
Bandwidth Adaptive & Error Resilient Regenerating

Codes

Kaveh Mahdaviani, Ashish Khisti

ECE Dept., University of Toronto

Toronto, ON M5S3G4, Canada

Email: {kaveh, akhisti}@comm.utoronto.ca

Soheil Mohajer

ECE Dept., University of Minnesota

Minneapolis, MN 55404, USA

Email: soheil@umn.edu

Abstract—To be considered for the 2016 IEEE Jack Keil Wolf
ISIT Student Paper Award. Regenerating codes are efficient
methods for distributed storage in practical networks where node
failures are common. They guarantee low cost data reconstruc-
tion and repair through accessing only a predefined number of
arbitrary chosen storage nodes in the network. In this work we
study the fundamental limits of required total repair bandwidth
and the storage capacity of these codes under the assumption
that i) both data reconstruction and repair are resilient to the
presence of a certain number of erroneous nodes in the network
and ii) the number of helper nodes in every repair is not fixed,
but is a flexible parameter that can be selected during the run-
time. We focus on the minimum repair bandwidth point in this
work, propose the associated coding scheme to posses both these
extra properties, and prove its optimality.

I. INTRODUCTION

The urge for efficient, flexible and robust distributed storage

systems is now not a surprise any more. Everyday, huge

quantities of data are being produced and converted to the

digital format from scientific, commercial or entertainment

industry sources. Having to deal with ”big data” in many

applications has driven several traditional methods of handling

data, such as storing the whole data on a single disk where it

is needed to be processed, impractical. Let alone backing up

and sharing by duplication. Hence, the demand for distributed

storage systems, as a natural solution to these basic problems

associated with the huge data, is inevitable.

As the number of storage devices increase in the distributed

storage solution, the frequency and likeliness of storage failure

also scales, which turns partial data loss into a norm rather than

a rare event. As a result, in order to avoid loosing the source

data in distributed storage systems, storing redundant data have

been considered. More precisely, a distributed storage system

needs to store the original data such that it is prepared for

losing a part of the stored data and yet being able to recover

the whole original data.

An important feature of a distributed storage system is its

ability to repair itself after a node, or part of the stored data,

either temporary or permanently, becomes unavailable. In the

absence of any repair mechanism, as storage nodes become

unavailable in a distributed storage system over time, the

available stored segments of data reduces and eventually the

remaining stored data will not be sufficient for reconstructing

the original data any more. Therefore, it is natural to consider

a mechanism to replace the failed storage nodes by new nodes,

and store appropriate data on the replacement nodes such that

the whole system maintain its functionality over time. Such a

procedure is referred to as the repair process.

Dimakis et. al. [1] formulated the problem of code design

for distributed storage of a large data in a network of n nodes

each of per node storage capacity α. In their formulation

the repair procedure should be performed by only accessing

a subset of size d of the available storage nodes, namely

helpers, and downloading only β repair data from each of

them. Moreover, the original source data store in the system is

required to be reconstructible through accessing the data stored

only on a subset of size k ≤ d of the nodes. Such family of

codes is hence named regenerating codes. They showed that

there is a trade-off between the per node storage α and the

amount of data required for repair, namely the total repair

bandwidth denoted by γ = dβ. Regenerating codes realizing

the two extreme points of this trade-off which refer to the

minimum repair bandwidth and minimum per node storage

are named as the MBR and MSR codes.

Since then a significant interest has been attracted to the

design and analysis of regenerating codes. In particular a

specific class of regenerating codes named the exact repair

regenerating codes, which are capable of performing the repair

process such that the data stored in the replacement node is

exactly the same as the data that was stored in the failed node.

Exact repair regenerating codes are practically much more

appealing, e.g., for having invariant encoding and decoding

mechanisms and more importantly capability to be tuned as

systematic codes. A regenerating code which is not capable

of exact repair is referred to as functional repair.

In this work we consider two simultaneous extensions to

the original work of Dimakis et. al. [1]. One extra feature

that we consider in our setup is that the number of helpers

chosen for repair can be adaptively selected, which allows

for run-time optimization according to the dynamic state of

the system. We refer to this property as bandwidth adaptivity.

Such flexibility adds a notable robustness to distributed storage

systems with time-varying conditions such as peer-to-peer

distributed storage systems where storage nodes join and

leave the system frequently. It is also an important feature

for systems with significant load unbalance or heterogeneous

connectivity where the number of available nodes for repair

vary for different repair cases.

While the importance of this feature has been recently

addressed by other researchers [2]–[4], no practical exact

repair coding scheme is yet known to be introduced for such

a setup. In [2] a coding scheme is proposed which performs

exact repair with bandwidth adaptivity based on interference

alignment for the MSR mode. However the optimality of this

scheme is achievable in asymptotically large per node storage

capacity and repair bandwidth. The other results have only

considered the functional repair, while [3] investigates the gain

of coordination in simultaneous repair of multiple failures, and

[4] addresses the upper bound on the storage capacity and

gain in Mean Time to Lose Data in presence of bandwidth

adaptivity.

Besides the data loss due to storage node failure, one other

practical issue that affects the reliability of data recovery in

distributed storage systems is the presence of errors. In our

model we also encounter the presence of error in the system

by adopting a limited power adversarial intruder model, which

can compromise up to a fixed number b < k/2 of nodes

as described in [5], [6]. Such intruder is considered to be

omniscient, i.e. knows the original data stored in the system

and the coding scheme, and can control the data stored in, and

being transferred by no more than b nodes under his control.

In [5] an upper bound for the capacity of distributed storage

systems is presented in the presence of different intruders

including the limited power omniscient intruder described

above. Exact repair coding schemes are also proposed for

MBR and MSR modes in [5], [6] to achieve this upper bound.

However, none of these results consider bandwidth adaptivity.

In this work we focus on the natural extension of MBR

mode with bandwidth adaptivity and error resiliency, and

present a coding scheme which we show is optimal. To the

best of our knowledge, this work is the first non-asymptotic

exact repair code construction for such a setting. The main

contributions of this work are explained in Section III, after

formally defining the setup in the next section.

II. MODEL

In this section we will briefly introduce a setup for the

distributed storage system and the coding scheme of our

interest. This model is a modified version of the original setup

considered in [1].

A Bandwidth adaptive and error resilient (BAER) dis-

tributed storage system has a predefined Galois filed alphabet,

Fq of size q, such that hereafter in this work we assume all

the symbols stored or transmitted through the network are

elements of Fq .

Definition 1 (BAER Regenerating Code). Consider the set

of parameters α, n, dmin, dmax, k, b, and a total repair

bandwidth function γ : {dmin, · · · , dmax} → [α,∞). A

BAER regenerating code C(α, γ(·), n, dmin, dmax, k, b) is

a regenerating code with per node storage capacity α, which

is capable of performing any sequence of repair and data

reconstruction processes in arbitrary order when up to b

out of n nodes are allowed to be compromised and provide

adversarial data in each process. Moreover, in any repair

process the number of helpers, d, can be chosen arbitrarily

such that dmin ≤ d ≤ dmax. The choice of helper nodes is also

arbitrary and each of the chosen helpers then provide γ(d)/d
repair symbols. Similarly, in any download process the data

collector accesses any arbitrary set of k nodes and downloads

α symbols from each.

Remark 1. Note that when erroneous nodes are present in

the system the repair process should prevent the propagation

of the errors. In the other words, the repair of a non-

compromised node should replace that with a node that stores

non-compromised data, which is the data that the coding

scheme would have stored in the replacement node if there

exists no compromised in the whole network at all.

Definition 2 (Storage Capacity, Optimal Codes & Modes).

For the set of parameters α, n, dmin, dmax, k, b, and a given

function γ : {dmin, · · · , dmax} → [α,∞), the storage capacity

of a BAER distributed storage system is the maximum size of

the file that could be stored in a network of n storage nodes

with per node storage capacity α, using a BAER regenerating

code C(α, γ(·), n, dmin, dmax, k, b). We will denote the storage

capacity of such a system by F (α, γ(·), n, dmin, dmax, k, b),
or simply F whenever the parameters of the system could be

inferred from the context. F is then the size of the largest

file that could be stored in the distributed storage systems

with the associated parameters. Moreover, for any choice of

parameters, the BAER codes that realize the storage capacity

are referred to as an optimal BAER codes, and the pair of

(F, γ(·)) are referred to as a mode.

Since there are many parameters involved in the presented

setting, to focus on the trade-off between the per node storage

α, total repair bandwidth function γ(·), error resiliency b, and

total storage capacity F , hereafter we will consider α, n, dmin,

dmax, k, b to be fixed and mainly focus on exploring the

tension between F and γ(·).

Remark 2. It is obvious that scaling the per node storage

capacity α and we can always scale the total repair band-

width function and the storage capacity with the same factor.

Moreover, if part of the data stored in a single node is a

function of the rest of the data stored on the same node

(per node redundancy), it is always possible to remove the

redundant part and scale everything to increase the storage

capacity in the system. Hence, through this work we always

assume the data stored in each node does not include per node

redundancy.

Definition 3 (MBR Mode for BAER Regenerating Codes).

Assuming that there is no per node redundancy in the dis-

tributed storage system, the MBR BAER mode is the pair of

(FMBR, γMBR(·)), such that γMBR(d) is the minimum possible

γ(d) for all values of dmin ≤ d ≤ dmax, for which the storage

capacity F is positive.

Definition 4 (Γ(F)). For any specific choice of parameters

α, n, dmin, dmax, k, b, there may exist a family of total repair

bandwidth functions which all have the same storage capacity

F . We use the notation Γ(F), to refer to the set of all functions

γ : {dmin, · · · , dmax} → [α,∞), such that F (α, γ(·), n, dmin,

dmax, k, b) = F .

In another perspective to the BAER setup with a given

set of parameters α, n, dmin, dmax, k, b, one might fix

storage capacity F , and search among the feasible set of

total repair bandwidth functions γ(·), i.e., Γ(F) for the best

choices. While optimal BAER codes correspond to the Pareto

optimal functions γ(·) ∈ Γ(F), in this work we consider the

strongest definition for optimality as will be introduced in

the following definitions. Surprisingly, we will show that such

strong optimality is achievable for the MBR BAER mode.

Definition 5 (Universally Optimal BAER Regenerating Code).

Let γ∗F (·), be the point-wise minimum of all the γ(·) functions

in Γ(F) defined as

γ∗F (d) = min
γ(·)∈Γ(F)

γ(d), ∀d, dmin ≤ d ≤ dmax.

For any storage capacity F , and fixed set of parameters α, n,

dmin, dmax, k, b the universally optimal BAER regenerating

code is the optimal BAER code which has the minimal total

repair bandwidth function γ∗F (·).

Note that the this definition does not guarantee the existence

of universally optimal BEAR codes, since the γ∗F (·) might not

be simultaneously achievable by a single BEAR code for all

feasible values of d.

III. MAIN RESULT

Here we briefly summarize the results and main contribu-

tions. In this work we focus on the MBR mode. Considering

the set of parameters α, n, dmin, dmax, k, b, we first character-

ize the minimum total repair bandwidth such that the storage

capacity is positive, and hence define the MBR mode for the

described setting. The following theorem describes this result.

Theorem 1. Consider a BEAR distributed storage system with

parameters α, n, dmin, dmax, k, b, such that dmin ≥ k > 2b.
Assuming zero per node redundancy, the minimal total repair

bandwidth function is given by

γMBR(d) =
αd

d− 2b
, ∀d, dmin ≤ d ≤ dmax. (1)

We also determine the total storage capacity of a BAER

distributed storage system in the MBR mode, and provide an

upper bound for the total storage capacity of the general mode.

We summarize these results in the following theorem.

Theorem 2. The storage capacity of a BAER distributed

storage system in the MBR mode, i.e. with the total repair

bandwidth function γMBR(·) as introduced in Theorem 1, is

given by

FMBR =

k−1
∑

j=2b

(dmin − j)
α

(dmin − 2b)

=
α

dmin − 2b
(k − 2b)

(

dmin − b−
k − 1

2

)

. (2)

Moreover, let D = {dmin, · · · , dmax}. The following upper

bound holds for the total storage capacity of any BAER

distributed storage system.

F ≤
k−2b−1
∑

j=0

min

(

α,min
d∈D

(

(d− 2b− j)
γ(d)

d− 2b

))

.

Note that the results in the above theorems holds for the

exact repair as well as for the functional repair.

Finally, another main result we introduce in this work is

to present the first non-MSR exact repair bandwidth adaptive

regenerating code. More specifically, we show that universally

optimal exact repair BAER code exists for the MBR mode by

providing an explicit code construction. This coding scheme

is the first MBR exact repair bandwidth adaptive regenerating

code. The only other bandwidth adaptive exact repair regen-

erating code construction presented so far is the MSR code

presented in [2]. The MBR code construction presented in

this work also provides error resiliency.

IV. CODING SCHEME

In this section we introduce an MBR BAER regenerating

code C(α, γ(·), n, dmin, dmax, k, b), for k, dmin > 2b, and

α =

dmax
∏

d=dmin

(d− 2b),

which achieves the total storage capacity FMBR of (2). We

will also show that the presented coding scheme is universally

optimal for MBR mode.

In order to achieve a BAER MBR regenerating code, we

start from an exact repair MBR regenerating code construction

introduced by Rashmi et. al. named Product Matrix MBR

codes [7]. Indeed, our code construction could be considered

as a generalization of the MBR Product Matrix codes in which

we use the Product Matrix codes as basic components. For the

rest of this section let ~s = (s1, · · · , sFMBR
) denote the source

data symbols, where FMBR is given in (2).

A. Encoding for Storage

Let d = dmin − 2b, and k = k − 2b, and also let O be

a d × d zero matrix. The first step in the encoding process

is to arrange the source data symbols in the form of an data

matrix Mα×d, which is a block diagonal matrix consisting of

z = α/(d) submatrices M1, · · · ,Mz as the diagonal blocks

in the following form.

M =











M1 O · · · O
O M2 · · · O
...

...
. . .

...

O · · · O Mz











. (3)

Moreover each of the submatrices Mi, i ∈ {1, · · · , z} is

a symmetric matrix satisfying the structural properties of a

Product Matrix MBR code for parameters k = k, and d = d.

In other words

Mi =

[

Ni Li

L⊺

i O
′

]

, i ∈ {1, · · · , z},

where Ni is a symmetric k× k matrix, and Li is an arbitrary

k × (dmin − k) matrix, and finally O′ is a (d− k) × (d − k)
zero matrix.

Similar to the original Product Matrix MBR codes the

encoding for storage over each node is performed using a

coefficient vector. The coefficient vector in our construction

is constructed based on a Vandermonde matrix Ψzn×d,

Ψ =













1 e1 e21 · · · e
(d−1)
1

1 e2 e22 · · · e
(d−1)
2

...
...

...
. . .

...

1 ezn e
2
zn · · · e

(d−1)
zn













, (4)

where, ei, i ∈ {1, · · · , z} are distinct non-zero elements of Fq.

In particular, denoting the j th row of Ψ by ~ψj , 1 ≤ j ≤ zn,

we define the vector of encoded symbols to be stored on node

ℓ ∈ {1, · · · , n}, denoted by ~xℓ as follows;

~xℓ = (~ψ(ℓ−1)z+1, · · · , ~ψℓz)M = (~ψ(ℓ−1)z+1M1, · · · , ~ψℓzMz).

Note that ~xℓ is an α dimensional vector and hence the per

node storage capacity is satisfied.

B. Encoding for Repair and Reconstruction

Repair: In order to perform the encoding for a repair

process, we require to have a matrix Ω ∈ F
z×z
q , where columns

of Ω are rows a Vandermonde matrix as bellow,

Ω =















1 1 · · · 1
e′1 e′2 · · · e′z
e′21 e′22 · · · e′2z
...

...
. . .

...

e
′(z−1)
1 e

′(z−1)
2 · · · e

′(z−1)
z















, (5)

where, e′i, i ∈ {1, · · · , z} are distinct non-zero elements of

Fq. We assume the choice of matrix Ω, is known to all the

nodes in the network. Moreover we will represent the ith row

of this matrix by ~ωi. This matrix Ω will be used to adjust the

dimension of the vector of repair symbols provided by each

helper based on the selected parameter d.

When a node f in the network fails, we can choose any

number d of other nodes as helpers such that 2b < k ≤ dmin ≤

d ≤ dmax. To describe the encoding process for repair at helper

node jℓ, we define the following notations.

Ωd =







~ω1

...

~ωα/(d−2b)






.

Note that Ω⊺

d , ∀d ∈ {1, · · · , z} is then also a Vandermonde

matrix. Moreover, for any node i ∈ {1, · · · , n} in the network,

the matrix Φi is a α × z block-diagonal matrix with d × 1
diagonal blocks ~ψ⊺

(i−1)z+1, · · · ,
~ψ⊺

iz .

Each helper node jℓ, ℓ ∈ {1, · · · , d} then produces a repair

vector ~rjℓ,f for the replacement node f as

~rjℓ,f = ~xjℓΦfΩ
⊺

d. (6)

Note that this will be a row vector of length α/(d− 2b).
Reconstruction: In the data reconstruction, there is no

encoding and the data collector just downloads the stored data

~xjℓ , for ℓ ∈ {1, · · · , k}, where jℓ, ℓ ∈ {1, · · · , k} is the index

of the ℓth selected node.

C. Decoding for Repair and Reconstruction

The decoding procedure for both data reconstruction as

well as the repair is performed using a scheme which will

be referred to as the ”Test-group decoding”. This decoding

scheme enables the decoder to both recover the required data,

and simultaneously authenticate the ingenuity of the recovered

message. In this subsection we first describe the Test-group

decoding for the repair and reconstruction processes and then

prove that this decoder never fails given that the omniscient

intruder could not compromise more than b nodes.

Repair: The Test-group decoding is an iterative procedure.

In the repair process, the decoding algorithm receives the index

of the failed node f , the chosen parameter d, the set of selected

helper nodes {j1, · · · , jd} of size d, and the their provided

repair data ~rjℓ , ℓ ∈ {1, · · · , d}, as the input. Each iteration

then starts by selecting one of the
(

d
d−b

)

subsets of the helper

nodes of size d− b, which has not been used in the previous

iterations. We will refer to the selected subset at the current

iteration as the selected test-group, and denote it by T . Once

the test-group is selected the decoder calculates one guess for

the lost data based every subset of size d−2b of the test-group.

To describe the process of calculating the guesses, let’s

denote one arbitrary subset H ⊂ T of size d − 2b, and its

corresponding guess as ~̂xH,f . The decoder first creates a vector

~ρH,f by concatenating all the ~riℓ,f row vectors for all iℓ ∈ H,

as defined in (6), based on a predefined order. Hence, ~ρH,f

will be a row vector of dimension α. Now note that for each

iℓ ∈ H, assuming it is not a compromised node, we have

~riℓ,f =
[

~ψ(iℓ−1)z+1M1
~ψ⊺

(f−1)z+1, · · · ,
~ψiℓzMz

~ψ⊺

fz

]

Ω⊺

d

=
[

~ψ(f−1)z+1M1
~ψ⊺

(iℓ−1)z+1, · · · ,
~ψfzMz

~ψ⊺

iℓz

]

Ω⊺

d,

and hence, assuming all nodes in H are providing genuine

repair data, we have

~ρH,f = ~xf
[

Φi1Ω
⊺

d , · · · ,Φid−2b
Ω⊺

d

]

.

Therefore defining

ΘH =
[

Φi1Ω
⊺

d , · · · ,Φid−2b
Ω⊺

d

]

=
[

Φi1 , · · · ,Φid−2b

] (

Ω⊺

d ⊗ I(d−2b)

)

, (7)

where I(d−2b) is the identity matrix of size (d − 2b), and ⊗
represents the Kronecker product.

Assuming all the repair data provided by the helper nodes

in H is genuine we have

~xf = ~ρH,fΘ
(−1)
H

,

given that the matrix Θ
(−1)
H

exists. As a result, the decoder

will be able to produce a guess ~̂xH,f for any subset of size

d− 2b of the Test-group, H ⊂ T if the corresponding matrix

ΘH is nun-singular. The following lemma guarantees that this

condition always holds and the Test-group decoder is able to

produce the guesses.

Lemma 1. For any parameter dmin ≤ d ≤ dmax, and any

subset H ⊂ T of size d− 2b of a Test-group T , consisting of

d− b helpers, the matrix ThetaH, defined in (7), is invertible.

For the proof of this lemma please see the Appendix A.

Once all the guesses are calculated for a test-group, the

decoder proceeds by checking the consistency of the guesses.

In other words each guess ~̂xH,f will be equal to the lost data

~xf , if the corresponding subset of helpers, H, are all providing

genuine repair data, and hence, all the guesses in a test-group

T will be the same if all the helpers in T are providing genuine

repair data. The decoder, then will stop whenever it finds a

consistent test-group and outputs the consistent guess as the

decoded data. The following lemma guarantees this procedure

will always succeed.

Lemma 2. Assuming the maximum number of compromised

nodes is b, if all the guesses produced in the Test-group

decoding for a test-group T is consistent, then all of them

are correct. Moreover, the Test-group decoding will always

find a consistent test-group.

Proof. First note that any test-group T , consists of d−b nodes

and the decoder produces a guess based on any subset of H of

size d−2b in T . Since the maximum number of compromised

nodes is b, then at least one of the subsets in any test-group is

guaranteed to be totally non-compromised. Therefore, at least

one of the guesses in each test-group is genuine and if all the

guesses in the test-group are consistent then all of them should

be genuine.

Now to prove that the Test-group decoder always finds a

consistent test-group, simply note that for any specific choice

of b compromised nodes, there exists at least one subset of

size d − b, in any set of d selected helpers, which does not

contain any compromised node. Since the Test-group decoder

checks all possible choices of test-groups, it always finds a

consistent one.

To summarize, the Test-group decoding for the repair is

described bellow. It receives the set of d selected helpers,

index of failed node f , and the maximum possible number

of compromised nodes b, as its inputs.

Algorithm 1 Test-group decoding for repair

1: Consistency← False

2: while ¬(Consistency) do

3: T ← A new subset of helpers of size d− b
4: for each subset H ⊂ T do

5: Calculate ~ρH,f and ΘH,f

6: ~̂xH,f ← ~ρH,fΘ
(−1)
H,f

7: end for

8: if ∀H ⊂ T ~̂xH,f vectors are the same then

9: Consistency← True

10: Output← ~̂xH,f for some H ⊂ consistent T
11: end if

12: end while

Reconstruction: In the case of data reconstruction, again the

Test-group decoder will iteratively select a test-group T of size

k − b, which has not been used before. Then for any subset

H ⊂ T of size k − 2b, the decoder calculates guesses M̂H,

and checks f all the calculated guesses match in the current

test-group. If there is a non-consistency, the decoder ends this

iteration and starts the next iteration by selecting a new test-

group until it finds a consistent one. A guess in a consistent

test-group will be considered as the output.

To describe the process of calculating guesses let’s define

the following notations for any subset of selected nodes H =
{i1, · · · , ik−2b}.

XH =







~xi1
...

~xik−2b






, ΦH =







~ψ(i1−1)z+1, · · · , ~ψi1z

...
~ψ(ik−2b−1)z+1, · · · , ~ψik−2bz






.

Again assuming the selected subset H provide genuine data

we have,

XH = ΦHM.

Therefore, to calculate a guess based on any selected subset

H ⊂ T , we have,

M̂H = (Φ⊺

H
ΦH)

(−1)
Φ⊺

H
XH.

A similar discussion as in Lemma 2 shows that the Test-

group decoding will always find a consistent test-group in the

data reconstruction and any guess in a consistent test-group is

correct.

To summarize, the test group decoding for data reconstruc-

tion is given bellow. It receives the set of k selected nodes and

the maximum number of compromised nodes b, as the input.

This ends the description of the coding scheme. Now based

on the proposed coding scheme we conclude the following

corollary.

Corollary 1. For

γ(d) =
αd

d− 2b
, (8)

Algorithm 2 Test-group decoding for data reconstruction

1: Consistency← False

2: while ¬(Consistency) do

3: T ← A new subset of helpers of size k − b
4: for each subset H ⊂ T do

5: Calculate XH, and ΦH

6: M̂H = (Φ⊺

H
ΦH)

(−1)
Φ⊺

H
XH

7: end for

8: if ∀H ⊂ T M̂H vectors are the same then

9: Consistency← True

10: Output← M̂H for some H ⊂ consistent T
11: end if

12: end while

the storage capacity for a BAER distributed storage system

with parameters n, α, b, dmin ≥ k > 2b, dmax, γ(·) is lower

bounded as follows

F ≥
α(k − 2b)

dmin − 2b

(

dmin − b−
(k − 1)

2

)

. (9)

Proof. The proof for (8) follows directly from the definition

of the repair procedure in the proposed coding scheme. The

achievable storage capacity, F , of the proposed coding scheme

is equal to the number of independent elements of matrix M .

According to the structure of the matrix M in (3), this quantity

is z times the total storage capacity of an MBR Product Matrix

code with parameters k, and d. Hence we have

F = z

(

k(k + 1)

2
+ k(d− k)

)

=
αk

d

(

d−
(k − 1)

2

)

.

Replacing d = dmin− 2b, and k = k− 2b, we get the lower

bound in (9).

V. AN UPPER BOUND ON THE CAPACITY OF BAER CODES

In the proofs of this section we will use a lemma proved

in [5] for the conventional regenerating codes. We restate the

lemma in the BAER setting below while the proof follows

similarly as provided in [5].

Lemma 3. In a BAER code C(α, γ(·), n, dmin, dmax, k, b),
in any data reconstruction, the data provided by any subset

of size k − 2b of the k selected nodes should be enough

for uniquely decoding the source data stored in the system.

Moreover, in any repair, the repair data provided by any subset

of size d − 2b of the d selected helpers should be enough to

uniquely decode the lost data.

Proof. The proof is the same for both data reconstruction and

repair and is through proof by contradiction. We will use the

notation a to refer to either d or k for the repair and data

reconstruction respectively. Consider a scenario (either a repair

or reconstruction) in which a set of a nodes are selected in

the network to provide data. Also, assume the message (either

the source data stored in the network or the data to be stored

in the replacement node) is m1. Regardless of the scenario

we can always assume the message to be recovered belongs

to set M of all possible messages. Moreover, let’s denote the

data provided by any subset L of the selected set of nodes by

~yL(m), where m ∈ M is the message to be recovered. Now

let us assume there exists a subset of selected nodes L∗ such

that |L∗| = a− 2b and for some different messages m2 ∈M
we have ~yL∗(m1) = ~yL∗(m2). If an intruder has the control

of a subset L′ of size b among the remaining 2b nodes, and

sets ~yL′(m2) to be the provided data from nodes under his

control then the receiver will have no guarantee to recover the

genuine message m1.

Having this lemma along with Corollary 1, we are now

ready to prove Theorem 1.

Proof of Theorem 1. First note that the data stored in a single

node does not have any redundancy. In other words if some

part of the data stored in a single node is a function of the

rest of the data we can improve the storage-bandwidth trade-

off in the whole system by simply removing the redundant

part from each node. Hence, α is an information theoretic

lower bound on the repair bandwidth required for any repair

decoding trial. In specific as Lemma 3 asserts, in any BAER

code, the sum of repair bandwidth provided by any subset of

helpers of size d− 2b should be at least α. As a result for any

BAER code with positive storage capacity, and any feasible

d, dmin ≤ d ≤ dmax we have

γ(d)

d
(d− 2b) ≥ α.

However, since (8) assures this is achievable by a single

code for all feasible choices of d, we will then have (1) of

Theorem 1.

Remark 3. Note that Theorem 1, introduces limits for dmin,

and k in an MBR BAER code. The lower limit 2b for k, dmin

could be justified using Lemma 3. Since for the choice of d <
2b, or k < 2b any subset of helpers of size d− 2b, or k − 2b
is empty and hence the storage capacity of the BAER code

supporting such a d or k is zero (trivial code).

Lemma 4. For any BAER code C(α, γ(·), n, dmin, dmax, k,

b), let D = {dmin, · · · , dmax}, then the total storage capacity

F is upper bounded as follows

F ≤

k−2b−1
∑

i=0

min

(

α,min
d∈D

(

(d− 2b− i)
γ(d)

d− 2b

))

. (10)

In specific, for the MBR case we have,

FMBR ≤
α(k − 2b)

dmin − 2b

(

dmin − b−
k − 1

2

)

. (11)

Please see Appendix B for the proof of this Lemma.

Finally the proof of Theorem 2 simply follows from (9) in

Corollary 1, and Lemma 4.

VI. CONCLUSION

We considered a modified setup for the regenerating codes

in which error resiliency and bandwidth adaptivity (BAER)

are required to be satisfied simultaneously, and studied the

storage-bandwidth trade-off in the modified BAER setup for

regenerating codes. Focusing on the minimum repair band-

width point, we derived the total repair bandwidth function in

the bandwidth adaptive scheme along with the corresponding

storage capacity through proposing an exact repair coding

scheme, and providing the converse proofs. We showed that for

the MBR mode, optimality is achievable in strongest form (i.e.,

point-wise rather than Pareto optimality). We also presented

an upper bound on the storage capacity of the BAER setup

for the general case.

APPENDIX A

PROOF OF LEMMA 1

Proof. Note that ΘH is an α×α square matrix. We will prove

this lemma by showing that the determinant of this matrix,

denoted by det(ΘH), is non-zero. From (7), we have

det(ΘH) =
∣

∣

[

Φi1 , · · · ,Φid−2b

] (

Ω⊺

d ⊗ I(d−2b)

)
∣

∣ .

Note that we can perform a column permutation on the

matrix
[

Φi1 , · · · ,Φid−2b

]

, and simultaneously perform the

same permutation on the rows of matrix
(

Ω⊺

d ⊗ I(d−2b)

)

, and

hence keep the product untouched. We define the column

permutation on the former matrix to shift z(d − dmin) of

the columns to the right-most part of the matrix. The set

of columns to be shifted to the right are selected such

that; 1) the number of selected columns from each of the

Φiℓ , ℓ ∈ {1, · · · , d− 2b} blocks is exactly

z(d− dmin)

d− 2b
, (12)

2) the shifted columns are selected evenly from different

positions in the Φiℓ , ℓ ∈ {1, · · · , d − 2b} blocks. In other

words, for each j ∈ {1, · · · , z}, the number of Φiℓ , ℓ ∈
{1, · · · , d − 2b} blocks whose j th column is selected and

shifted to the right-most part of the matrix is exactly d−dmin.

The resulting matrix after this column permutation looks

like [A,A′], where A is a α×α left submatrix. In A columns

could be partitioned into d − 2b groups such that in each

group the non-zero segment of the columns are located in the

same positions and form a full-rank transposed Vandermonde

submatrix. Therefore, Aα×α is full-rank.

It is easy to check that performing the corresponding

permutation on the rows of matrix
(

Ω⊺

d ⊗ I(d−2b)

)

, will shift

exactly

z(d− dmin)

d− 2b
(13)

rows from each of the Ω⊺

d diagonal blocks to the bottom of the

matrix, and hence in the resulting matrix the top α rows form

a block diagonal matrix with z × z square diagonal blocks.

Moreover, since Ω⊺

d in a Vandermonde matrix, the remaining

z × z diagonal blocks are all full-rank. To summarize, after

the permutation we have,

det(ΘH) =

∣

∣

∣

∣

∣

[

Aα×α, A
′

α×α
(

d

dmin
−1

)

]

[

Bα×α

B′

α
(

d

dmin
−1

)

×α

]
∣

∣

∣

∣

∣

.

Since A is full-rank then we can easily use elementary col-

umn operations to transform all the columns in the submatrix

A′ to zero columns. Again, by applying the inverse of these

elementary operations to the rows of [B⊺, B′⊺]⊺, the product

will remain untouched. Moreover, such elementary operations

will not make any changes to the rows of the B submatrix,

and as a result we have

det(ΘH) =

∣

∣

∣

∣

∣

[

Aα×α, Oα×α
(

d

dmin
−1

)

]

[

Bα×α

B′′

α
(

d

dmin
−1

)

×α

]∣

∣

∣

∣

∣

= det(A) det(B) 6= 0.

APPENDIX B

PROOF OF LEMMA 4

Proof. The proof follows ideas similar to [1], [5], and [4].

However, to derive an upper bound on the capacity of a

BAER setting, we introduce a genie-aided version of this

code. Then we derive the upper bound on the capacity F , by

finding an appropriate cut-set in the information-flow graph

corresponding to the genie-aided version.

In the genie-aided version of C(α, γ(·), n, dmin, dmax, k,

b), when we select the set of d helper nodes for a repair, the

genie identifies a subset of size d− 2b of the selected helpers

as genuine helpers, and we will only receive repair data from

them. Similarly, in the download process after choosing the

set of k nodes, the genie identifies a subset of size k − 2b
of genuine nodes among them, and the data collector only

receives data from this subset. From Lemma 3 we know that

limiting the connections in the genie-aided version will not

reduce the storage capacity. Hence, the storage capacity of

the genie-aided version is an upper bound for F ; the storage

capacity of the original setting.

To derive an upper bound on the storage capacity of the

genie-aided version, we will consider the information-flow

graph as introduced in [1]. The information-flow graph is a

directed acyclic graph (DAG) model to represent the flow of

information during a sequence of repairs and data reconstruc-

tions in the network. The source of information is represented

as a single node which has only out-going edges, and any data

collector is represented as a single node which only has in-

coming edges. Every storage node ℓ, which has once been used

in the network, is represented by a pair of nodes ℓin, and ℓout

in the DAG such that an edge with capacity α takes the floe

of information from ℓin to ℓout. This edge represents the per

node storage capacity constraint for node ℓ, hence we refer to

such edges as storage edges. In addition to storage edges there

are three other types of edges in the information-flow graph,

namely the download edges, the repair edges, and the source

edges. Download edges have capacity α and take information

S

DC

1in 1out

2in 2out

nin nout

ℓ1in ℓ1out

ℓ2in ℓ2out

ℓk−2bin ℓk−2bout

∞

∞

∞ d− 2b

{

d′ − 2b− 1

{

d′′ − k + 1

{

α

α

α

α

α

α

α

α

α

Fig. 1. The information-flow graph of the genie-aided version of a BAER code C(α, γ(·), n, dmin, dmax, k, b).

flow from the any node ℓout to a data collector node if ℓ is

among the genuine selected nodes for the data collector. Repair

edges take information flow from a node ℓout to a node ℓ′in
in the information-flow graph if ℓ′ is a replacement node in

the distributed storage network, and ℓ is one of the selected

genuine helpers for the repair. The capacity of repair edges

in the information-flow graph is then γ(d)/(d − 2b), for the

chosen parameter d in the corresponding repair. Finally, we

also consider a set of n source edges with infinite capacity,

taking information flow from the source node to the input node

of initial n storage nodes in the network. Figure 1 depicts one

example of an information-flow graph.

Corresponding to any specific series of repair and data

reconstruction processes, there exists a specific information-

flow graph. Any cut-set in the DAG model for an information-

flow graph consists of a set of edges such that removing them

remains no path from the source to the data collector. As a

results the sum capacity of all the edges in a cut-set provides

an upper bound on the capacity of information which could

be stored in the corresponding distributed storage network

and restored by a data collector after the sequence of repairs

associated to the information-flow graph is performed. We are

going to consider the information-flow graph depicted in figure

1.

As depicted n the figure in our scenario a data collector is

downloading the data stored in the network by accessing a set

of k − 2b nodes in the genie-aided setting. These nodes are

indexed as ℓ1, · · · , ℓk−2b, and each of them is a replacement

node. We also assume for any i ∈ {1, · · · , k− 2b}, the repair

for node ℓi is performed after the repair for any node ℓj, j < i,
and all of the nodes ℓj, j ∈ {1, · · · , i−1} are used as genuine

helpers in the repair of the node ℓi.

Initiating with an empty cut-set, for any i ∈ {1, · · · , k−2b},
we will compare the capacity of the storage edge of node

i with the sum of the capacities of the set of repair edges

which take information flows from the helper nodes not in

{ℓ1, · · · , ℓi−1}, and whichever is smaller its corresponding

edges will be added to the cut-set. Let D = {dmin, · · · , dmax}.
The cut-set achieved by this scheme then results in the

following upper bound on the total storage capacity.

F ≤
k−2b−1
∑

j=0

min

(

α,min
d∈D

(

(d− 2b− j)
γ(d)

d− 2b

))

.

In the case of the MBR mode however, we know from

Theorem 1,

γMBR(d) =
αd

d− 2b
.

As a result we get

FMBR ≤

k−2b−1
∑

i=0

min

(

α, (dmin − 2b− i)
α

dmin − 2b

)

.

=
α(k − 2b)

dmin − 2b

(

dmin − b−
k − 1

2

)

.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans-

actions on Information Theory, vol. 56, no. 9, pp. 4539–4551, September
2010.

[2] V. Cadambe, S. Jafar, H. Maleki, K. Ramchandran, and C. Suh, “Asymp-
totic interference alignment for optimal repair of mds codes in distributed
storage,” IEEE Transactions on Information Theory, vol. 59, no. 5, pp.
2974–2987, May 2013.

[3] A.-M. Kermarrec, N. L. Scouarnec, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Proc. IEEE
International Symposium on Network Coding (NetCod), Beijing, China,
July 2011, pp. 1–6.

[4] V. Aggarwal, C. Tian, V. A. Vaishampayan, and Y.-F. R. Chen, “Dis-
tributed data storage systems with opportunistic repair,” in Proc. IEEE
International Conference on Computer Communications (INFOCOM),
Toronto, Canada, April–May 2014, pp. 1833–1841.

[5] S. Pawar, S. E. Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6734–
6753, October 2011.

[6] K. V. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar, “Regener-
ating codes for errors and erasures in distributed storage,” in Proc. IEEE

International Symposium on Information Theory (ISIT), Cambridge, MA,
USA, July 2012, pp. 1202–1206.

[7] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5227–5239, August 2011.

