

}

/*

When a Line’s Point is possibly set, reestablish 

the parent of the Line’s Points.

*/

private pointcut changePoint(Line l):

target(l)

&& XFigureElementChange.joinpoint(FigureElement);

before(Line l): changePoint(l) {

l.getP1().parent = null;

l.getP2().parent = null;

}

after(Line l): changePoint(l) {

l.getP1().parent = l;

l.getP2().parent = l;

}

}



J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 5 9

replaced. Although this aspect updates the
parents of Points, it doesn’t violate the
XFigureElementChange requires clause be-
cause the parent is part of the hidden state of
FigureElements. In keeping with this XPI,
this solution introduces no setParent method,
calls to which would inappropriately result in
updating the Display.

Figure 5 presents the XPI and resulting de-
sign. The XPointInLineChange XPI exposes
three events on a Line’s endpoints: change in
x coordinate, change in y coordinate, and change
in both coordinates.

Having written this XPI, we can now
straightforwardly write an aspect for invariant
enforcement (not shown). Using around ad-
vice, the aspect advises changes in Points that
are in Lines and lets them occur only if they
preserve the invariant. The XPI abstracts
changes to Points in Lines. The aspect sepa-
rately abstracts the invariant and enforcement
policy. Such separation is at the heart of our
interface-oriented approach to AO design for
improved modularity and abstraction. It per-
mits reuse of the XPI for implementing other
aspects and decouples those aspects from pos-
sible changes to the ways that Points and
Lines may be modified.

T he XPI approach decouples aspect
code from the unstable details of ad-
vised code without compromising the

expressiveness of existing AO languages or re-
quiring new ones. By extending well-understood
notions of module interfaces to crosscutting
interfaces, this approach provides a principled
alternative to the concept of oblivious design.3

In our discussions with best-practice AO pro-
grammers, we’ve found that some of them in-
deed design and develop in stylized ways that
are consistent with the XPI approach. It thus
has the potential to ground, regularize, and
disseminate best software engineering prac-
tices using the new mechanisms that AO pro-
gramming languages provide.

Our experience to date with XPIs is limited
to two systems, HyperCast3 and the figure edi-
tor. We expect that integrated-development-en-
vironment support could aid programmers by
showing the scope of an XPI’s applicability. Be-
ing nonhierarchical, XPIs can overlap in scope.

FigureElement
<<interface>>

Point

–x : int
–y : int

Line

#p1 : Point
#p2 : Point

1*

+setX()
+setY()
+getX() : int
+getY() : int
+moveBy()

+setP1()
+setP2()
+getP1() : Point
+getP2() : Point
+moveBy()

+moveBy()

+PCD:X()
+PCD:Y()
+PCD:XY()

+around(Point, x): X()
+around(Point, y): Y()
+around(Point, dx, dy): XY()

InvariantChecking

XPointInLineChange
<<interface>>

Figure 5. Using an XPI to add an invariant property: 
(a) The XXPPooiinnttIInnLLiinneeCChhaannggee XPI and (b) the resulting design.

/*

The X() PCD exposes changes to the x coordinate of

any point that belongs to a line (similarly for 

Y() and XY().

*/

public aspect XPointInLineChange {

public pointcut X(Point p, int x):

call(void Point+.setX(int))

&& target(p) && args(x) && if(p.partOfLine());

public pointcut Y(Point p, int y):

call(void Point+.setY(int))

&& target(p) && args(y) && if(p.partOfLine());

public pointcut XY(Point p, int dx, int dy):

call(void Point+.moveBy(int,int))

&& target(p) && args(dx, dy) && if(p.partOfLine());

}

(a)

(b)



Also, we haven’t yet investigated the promise of
XPIs for AO languages with different mecha-
nisms than AspectJ’s. An appealing aspect of our
approach, however, is that it’s neutral with re-
spect to a language’s join-point model. It forces
specified behaviors to be revealed through inter-
faces implemented in terms of whatever join-
point model a language supports.

Acknowledgments
US National Science Foundation CISE (Computer

and Information Science and Engineering) grants FCA-
0429947 and FCA-0429786 helped support this 
research.

References

1. G. Kiczales et al., “An Overview of AspectJ,” Proc.
15th European Conf. Object-Oriented Programming
(ECOOP 01), LNCS 2072, Springer, 2001, pp. 327–353.

2. W. Teitelman, PILOT: A Step toward Man-Computer
Symbiosis, PhD thesis, tech. report AITR-221, Massa-
chusetts Inst. of Technology, 1966.

3. K.J. Sullivan et al., “Information Hiding Interfaces for
Aspect-Oriented Design,” Proc. 10th European Soft-
ware Eng. Conf. Held Jointly with 13th ACM SIG-
SOFT Int’l Symp. Foundations of Software Eng.
(ESEC/FSE 2005), ACM Press, 2005, pp. 166–175.

4. J. Liebeherr and T.K. Beam, “HyperCast: A Protocol
for Maintaining Multicast Group Members in a Logical
Hypercube Topology,” Proc. 1st Int’l Workshop Net-
worked Group Communication (NGC 99), LNCS
1736, Springer, 1999, pp. 72–89.

5. R.E. Filman and D.P. Friedman, “Aspect-Oriented Pro-
gramming Is Quantification and Obliviousness,” As-
pect-Oriented Software Development, Addison-Wesley,
2005, pp. 21–35.

6. R. Laddad, AspectJ in Action: Practical Aspect-Ori-
ented Programming, Manning Publications, 2003.

7. C.Y. Baldwin and K.B. Clark, Design Rules: The Power
of Modularity, MIT Press, 2000.

8. D.L. Parnas, “On the Criteria to Be Used in Decompos-
ing Systems into Modules,” Comm. ACM, vol. 15, no.
12, 1972, pp. 1053–1058.

9. B. Meyer, “Applying ‘Design by Contract,’” Computer,
vol. 25, no. 10, 1992, pp. 40–51.

10. G. Kiczales and M. Mezini, “Aspect-Oriented Program-
ming and Modular Reasoning,” Proc. 27th Int’l Conf.
Software Eng. (ICSE 05), ACM Press, 2005, pp. 49–58.

11. J. Aldrich, “Open Modules: Modular Reasoning about
Advice,” Proc. 2005 European Conf. Object-Oriented
Programming (ECOOP 05), LNCS 3586, Springer, 2005,
pp. 144–168.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib. 

About the Authors

William G. Griswold is a professor at the University of California, San Diego’s Depart-
ment of Computer Science and Engineering. His research interests include software engineering
and ubiquitous computing. He received his PhD in computer science from the University of
Washington. He’s a member of the ACM and IEEE Computer Society. Contact him at the Dept. of
Computer Science and Eng., UC San Diego, La Jolla, CA 92093-0114; wgg@cs.ucsd.edu.

Kevin Sullivan is an associate professor at the University of Virginia’s Department of
Computer Science. His research interests include software engineering, particularly involving
modularity and the economics of software-intensive systems. He received his PhD in computer
science and engineering from the University of Washington. He’s a member of the ACM and a
senior member of the IEEE. Contact him at the Dept. of Computer Science, Univ. of Virginia,
Charlottesville, VA 22903; sullivan@cs.virginia.edu.

Yuanyuan Song is a PhD student at the University of Virginia’s Department of Computer
Science. Her research interests include software engineering, particularly aspect-oriented software
development. She received her MCS from the University of Virginia. Contact her at the Dept. of
Computer Science, Univ. of Virginia, Charlottesville, VA 22903; ys8a@cs.virginia.edu.

Macneil Shonle is a PhD student in the Department of Computer Science and Engineer-
ing at the University of California, San Diego. His research interests include aspect-oriented
tools and languages, and he created XAspects, an extensible system for aspect-oriented com-
puting. He received his BA in computer science from Clark University, Worcester, Massachusetts.
He’s a member of the ACM. Contact him at the Dept. of Computer Science and Eng., UC San
Diego, La Jolla, CA 92093-0114; mshonle@cs.ucsd.edu.

Nishit Tewari is a computer science graduate student at the University of Virginia. His
research interests include software engineering and wireless networks. He completed his BTech
at the Indian Institute of Technology, Guwahati. Contact him at the Dept. of Computer Science,
Univ. of Virginia, Charlottesville, VA 22903; nt6x@cs.virginia.edu.

Yuanfang Cai is a PhD student at the University of Virginia’s Department of Computer
Science. Her research interests include software engineering, particularly the modeling and
analysis of software designs. She received her MCS from the University of Virginia. She’s a
member of the ACM. Contact her at the Dept. of Computer Science, Univ. of Virginia, Char-
lottesville, VA 22903; yc7a@cs.virginia.edu.

Hridesh Rajan is an assistant professor at Iowa State University’s Department of Com-
puter Science. His research interests include programming language design and implementa-
tion, software engineering, and mobile ad hoc networks. He received his PhD in computer sci-
ence from the University of Virginia. He’s a member of the ACM and IEEE. Contact him at the
Dept. of Computer Science, Iowa State Univ., Ames, IA 50010-1041; hridesh@cs.iastate.edu.

6 0 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e


