
Programming Overlay Networks with Overlay Sockets
�

Jörg Liebeherr, Jianping Wang and Guimin Zhang

Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA�
jorg, jwang, gz8d � @cs.virginia.edu

Abstract. The emergence of application-layer overlay networks has inspired the
development of new network services and applications. Research on overlay net-
works has focused on the design of protocols to maintain and forward data in an
overlay network, however, less attention has been given to the software develop-
ment process of building application programs in such an environment. Clearly,
the complexity of overlay network protocols calls for suitable application pro-
gramming interfaces (APIs) and abstractions that do not require detailed knowl-
edge of the overlay protocol, and, thereby, simplify the task of the application
programmer. In this paper, we present the concept of an overlay socket as a new
programming abstraction that serves as the end point of communication in an
overlay network. The overlay socket provides a socket-based API that is indepen-
dent of the chosen overlay topology, and can be configured to work for different
overlay topologies. The overlay socket can support application data transfer over
TCP, UDP, or other transport protocols. This paper describes the design of the
overlay socket and discusses API and configuration options.

Key words: Overlay Networks, Application-layer Multicast, Overlay Network Pro-
gramming.

1 Introduction

Application-layer overlay networks [5, 9, 13, 17] provide flexible platforms for develop-
ing new network services [1, 10, 11, 14, 18–20] without requiring changes to the network-
layer infrastructure. Members of an overlay network, which can be hosts, routers, servers,
or applications, organize themselves to form a logical network topology, and commu-
nicate only with their respective neighbors in the overlay topology. A member of an
overlay network sends and receives application data, and also forwards data intended
for other members.

This paper addresses application development in overlay networks. We use the term
overlay network programming to refer to the software development process of building
application programs that communicate with one another in an application-layer overlay

�
This work is supported in part by the National Science Foundation through grant ANI-
0085955.

network. The diversity and complexity of building and maintaining overlay networks
make it impractical to assume that application developers can be concerned with the
complexity of managing the participation of an application in a specific overlay network
topology.

We present a software module, called overlay socket, that intends to simplify the
task of overlay network programming. The design of the overlay socket pursues the
following set of objectives: First, the application programming interface (API) of the
overlay socket does not require that an application programmer has knowledge of the
overlay network topology. Second, the overlay socket is designed to accommodate dif-
ferent overlay network topologies. Switching to different overlay network topologies is
done by modifying parameters in a configuration file. Third, the overlay socket, which
operates at the application-layer, can accommodate different types of transport layer
protocols. This is accomplished by using network adapters that interface to the un-
derlying transport layer network and perform encapsulation and de-encapsulation of
messages exchanged by the overlay socket. Currently available network adapters are
TCP, UDP, and UDP multicast. Fourth, the overlay socket provides mechanisms for
bootstrapping new overlay networks.

In this paper, we provide an overview of the overlay socket design and discuss over-
lay network programming with the overlay socket. The overlay socket has been imple-
mented in Java as part of the HyperCast 2.0 software distribution [12]. The software
has been used for various overlay applications, and has been tested in both local-area as
well as wide-area settings. The HyperCast 2.0 software implements the overlay topolo-
gies described in [15] and [16]. This paper highlights important issues of the overlay
socket, additional information can be found in the design documentation available from
[12].

Several studies before us have addressed overlay network programming issues.
Even early overlay network proposals, such as Yoid [9], Scribe [4], and Scattercast [6],
have presented APIs that aspire to achieve independence of the API from the overlay
network topology used. Particularly, Yoid and Scattercast use a socket-like API, how-
ever, these APIs do not address issues that arise when the same API is used by different
overlay network topologies. Several works on application-layer multicast overlays inte-
grate the application program with the software responsible for maintaining the overlay
network, without explicitly providing general-purpose APIs. These include Narada [5],
Overcast [13], ALMI [17], and NICE [2]. A recent study [8] has proposed a common
API for the class of so-called structured overlays, which includes Chord [19], CAN
[18], and Bayeux [20], and other overlays that were originally motivated by distributed
hash tables. Our work has a different emphasis than [8], since we assume a scenario
where an application programmer must work with several, possibly fundamentally dif-
ferent, overlay network topologies and different transmission modes (UDP, TCP), and,
therefore, needs mechanisms that make it easy to change the configuration of the un-
derlying overlay network.

Internet

Overlay

socket

Application

Overlay
socket

Application

ApplicationOverlay
socket

Application

ApplicationOverlay
socket

Application

Overlay
Network

Fig. 1. The overlay network is a collection of
overlay sockets.

Root
(sender)

Root
(receiver)

(a) Multicast (b) Unicast

Fig. 2. Data forwarding in overlay networks.

The rest of the paper is organized as following. In Section 2 we introduce con-
cepts, abstractions, and terminology needed for the discussion of the overlay socket. In
Section 3 we present the design of the overlay socket, and discuss its components. In
Section 4 we show how to write programs using the overlay socket. We present brief
conclusions in Section 5.

2 Basic Concepts

An overlay socket is an endpoint for communication in an overlay network, and an
overlay network is seen as a collection of overlay sockets that self-organize using an
overlay protocol (see Figure 1). An overlay socket offers to an application programmer
a Berkeley socket-style API [3] for sending and receiving data over an overlay network.
Each overlay socket executes an overlay protocol that is responsible for maintaining the
membership of the socket in the overlay network topology.

Each overlay socket has a logical address and a physical address in the overlay
network. The logical address is dependent on the type of overlay protocol used. In the
overlay protocols currently implemented in HyperCast 2.0, the logical addresses are 32-
bit integers or � x � y � coordinates, where x and y are positive 32-bit positive integers. The
physical address is a transport layer address where overlay sockets receive messages
from the overlay network. On the Internet, the physical address is an IP address and
a TCP or UDP port number. Application programs that use overlay sockets only work
with logical addresses, and do not see physical addresses of overlay nodes.

When an overlay socket is created, the socket is configured with a set of configu-
ration parameters, called attributes. The application program can obtain the attributes
from a configuration file or it downloads the attributes from a server. The configuration
file specifies the type of overlay protocol and the type of transport protocol to be used,

but also more detailed information such as the size of internal buffers, and the value of
protocol-specific timers. The most important attribute is the overlay identifier (overlay
ID) which is used as a global identifier for an overlay network and which can be used
as a key to access the other attributes of the overlay network. Each new overlay ID
corresponds to the creation of a new overlay network.

Overlay sockets exchange two types of messages, protocol messages and applica-
tion messages. Protocol messages are the messages of the overlay protocol that main-
tain the overlay topology. Application messages contain application-data that is encap-
sulated in an overlay message header. An application message uses logical addresses
in the header to identify source and, for unicast, the destination of the message. If an
overlay socket receives an application message from one of its neighbors in the over-
lay network, it determines if the message must be forwarded to other overlay sockets,
and if the message needs to be passed to the local application. The transmission modes
currently supported by the overlay sockets are unicast, and multicast. In multicast, all
members in the overlay network are receivers. In both unicast and multicast, the com-
mon abstraction for data forwarding is that of passing data in spanning trees that are
embedded in the overlay topology. For example, a multicast message is transmitted
downstream a spanning tree that has the sender of the multicast message as the root
(see Figure 2(a)). When an overlay socket receives a multicast message, it forwards the
message to all of its downstream neighbors (children) in the tree, and passes the mes-
sage to the local application program. A unicast message is transmitted upstream a tree
with the receiver of the message as the root (see Figure 2(b)). An overlay socket that
receives a unicast message forwards the message to the upstream neighbor (parent) in
the tree that has the destination as the root.

An overlay socket makes forwarding decisions locally using only the logical ad-
dresses of its neighbors and the logical address of the root of the tree. Hence, there is a
requirement that each overlay socket can locally compute its parent and its children in a
tree with respect to a root node. This requirement is satisfied by many overlay network
topologies, including [15, 16, 18–20].

3 The Components of an Overlay Socket

An overlay socket consists of a collection of components that are configured when the
overlay socket is created, using the supplied set of attributes. These components include
the overlay protocol, which helps to build and maintain the overlay network topology, a
component that processes application data, and interfaces to a transport-layer network.
The main components of an overlay socket, as illustrated in Figure 3, are as follows:

– The overlay node implements an overlay protocol that establishes and maintains the
overlay network topology. The overlay node sends and receives overlay protocol
messages, and maintains a set of timers. The overlay node is the only component
of an overlay socket that is aware of the overlay topology. In the HyperCast 2.0

Overlay socket

Forwarding Engine

Application Programming Interface

S
ta

ti
st

ic
s

In
te

rf
ac

e

Protocol Messages

Application
Receive
Buffer

Application
Transmit

BufferOverlay Node

Overlay Node
Interface

Node Adapter

Adapter Interface

Socket Adapter

Adapter Interface

Application Messages

Application Program

Transport-layer Network

Application Messages

Fig. 3. Components of an overlay socket.

software, there are overlay nodes that build a logical hypercube [15] and a logical
Delaunay triangulation [16].

– The forwarding engine performs the functions of an application-layer router, that
sends, receives, and forwards formatted application-layer messages in the overlay
network. The forwarding engine communicates with the overlay node to query next
hop routing information for application messages. The forwarding decision is made
using logical addresses of the overlay nodes.

– Each overlay socket has two network adapters that each provides an interface to
transport-layer protocols, such as TCP or UDP. The node adapter serves as the in-
terface for sending and receiving overlay protocol messages, and the socket adapter
serves as the interface for application messages. Each adapter has a transport level
address, which, in the case of the Internet, consists of an IP address and a UDP or
TCP port number. Currently, there are three different types of adapters, for TCP,
UDP, and UDP multicast. Using two adapters completely separates the handling
of messages for maintaining the overlay protocol and the messages that transport
application data.

– The application receive buffer and application transmit buffer can temporarily store
messages that, respectively, have been received by the socket but not been deliv-
ered to the application, or that have been released by the application program, but
not been transmitted by the socket. The application transmit buffer can play a role
when messages cannot be transmitted due to rate control or congestion control con-
straints1.

1 The application transmit buffer is not implemented in the HyperCast 2.0 software.

– Each overlay socket has two external interfaces. The application programming in-
terface (API) of the socket offers application programs the ability to join and leave
existing overlays, to send data to other members of the overlay network, and re-
ceive data from the overlay network. The statistics interface of the overlay socket
provides access to status information of components of the overlay socket, and is
used for monitoring and management of an overlay socket. Note in Figure 3 that
some components of the overlay socket also have interfaces, which are accessed by
other components of the overlay socket.

The overlay manager is a component external to the overlay socket (and not shown in
Figure 3). It is responsible for configuring an overlay socket when the socket is created.
The overlay manager reads a configuration file that stores the attributes of an overlay
socket, and, if it is specified in the configuration file, may access attributes from a server,
and then initiates the instantiation of a new overlay socket.

4 Overlay Network Programming

An application developer does not need to be familiar with the details of the components
of an overlay socket as described in the previous section. The developer is exposed
only to the API of the overlay socket and to a file with configuration parameters. The
configuration file is a text file which stores all attributes needed to configure an overlay
socket. The configuration file is modified whenever a change is needed to the transport
protocol, the overlay protocol, or some other parameters of the overlay socket. In the
following, we summarize only the main features of the API, and we refer to [12] for
detailed information on the overlay socket API.

4.1 Overlay Socket API

Since the overlay topology and the forwarding of application-layer data is transparent
to the application program, the API for overlay network programming can be made
simple. Applications need to be able to create a new overlay network, join and leave
an existing overlay network, send data to and receive data from other members in the
overlay.

The API of the overlay socket is message-based, and intentionally stays close to the
familiar Berkeley socket API [3]. Since space considerations do not permit a description
of the full API, we sketch the API with the help of a simplified example. Figure 4 shows
the fragment of a Java program that uses an overlay socket. An application program
configures and creates an overlay socket with the help of an overlay manager (om). The
overlay manager reads configuration parameters for the overlay socket from a configu-
ration file (hypercast.prop), which can look similarly as shown in Figure 5. The applica-
tion program reads the overlay ID with command om.getDefaultProperty(“OverlayID”)
from the file, and creates an configuration object (config) for an overlay socket with the

// Generate the configuration object
OverlayManager om = new
OverlayManager("hypercast.prop");
String MyOverlay =
om.getDefaultProperty("OverlayID");

OverlaySocketConfig config =
new om.getOverlaySocketConfig(MyOverlay);

// create an overlay socket
OL Socket socket =
config.createOverlaySocket(callback);
// Join an overlay

socket.joinGroup();
// Create a message

OL Message msg = socket.createMessage(byte[]
data, int length);

// Send the message to all members in overlay network
socket.sendToAll(msg);

// Receive a message from the socket
OL Message msg = socket.receive();

Fig. 4. Program with overlay sockets.

OVERLAY Server:
OverlayServer =
OVERLAY ID:

OverlayID = 1234
KeyAttributes= Socket,Node,SocketAdapter
SOCKET:

Socket = HCast2-0
HCAST2-0.TTL = 255
HCAST2-0.ReceiveBufferSize = 200
SOCKET ADAPTER:

SocketAdapter = TCP
SocketAdapter.TCP.MaximumPacketLength = 16384
NODE:

Node = DT2-0
DT2-0.SleepTime = 400
NODE ADAPTER:

NodeAdapter = NodeAdptUDPServer
NodeAdapter.UDP.MaximumPacketLength = 8192
NodeAdapter.UDPServer.UdpServer0 =
128.143.71.50:8081

Fig. 5. Configuration file (simplified).

given overlay ID. The configuration object also loads all configuration information from
the configuration file, and then creates the overlay socket (config.createOverlaySocket).
Once the overlay socket is created, the socket joins the overlay network (socket.join-
Group). When a socket wants to multicast a message, it instantiates a new message
(socket.createMessage) and transmits the message using the sendToAll method. Other
transmission options are sendToParent, sendToChildren, sendToNeighbors, and sendTo-
Node, which, respectively, send a message to the upstream neighbor with respect to a
given root (see Figure 2), to the downstream neighbors, to all neighbors, or to a partic-
ular node with a given logical address.

4.2 Overlay Network Properties Management

As seen, the properties of an overlay socket are configured by setting attributes in a
configuration file. The overlay manager in an application process uses the attributes to
create a new overlay socket. By modifying the attributes in the configuration file, an
application programmer can configure the overlay protocol or transport protocol that
is used by the overlay socket. Changes to the file must be done before the socket is
created. Figure 5 shows a (simplified) example of a configuration file. Each line of the
configuration file assigns a value to an attribute. The complete list of attributes and the
range of values is documented in [12]. Without explaining all entries in Figure 5, the
file sets, among others, the overlay ID to ‘1234’, selects version 2.0 of the DT protocol
as overlay protocol (‘Node=DT2-0’), and it sets the transport protocol of the socket
adaptor to TCP (‘SocketAdapter=TCP’).

Each overlay network is associated with a set of attributes that characterize the
properties of the overlay sockets that participate in the overlay network. As mentioned
earlier, the most important attribute is the overlay ID, which is used to identify an over-

lay network, and which can be used as a key to access all other attributes of an overlay
network. The overlay ID should be a globally unique identifier.

A new overlay network is created by generating a new overlay ID and associating a
set of attributes that specify the properties of the overlay sockets in the overlay network.
To join an overlay network, an overlay socket must know the overlay ID and the set of
attributes for this overlay ID. This information can be obtained from a configuration
file, as shown in Figure 5.

All attributes have a name and a value, both of which are strings. For example,
the overlay protocol of an overlay socket can be determined by an attribute with name
NODE. If the attribute is set to NODE=DT2-0, then the overlay node in the overlay
socket runs the DT (version 2) overlay protocol. The overlay socket distinguishes be-
tween two types of attributes: key attributes and configurable attributes. Key attributes
are specific to an overlay network with a given overlay ID. Key attributes are selected
when the overlay ID is created for an overlay network, and cannot be modified after-
wards. Overlay sockets that participate in an overlay network must have identical key
attributes, but can have different configurable attributes. The attributes OverlayID and
KeyAttributes are key attributes by default in all overlay networks. Configurable at-
tributes specify parameters of an overlay socket, which are not considered essential for
establishing communication between overlay sockets in the same overlay network, and
which are considered ‘tunable’.

5 Conclusions

We discussed the design of an overlay socket which attempts to simplify the task of
overlay network programming. The overlay socket serves as an end point of commu-
nication in the overlay network. The overlay socket can be used for various overlay
topologies and support different transport protocols. The overlay socket supports a sim-
ple API for joining and leaving an overlay network, and for sending and receiving data
to and from other sockets in the overlay network. The main advantage of the overlay
socket is that it is relatively easy to change the configuration of the overlay network.

An implementation of the overlay socket is distributed with the HyperCast2.0 soft-
ware. The software has been extensively tested. A variety of different applications, such
as distributed whiteboard and a video streaming application, have been developed with
the overlay sockets.

Acknowledgement. In addition to the authors of this article the contributors include
Bhupinder Sethi, Tyler Beam, Burton Filstrup, Mike Nahas, Dongwen Wang, Konrad
Lorincz, Jean Ablutz, Haiyong Wang, Weisheng Si, Huafeng Lu, and Guangyu Dong.

References

1. D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. T., Morris. Resilient overlay
networks. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pp.

131-145, Lake Luise, Canada, October 2001.
2. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application Layer Multicast.

In Proceedings of ACM SIGCOMM, pp. 205-220, Pittsburgh, PA, August 2002.
3. K. L. Calvert, M. J. Donhahoo. TCP/IP Sockets in Java: Practical Guide for Programmers.

Morgan Kaufman, October 2001.
4. M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron. SCRIBE: A large-scale and

decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), Vol. 20, No. 8, October 2002.

5. Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In Proceedings of
ACM SIGMETRICS, pp. 1-12, Santa Clara, CA, June 2000.

6. Y. D. Chawathe. Scattercast: An Architecture for Internet Broadcast Distribution as an
Infrastructure Service. Ph.D. Thesis, University of California, Berkeley, December 2000.

7. Y. Chu, S. G. Rao, S. Seshan and H. Zhang. Enabling Conferencing Applications on the
Internet using an Overlay Multicast Architecture. In Proceedings of ACM SIGCOMM, pp.
55-67, San Diego, CA, August 2001.

8. F . Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a Common API
for Structured Peer-to-Peer Overlays. In Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, February 2003.

9. P. Francis. Yoid: Extending the Internet multicast architecture, Unpublished paper, April
2000. Available at http://www.aciri.org/yoid/docs/index.html.

10. The FreeNet Project. http://freenetproject.org.
11. The Gnutella Project. http://www.gnutella.com.
12. The HyperCast project. http://www.cs.virginia.edu/ � hypercast.
13. J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. OToole. Overcast:

Reliable multicasting with an overlay network. In Proceedings of the Fourth Symposium on
Operating Systems Design and Implementation, pp. 197-212, San Diego, CA, October 2000.

14. The JXTA Project. http://www.jxta.org.
15. J. Liebeherr and T. K. Beam. HyperCast: A protocol for maintaining multicast group

members in a logical hypercube topology. In Proceedings of First International Workshop
on Networked Group Communication (NGC 99), In Lecture Notes in Computer Science, Vol.
1736, pp. 72-89, Pisa, Italy, November 1999.

16. J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with Delaunay triangu-
lation overlays. IEEE Journal on Selected Areas in Communications, Vol. 20, No. 8, October
2002.

17. D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level multi-
cast infrastructure. In Proceedings of 3rd Usenix Symposium on Internet Technologies and
Systems, pp. 49-60, San Francisco, CA, March 2001.

18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. In Proceedings of ACM SIGCOMM, pp. 161-172, San Diego, CA,
August 2001.

19. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable
Peer-To-Peer Lookup Service for Internet Applications. In Proceedings of ACM SIGCOMM,
pp. 149-160, San Diego, CA, August 2001.

20. S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz. Bayeux:
An Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination. In Proceed-
ings of the Eleventh International Workshop on Network and Operating System Support for
Digital Audio and Video, (NOSSDAV 2001), pp. 11-20, Port Jefferson, NY, January 2001.

