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Diversity Embedded Streaming Erasure Codes
(DE-SCo): Constructions and Optimality

Ahmed Badr, Ashish Khisti, Member IEEE, and Emin Martinian

Abstract—Streaming erasure codes encode a source stream to
guarantee that each source symbol is recovered within a fixed
delay at the receiver over a burst-erasure channel. This paper
introduces diversity embedded streaming erasure codes (DE-SCo),
that provide a flexible tradeoff between the channel quality
and receiver delay. When the channel conditions are good, the
source stream is recovered with a low delay, whereas when the
channel conditions are poor the source stream is still recovered,
albeit with a larger delay. Information theoretic analysis of the
underlying burst-erasure broadcast channel reveals that DE-
SCo achieve the minimum possible delay for the weaker user,
without sacrificing the performance of the stronger user. Our
constructions are explicit, incur polynomial time encoding and
decoding complexity and outperform random linear codes over
bursty erasure channels.

Index Terms—Low Delay, Streaming Erasure Correction
Codes, Burst Erasure Channel, Broadcast Channel, Network
Information Theory, Delay Constrained Coding, Application
Layer Error Correction

I. INTRODUCTION

FORWARD error correction codes designed for streaming
sources require that (a) the channel input stream be

produced sequentially from the source stream (b) the decoder
sequentially reconstruct the source stream as it observes the
channel output. In contrast, traditional error correction codes
such as maximum distance separable (MDS) codes map blocks
of data to a codeword and the decoder waits until the entire
codeword is received before the source data can be reproduced.
Rateless codes such as the digital fountain codes are not ideally
suited for streaming sources. First they require that the entire
source data be available before the output stream is repro-
duced. Secondly they provide no guarantees on the sequential
reconstruction of the source stream. Nevertheless there has
been a significant interest in adapting such constructions for
streaming applications see e.g., [13], [14], [15], [16], [17],
[18].

In [1, Chapter 8] a class of systematic time-invariant con-
volutional codes streaming erasure codes (SCo) are proposed
for the burst erasure channel. The encoder observes a semi-
infinite source stream and maps it to a coded output stream
of rate R. The channel considered is a burst-erasure channel
— starting at an arbitrary time, it introduces an erasure-burst
of maximum length B. The decoder is required to reconstruct
each source symbol with a maximum delay T . A fundamental
relationship between R, B and T is established and SCo
codes are constructed that achieve this tradeoff. We emphasize
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that the parity check symbols in these constructions involve a
careful combination of source symbols. In particular, random
linear combinations, popularly used in e.g., network coding,
do not attain the optimal performance.

The SCo framework however requires that the value of B
and T be known apriori. In practice this forces a conservative
design i.e., we design the code for the worst case B thereby
incurring a higher overhead (or a larger delay) even when the
channel is relatively good. Moreover there is often a flexibility
in the allowable delay. Techniques such as adaptive media
playback [11] have been designed to tune the play-out rate as
a function of the received buffer size to deal with a temporary
increase in delay. Hence it is not desirable to have to fix T
during the design stage either.

We introduce a class of streaming codes that do not commit
apriori to a specific delay. Instead they realize a delay that
depends on the channel conditions. At an information theoretic
level, our setup extends the point-to-point link in [1] to a mul-
ticast model — there is one source stream and two receivers.
The channel for each receiver introduces an erasure-burst of
length Bi and each receiver can tolerate a delay of Ti for
i = 1, 2. We investigate diversity embedded streaming erasure
codes (DE-SCo). These codes modify a single user SCo such
that the resulting code can support a second user, whose
channel introduces a larger erasure-burst, without sacrificing
the performance of the first user. Our construction embeds
new parity checks in an SCo code in a manner such that (a)
no interference is caused to the stronger (and low delay) user
and (b) the weaker user can use some of the parity checks of
the stronger user as side information to recover part of the
source symbols. DE-SCo constructions outperform baseline
schemes that simply concatenate the single user SCo for the
two users. An information theoretic converse establishes that
DE-SCo achieves the minimum possible delay for the weaker
receiver without sacrificing the performance of the stronger
user. Finally all our code constructions can be encoded and
decoded with a polynomial time complexity in T and B.

In recent works, [5], [6], [7] study the low-delay codes
with feedback, the compression of streaming sources is studied
in [10] while a comparison of block and streaming codes for
low delay systems is provided in [9].

II. SYSTEM MODEL

The transmitter encodes a stream of source symbols
{s[t]}t≥0 intended to be received at two receivers as shown in
Fig. 1. The channel symbols {x[t]}t≥0 are produced causally
from the source stream,

x[t] = ft(s[0], . . . , s[t]). (1)
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Fig. 1. The source stream {s[i]} is causally mapped into an output stream
{x[i]}. Both the receivers observe these symbols via their channels. The
channel introduces an erasure-burst of length Bi, and each receiver tolerates
a delay of Ti, for i = 1, 2.

The channel of receiver i introduces an erasure-burst of length
Bi i.e., the channel output at receiver i at time t is given by

yi[t] =

{
� t ∈ [ji, ji +Bi − 1]
x[t] otherwise

(2)

for i = 1, 2 and for some ji ≥ 0. Furthermore, user i
tolerates a delay of Ti, i.e., there exists a sequence of decoding
functions γ1t(.) and γ2t(.) such that

ŝi[t] = γit(yi[0], yi[1], . . . , yi[t+ Ti]), i = 1, 2, (3)

and Pr(si[t] �= ŝi[t]) = 0, ∀t ≥ 0 .
The source stream is an i.i.d. sequence and we assume that

each symbol is sampled from a distribution ps(·) over the
finite field F

T
Q. The rate of the multicast code is defined as

ratio of the entropy of the source symbol to the (marginal)
entropy of each channel symbol i.e., R = H(s)/H(x). An
optimal multicast streaming erasure code (MU-SCo) achieves
the maximum rate for a given choice of (Bi, Ti). Of particular
interest is the following subclass.

Definition 1 (Diversity Embedded Streaming Erasure Codes
(DE-SCo)). Consider the multicast model in Fig. 1 where the
channels of the two receivers introduce an erasure burst of
lengths B1 and B2 respectively with B1 < B2. A DE-SCo
is a rate R = T1

T1+B1
MU-SCo construction that achieves a

delay T1 at receiver 1 and supports receiver 2 with delay T2.
An optimal DE-SCo minimizes the delay T2 at receiver 2 for
given values of B1, T1 and B2.

Note that our model only considers a single erasure burst
on each channel. As is the case with (single user) SCo,
our constructions correct multiple erasure-bursts separated
sufficiently apart. Also we only consider the erasure channel
model. It naturally arises when these codes are implemented in
application layer multimedia encoding. More general channel
models can be transformed into an erasure model by applying
an appropriate inner code [1, Chapter 7].

III. BACKGROUND: STREAMING CODES (SCO)

Streaming burst-erasure codes developed in [1] and [2] are
single user codes for the model in the previous section. They
correct an erasure burst of length B with a delay of T symbols
and achieve the largest possible rate

C =

{
T

T+B T ≥ B

0 otherwise.
(4)

A. Construction

The construction in [1] is described in three steps.
1) Create (T, T −B) Burst Erasure Block Code (BEBC)

The construction begins with a systematic generator
matrix G for a (T, T − B) Burst Erasure Block Code
(BEBC) over a finite field FQ, without regard to de-
coding delay. The code must also correct “end-around”
bursts. Recall that any (n′, k′) cyclic code corrects
burst erasures of length n′ − k′. Since the matrix G
is systematic we can express it in the form

G =
[ T−B B

(T−B) I H
]

(5)
where I denotes the identity matrix and H is a (T −
B)×B matrix.

2) Create (B+T, T ) Low-Delay Burst Erasure Block Code
(LD-BEBC)
The LD-BEBC code maps a vector of T information
symbols b ∈ F

T
Q to a systematic codeword c ∈ F

T+B
Q as

follows. We first split b into two sub-vectors of lengths
B and T −B

b =
[ B T−B

u n
]
, (6)

and the resulting codeword is1

c =
[
u n

]
·
[

IB×B 0B×(T−B) IB×B

0(T−B)×B I(T−B)×(T−B) H

]

(7)

=
[
u n u+ n ·H

]
=

[
b r

]
(8)

where we have used (6) and introduced r = u + n ·H
to denote the parity check symbols in c in the last step.
The codeword c has the property that it is able to correct
any erasure burst of length B with a delay of at-most
T symbols. If we express b = (b0, . . . , bT−1) then, for
any erasure-burst of length B, b0 is recovered at time
T , b1 at time (T + 1) and bB−1 at time (T + B − 1).
The remaining symbols bB . . . , bT−1 are all recovered
at the end of the block.
The information symbols in vector u = (b0, . . . , bB−1)
are referred to as urgent symbols whereas the symbols in
vector n = (bB , . . . , bT−1) are referred to as non-urgent
symbols.

3) Diagonal Interleaving
The final step is to construct a streaming code (SCo)
from the LD-BEBC code in step 2. Recall that the
SCo specified a mapping between the symbols s[t] of
the incoming source stream to the symbols x[t] of the
channel input stream. This mapping is of the form

s[t] =

⎡
⎢⎣

s0[t]
...

sT−1[t]

⎤
⎥⎦ ∈ F

T
Q, x[t] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0[t]
...

sT−1[t]
p0[t]

...
pB−1[t]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ F

T+B
Q

(9)

1All addition in this paper is defined over FQ or its extension field.
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i.e., we split each source symbol s[t] ∈ F
T
Q into T equal

sized sub-symbols over FQ and then append B parity
check sub-symbols over FQ. Thus we have that x[t] ∈
F
T+B
Q . The parity check sub-symbols p0[t], . . . , pB−1[t]

are constructed through a diagonal interleaving tech-
nique described below.
An information vector bt in (6) is constructed by
collecting sub-symbols along the diagonal of the sub-
streams i.e.,

bt = (s0[t], s1[t+ 1],. . . ,sT−1[t+ T − 1]). (10)

The corresponding codeword ct = (bt, rt) is then
constructed according to (7). The resulting parity check
sub-symbols in r[t] are then appended diagonally to the
source stream to produce the channel input stream i.e.,

(p0[t+T ], . . . , pB−1[t+T+B−1]) = (r0[t], . . . , rB−1[t])
(11)

Notice that the operations in (9), (10) and (11) construct
a codeword diagonally across the incoming source sub-
streams as illustrated in Table. I. A diagonal codeword
is of the form

dt= (s0[t], . . . , sT−1[t+ T − 1], p0[t+ T ], (12)

. . . ,pB−1[t+ T +B − 1]).

The SCo code is a time-invariant convolutional
code [12]. The inputs to the convolutional code are
source symbols s ∈ F

T
Q, while the outputs are channel

symbols x ∈ F
T+B
Q . We emphasize that the actual

transmitted symbol is given in (9). The diagonal code-
word (12) above simply maps the LD-BEBC to a SCo.

B. Decoding of SCo Codes

The structure of the diagonal codeword (12) is also impor-
tant in decoding. Suppose that symbols x[t], . . . , x[t+B − 1]
are erased. It can be readily verified that there are no more
than B erasures in each diagonal codeword {dt} (c.f. (12)).
Since each codeword is a (T + B, T ) LD-BEBC, it recovers
each erased symbol with a delay of no more than T symbols.
This in turn implies that all erased symbols are recovered.

C. Example: (2,3) SCo Code

Suppose we wish to construct a code capable of correcting
any symbol burst erasure of length B = 2 with delay T = 3.
A LD-BEBC (7) for these parameters is

c = (b0, b1, b2, b0 + b2, b1 + b2). (13)

To construct the SCo code, we divide the source symbols into
T = 3 sub-symbols. The diagonal codeword (12) is of the
form

dt=(s0[t], s1[t+1], s2[t+2], s0[t]+s2[t+2], s1[t+1]+s2[t+2])
(14)

and the channel input x(t) is given by

x[t] =
[
s0[t], s1[t], s2[t], s0[t− 3] + s2[t− 1], s1[t− 3] + s2[t− 2]

]†
.

(15)

Fig. 2. A vertical interleaving approach to construct a (2B, 2T ) SCo code
from a (B, T ) SCo code.

The resulting channel input stream is illustrated in Table. I.
Note that the rate of this code is 3/5 as it introduces two
parity check sub-symbols for each three source sub-symbols.
It can be easily verified that this code corrects a burst erasure
of length 2 with a worst-case time delay 3.

IV. SCO PROPERTIES

In this section we describe some additional properties of
SCo codes that will be useful in the DE-SCo construction.

A. Vertical Interleaving for (αB,αT ) SCo

Suppose α ≥ 2 is an integer and we need to construct a
SCo code with parameters (αB,αT ). The scheme described
in section III-A requires us to split each source symbol into
αT sub-symbols. However we can take advantage of the
multiplicity factor α and simply construct the (αB,αT ) SCo
code from the (B, T ) SCo code via vertical interleaving of
step α.

Fig. 2 illustrates this approach for constructing a (2B, 2T )
SCo from a (B, T ) SCo. We split the incoming source stream
into two disjoint sub-streams; one consisting of source sym-
bols at even time slots and the other consisting of symbols at
odd time slots. We apply a (B, T ) SCo on the first sub stream
to produce channel symbols at even time slots. Likewise we
apply a (B, T ) SCo on the second sub stream to produce
channel symbols at odd time slots. Since a burst of length
2B introduces B erasures on either sub-streams, each of the
(B, T ) code suffices to recover from these erasures. Further
each erased symbol is recovered with a delay of T symbols
on its individual sub stream, which corresponds to an overall
delay of 2T symbols.

More generally we split each source symbol into T sub-
symbols. The information vector bt is modified from (10) as

bt = (s0[t], s1[t+ α],. . . ,sT−1[t+ (T − 1)α]). (16)

The resulting codeword c[t] of the LD-BEBC is then mapped
to a diagonal codeword by introducing a step-size of α in (12)
i.e.,

dt = (s0[t], s1[t+ α], . . . , sT−1[t+ (T − 1)α],

p0[t+ Tα], . . . , pB−1[t+ (T +B − 1)α]). (17)

As in the case of α = 2, the decoding proceeds by splitting the
source stream into α sub-streams and applying the decoder for
(B, T ) SCo on each of the sub-streams. This guarantees that
each symbol is recovered with a delay of αT on the original
stream.
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s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s2[i− 1] s2[i] s2[i+ 1] s2[i+ 2] s2[i+ 3] s2[i+ 4]

s0[i− 4] + s2[i− 2] s0[i− 3] + s2[i− 1] s0[i− 2] + s2[i] s0[i− 1] + s2[i+ 1] s0[i] + s2[i+ 2] s0[i+ 1] + s2[i+ 3]

s1[i− 4] + s2[i− 3] s1[i− 3] + s2[i− 2] s1[i− 2] + s2[i− 1] s1[i− 1] + s2[i] s1[i] + s2[i+ 1] s1[i+ 1] + s2[i+ 2]

TABLE I
A (2,3) SINGLE USER SCO CODE CONSTRUCTION IS GIVEN WHERE EACH SOURCE SYMBOL s[.] IS DIVIDED INTO THREE SUB-SYMBOLS s0[.], s1[.] AND

s2[.] AND A (5, 3) LD-BEBC CODE IS THEN APPLIED ACROSS THE DIAGONAL TO GENERATE TWO PARITY CHECK SUB-SYMBOLS GENERATING A RATE

3/5 CODE. EACH COLUMN CORRESPONDS TO ONE CHANNEL SYMBOL.

B. Memory in Channel Input Stream {x[t]}
While the definition of SCo allows the channel input symbol

x[t] to depend on an arbitrary number of source symbols, the
construction limits the memory of symbol x[t] to previous T
symbols i.e.,

x[t] = f(s[t], s[t− 1], . . . , s[t− T ]). (18)

Furthermore a closer look at the parity check sub-symbols (9)
of x[t] reveals that the parity checks p0[t], . . . , pB−1[t] con-
structed from the LD-BEBC in (8) have the form

pj [t] = sj [t−T ]+hj(sB [t−j−T+B], . . . , sT−1[t−j−1]),

j = 0, . . . , B − 1, (19)

where hj(·) denotes a linear combination arising from the LD-
BEBC code (8) when applied along the main diagonal.

C. Urgent and Non-Urgent Sub-Symbols

In the construction of LD-BEBC codes we split the infor-
mation vector b into urgent and non-urgent sub-symbols (6).
The mapping of source sub-symbols to information vector (10)
then implies that the sub-symbols s0, . . . , sB−1 are the urgent
sub-symbols in the source stream whereas the sub-symbols
sB , . . . , sT−1 are the non-urgent sub-symbols. We will denote
these by

sU [t] = (s0[t], . . . , sB−1[t]),

sN [t] = (sB [t], . . . , sT−1[t]). (20)

The urgent and non-urgent sub-symbols are combined into a
parity check sub-symbol as illustrated in (19). The following
observation is useful in the construction of DE-SCo.

Proposition 1. Suppose that the sequence of channel symbols
x[i−B], . . . , x[i−1] are erased by the burst-erasure channel.
Then

1) All sub-symbols in sN [i−B], . . . , sN [i−1] are obtained
from the parity checks p[i], . . . ,p[i+ T −B − 1].

2) The sub-symbols in sU [j] for i − B ≤ j < i are
recovered at time j + T from parity check p[j + T ]
and the previously recovered non-urgent sub-symbols.

The proof follows via (18), (19) and will be omitted due to
space constraints.

D. Off-Diagonal Interleaving

The constructions in section III-A involve interleaving along
the main diagonal of the source stream (c.f. (12),(10)). An
analogous construction of the (B, T ) code along the off
diagonal results in

b̄t = (s0[t], s1[t− 1], . . . , sT−1[t− (T − 1)]) (21)

d̄t = (sT−1[t− (T − 1), . . . , s1[t− 1], s0[t],

p̄0[t+ 1], . . . , p̄B−1[t+B]]) (22)

and the parity checks p̄j are given by

p̄j [t] = sT−j−1[t− T ] + hj(sT−B−1[t− j − T +B], (23)

. . . , s0[t− j − 1]), j = 0, . . . , B − 1,

when applied along the opposite diagonal. Finally off-diagonal
interleaving also satisfies Prop. 1 provided with appropriate
modifications in the definitions of urgent and non-urgent sub-
symbols

s̄U [t] = (sT−1[t], . . . , sT−B [t]),

s̄N [t] = (sT−B−1[t], . . . , s0[t]). (24)

V. EXAMPLE

We first highlight our results via a numerical example:
(B1, T1) = (1, 2) and (B2, T2) = (2, 4). Single user SCo
constructions from [1], [2] for both users are illustrated in Ta-
ble II(a) and II(b) respectively. In each case, the source symbol
s[i] is split into two sub-symbols (s0[i], s1[i]) and the channel
symbol x[i] is obtained by concatenating the source symbol s[i]
with a parity check symbol p[i]. In the (1, 2) SCo construction,
parity check symbol pI[i] = s1[i− 1] + s0[i− 2] is generated
by combining the source sub-symbols diagonally across the
source stream as illustrated with the rectangular boxes. For
the (B, T ) = (2, 4), the choice pII[i] = s1[i− 2]+ s0[i− 4] is
similar to the (1, 2) SCo, except that an interleaving of step of
size 2 is applied before the parity checks are produced. Note
that both these codes are single user codes and do not adapt
to channel conditions.

In Table III(a) we illustrate a construction that achieves a
rate 2/3 and (B1, T1) = (1, 2) and still enables user 2 to
recover the entire stream with a delay of T2 = 6. It is obtained
by shifting the parity checks of the SCo code in Table II(b) to
the right by two symbols and combining with the parity checks
of the SCo code in Table II(a) i.e., q[i] = pI[i] + pII[i − 2].
Note that parity check symbols pII[·] do not interfere with
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(a) SCo Construction for (B, T ) = (1, 2)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 3] + s1[i− 2] s0[i− 2] + s1[i− 1] s0[i− 1] + s1[i] s0[i] + s1[i+ 1] s0[i+ 1] + s1[i+ 2] s0[i+ 2] + s1[i+ 3]

(b) SCo Construction for (B, T ) = (2, 4)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 5] + s1[i− 3] s0[i− 4] + s1[i− 2] s0[i− 3] + s1[i− 1] s0[i− 2] + s1[i] s0[i− 1] + s1[i+ 1] s0[i] + s1[i+ 2]

TABLE II
SINGLE USER SCO CONSTRUCTIONS ARE SHOWN IN THE UPPER TWO FIGURES. NOTE THAT THE (1, 2) SCO CODE RECOVERS A SINGLE ERASURE WITH A

DELAY T = 2 BUT CANNOT RECOVER FROM B = 2. THE (2, 4) SCO CODE RECOVERS FROM B = 2 WITH A DELAY OF T = 4 BUT DOES NOT INCUR A

SMALLER DELAY WHEN B = 1.

(a) IA-SCo Code Construction for (B1, T1) = (1, 2) and (B2, T2) = (2, 6)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 3] + s1[i− 2] s0[i− 2] + s1[i− 1] s0[i− 1] + s1[i] s0[i] + s1[i+ 1] s0[i+ 1] + s1[i+ 2] s0[i+ 2] + s1[i+ 3]

+ + + + + +

s0[i− 7] + s1[i− 5] s0[i− 6] + s1[i− 4] s0[i− 5] + s1[i− 3] s0[i− 4] + s1[i− 2] s0[i− 3] + s1[i− 1] s0[i− 2] + s1[i]

(b) DE-SCo Code Construction for (B1, T1) = (1, 2) and (B2, T2) = (2, 5)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 3] + s1[i− 2] s0[i− 2] + s1[i− 1] s0[i− 1] + s1[i] s0[i] + s1[i+ 1] s0[i+ 1] + s1[i+ 2] s0[i+ 2] + s1[i+ 3]

+ + + + + +

s1[i− 6] + s0[i− 5] s1[i− 5] + s0[i− 4] s1[i− 4] + s0[i− 3] s1[i− 3] + s0[i− 2] s1[i− 2] + s0[i− 1] s1[i− 1] + s0[i]

TABLE III
RATE 2/3 CODE CONSTRUCTIONS THAT SATISFY USER 1 WITH (B1, T1) = (1, 2) AND USER 2 WITH B2 = 2.

the parity checks of user 1 i.e., when s[i] is erased, receiver
1 can recover pI[i + 1] and pI[i + 2] from q[i + 1] and
q[i+2] respectively by canceling pII[·] that combine with these
symbols. It then recovers s[i]. Likewise if s[i] and s[i − 1]
are erased, then receiver 2 recovers pII[i + 1], . . . , pII[i + 4]
from q[i + 3], . . . , q[i + 6] respectively by canceling out the
interfering pI[·], thus yielding T2 = 6.

While the interference avoidance strategy illustrated above
naturally generalizes to arbitrary values of B and T , it is
sub-optimal. Table. III(b) shows the DE-SCo construction that
achieves the minimum possible delay of T2 = 5. In this
construction we first construct the parity checks p̌II[i] = s1[i−
2]+ s0[i− 1] by combining the source sub-symbols along the
opposite diagonal of the (1, 2) SCo code in Table II(a). Note
that x̌(i) = (s[i], p̌II[i]) is also a single user (1, 2) SCo code.
We then shift the parity check stream to the right by T+B = 3
symbols and combine with pI[i] i.e., q[i] = pI[i]+ p̌II[i−3]. In
the resulting code, receiver 1 is still able to cancel the effect
of p̌II[·] as before and achieve T1 = 2. Furthermore at receiver
2 if s[i] and s[i − 1] are erased, then observe that receiver 2
obtains s0[i] and s0[i−1] from q[i+2] and q[i+3] respectively
and s1[i− 1] and s1[i] from q[i+4] and q[i+5] respectively,

thus yielding T2 = 5 symbols.
In the remainder of this paper we generalize the above

construction to arbitrary values of (Bi, Ti).

VI. CONSTRUCTION OF DE-SCO

In this section we describe the DE-SCo construction. We
rely on several properties of the single user SCo explained in
section III.

Theorem 1. Let (B1, T1) = (B, T ) and suppose B2 = αB
where α is any integer that exceeds 1. The minimum possible
delay for any code of rate R = T

T+B is

T �
2 = αT +B, (25)

and is achieved by the optimal DE-SCo construction.

A. Converse

We first establish converse to theorem 1. Consider any code
that achieves {(B, T ), (B2, T2)} with T2 < T �

2 . The rate of
this code is strictly less than R = T

T+B .
To establish this we separately consider the case when T +

B ≤ T2 < αT + B and the case when T2 < T + B. Let us
assume the first case.
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Fig. 3. One period illustration of the Periodic Erasure Channel for T +B <
T2 ≤ αT + B. White circles resemble unerased symbols. Black and Gray
circles resemble erased symbols to be recovered using C1 and C2 respectively.

Fig. 4. One period illustration of the Periodic Erasure Channel for T2 ≤
T + B. White circles resemble unerased symbols. Black and Gray circles
resemble erased symbols to be recovered using C1 and C2 respectively.

As shown in Fig. 3, construct a periodic burst-erasure
channel in which every period of (α − 1)B + T2 symbols
consists of a sequence of αB erasures followed by a sequence
of non-erased symbols. Consider one period of the proposed
periodic erasure channel with a burst erasure of length αB
from time t = 0, 1, . . . , αB − 1 followed by a period of non-
erasures for t = αB, . . . , TP1

� (α− 1)B + T2 − 1. For time
t = 0, . . . , TP1

the channel behaves identically to a burst-
erasure channel with αB erasures. The first (α−1)B erasures
at time t = 0, 1, . . . , (α − 1)B − 1 can be recovered using
decoder of user 2 with a delay of T2 i.e., by time TP1

and
hence the channel symbols x[0], . . . , x[(α−1)B−1] can also
be recovered via (1).

It remains to show that the symbols at time t = (α −
1)B, . . . , αB − 1 are also recovered by time TP1

. Note
that since the channel symbols x[0], . . . , x[(α − 1)B − 1]
have been recovered, the resulting channel between times

t = 0, . . . , αB− 1 is identical to a burst erasure channel with
B erasures between time t = (α − 1)B, . . . , αB − 1. The
decoder of user 1 applied to this channel recovers the source
symbols by time αB − 1 + T ≤ TP1

, which follows since
T2 ≥ T +B. Thus all the erased channel symbols in the first
period are recovered by time TP1

. Since the channel introduces
periodic bursts, the same argument can be repeated across all
periods. Since the length of each period is (α− 1)B+T2 and
contains αB erasures,thus the capacity is upper bounded by
1− αB

(α−1)B+T2
which is less than R = T

T+B if T2 < T �
2 .

For the other case with T2 < T + B shown in Fig. 4, the
same argument applies except that the periodic channel has a
period of T + αB symbols. Each period consists of a burst
erasure of length αB from time t = 0, 1, . . . , αB−1 followed
by a period of non-erasures for t = αB, . . . , TP2

� αB+T−1.
The decoder of user 2 recovers the (α− 1)B erasures at time
t = 0, 1, . . . , (α − 1)B − 1 with a delay of T2 (i.e., by time
< TP2

) as T2 < T + B. Furthermore, the decoder of user 1
recovers the B erasures at time t = (α − 1)B, . . . , αB − 1
with a delay of T symbols (i.e., by time αB + T − 1 = TP2

).
Now, the length of each period is αB + T with T available
symbols, the rate is T

T+αB strictly smaller than R as α > 1
and the converse follows.

B. Code Construction

For achievability of T �
2 in (25) we construct the following

code:

• Construction of C1: Let C1 be the single user (B, T )
SCo obtained by splitting each source symbol s[i] into T
sub-symbols (s0[i], . . . , sT−1[i]) and producing B parity
check sub-symbols pI = (pI0[i], . . . , p

I
B−1[i]) at each time

by combining the source sub-symbols along the main
diagonal.
In other words, a (T + B, T ) LD-BEBC code is ap-
plied along the diagonal bI

i = (s0[i], s1[i], . . . , sT−1[i +
T − 1]) constructing the diagonal codeword dI

i =
(s0[i], . . . , sT−1[i+ T − 1], pI0[i+ T ], . . . , pIB−1[i+ T +
B − 1]) where, from (19),

pIk[i] = Ak(s0[i− T − k], . . . , sT−1[i− 1− k])

= Ak(b
I
i−T−k)

= sk[i− T ] + hk(sB [i− k − T +B], . . . ,

sT−1[i− k − 1]), k = 0, . . . , B − 1. (26)

• Construction of C2: Let C2 be a ((α − 1)B, (α − 1)T )
SCo also obtained by splitting each source symbol into
T sub-symbols (s0[i], . . . , sT−1[i]) and then constructing
a total of B parity checks pII[i] = (pII0 [i], . . . , p

II
B−1[i])

by combining the source sub-symbols along the opposite
diagonal and with an interleaving step of size � = (α−1).
In other words, a (T + B, T ) LD-BEBC code is ap-
plied along the diagonal bII

i = (sT−1[i − �(T −
1)], sT−2[i− �(T −2)], . . . , s0[i]) to construct a diagonal
codeword dII

i = (sT−1[i − �(T − 1)], . . . , s0[i], p
II
0 [i +
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�], . . . , pIIB−1[i+ �B]) where

pIIk [i] = Bk(s0[i− �− k�], . . . , sT−1[i− �T − k�])

= Bk(b
II
i−�−k�)

= sT−k−1[i− �T ] + hk(sT−B−1[i− �(k + T −B)],

. . . , s0[i− �(k + 1)]), k = 0, . . . , B − 1, (27)

• Combination of Parity Checks of C1 and C2: Introduce
a shift Δ = T +B in the stream pII[·] and combine with
the parity check stream pI[·] i.e., q[i] = pI[i]+pII[i−Δ].
The output symbol at time i is x[i] = (s[i],q[i])

Throughout our discussion we refer to the non-urgent and
urgent symbols of code C2. The set of urgent symbols and
non-urgent symbols are as stated in (24). Also note that since
there are B parity check sub-symbols for every T source sub-
symbols it follows that the rate of the code is T

T+B .

C. Example

Fig. 5 illustrates the DE-SCo {(2, 5), (4, 12)} construction.
Each column represents one time-index between [−4, 9] shown
in the top row of the table. We assume that a burst-erasure
occurs between time [−4,−1] for user 2. Each source symbol
is split into five sub-symbols (a[.], b[.], c[.], d[.], e[.]), each
occupying one row. The first T−B = 3 of which, a[.], b[.], c[.]
are non-urgent sub-symbols and the rest (d[.], e[.]) are urgent.
The next two rows denote the parity check sub-symbols. The
parity checks for C1, generated by diagonal bI

i, (c.f. (19)) are
marked p[.] and q[.] and are given by,

p[i] = a[i− 5] + c[i− 3] + e[i− 1]

q[i] = b[i− 5] + d[i− 3] + e[i− 2]. (28)

The shaded two top rows show the parity checks y[.] and z[.],
generated by the diagonal bII

i for C2 (c.f. (27)),

y[i] = e[i− 5] + c[i− 3] + a[i− 1]

z[i] = d[i− 5] + b[i− 3] + a[i− 2]. (29)

These parity checks are then shifted by T + B = 7 slots and
combined with the corresponding parity checks of C1 as shown
in Fig. 5.

We illustrate the decoding steps for user 2 as follows.

(1) Recover {pII[t−Δ]}t≥T :
By construction of C1 all the parity checks pI[t] for t ≥ 5
do not involve the erased sub-symbols. In particular the
parity checks marked by p[.] and q[.] at t ≥ 5 do not
involve source sub-symbols before t = 0 (c.f. (28)) and
hence these can be canceled to recover the parity checks
y[.] and z[.] for t ≥ 5.

(2) Upper-left triangle:
The parity checks in step (1) enable us to
recover the non-urgent erased sub-symbols in
bII
−3 = (e[−7], d[−6], c[−5], b[−4], a[−3]) and

bII
−4 = (e[−8], d[−7], c[−6], b[−5], a[−4]) which are

a[−4], a[−3] and b[−4] i.e., the upper-left triangle sub-
symbols. We use the corresponding diagonal codewords,
dII
−3 = (e[−7], d[−6], c[−5], b[−4], a[−3], y[−2], z[−1])

to recover a[−3] and b[−4] from the parity

checks y[−2] and z[−1] and d−4 =
(e[−8], d[−7], c[−6], b[−5], a[−4], y[−3], z[−2]) to
recover a[−4] from the parity check z[−2]. We note that
a[−4] is recovered from z[−2] at t = 5 and not from
y[−3] which appears at t = 4 and is not recovered in
step (1). More generally, as we note later, the parity
checks at i + T and later suffice to recover symbols in
this step.

(3) Recover pI[t] for 0 ≤ t ≤ T − 1:
The sub-symbols recovered in step (2) suffice to recover
all parity checks pI[t] for 0 ≤ t ≤ 4. Note that
the relevant interfering parity checks from pII[·] in this
interval is y[−3] = e[−8]+c[−6]+a[−4]. Since the only
erased sub-symbol a[−4] is already recovered in step (2),
these parity checks can be canceled. More generally as
we show later, for the general case, our construction
guarantees that the interfering parity checks pII[·] in the
interval 0 ≤ t ≤ T −1 only involve erased symbols from
the upper left triangle, which are decoded in step (2).

(4) Upper-right triangle:
Since the diagonals bI

−2 = (a[−2], b[−1], c[0], d[1], e[2])
and bI

−1 = (a[−1], b[0], c[1], d[2], e[3]) involve two or
fewer erasures, we can now recover these sub-symbols
using parity checks of code C1 recovered in the previous
step. In particular, the upper-right triangle source sub-
symbols a[−2], b[−1] and a[−1] can be recovered from
p[3], q[4] and p[4] respectively.

(5) Recover non-urgent sub-symbols recursively:
The remaining non-urgent sub-symbols need to
be recovered in a recursive manner. Note that
bI
−3 = (a[−3], b[−2], c[−1], d[0], e[1]) has three

erased sub-symbols. However, the first sub-symbol
a[−3] also belongs to bII

−3 and has already been
recovered in step (2). The remaining two sub-
symbols, b[−2] and c[−1], can be recovered by
the two available parity checks of code C1 in
dI
−3 = (a[−3], b[−2], c[−1], d[0], e[1], p[2], q[3]),

i.e., from p[2] and q[3]. Similarly bII
−2 =

(e[−6], d[−5], c[−4], b[−3], a[−2]) also has three
erasures, but the upper-most sub-symbol a[−2]
also belongs to bI

−2 which has been recovered
in step (4). Hence the remaining erased sub-
symbols in bII

−2, c[−4] and b[−3], can be
recovered using the parity checks y[−1] and z[0] in
dII
−2 = (e[−6], d[−5], c[−4], b[−3], a[−2], y[−1], z[0]).

At this stage it only remains to recover the two remaining
non-urgent sub-symbols c[−3] and c[−4] by time t = 7.
These are recovered in the next step of the recursion.
Note that the symbols c[−2] and d[−1] are the only
remaining erased symbols on the diagonal bI

−5 and are
recovered from parity checks p[1] and q[2]. Likewise,
c[−3] and d[−4] are the only remaining erase symbols
on the diagonal bII

−1 and can be recovered using the
parity checks y[0] and z[1]. Since c[−3] is the non-urgent
symbol, from Prop. 1 it is recovered before d[−4] using
only y[0]. Thus both c[−3] and c[−4] are recovered by
t = 7.

(6) Recover urgent sub-symbols:
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Fig. 5. A {(2, 5)− (4, 12)} DE-SCo code construction is given in the above figure. The parity check sub-symbols p[t] and q[t] of a (2, 5) SCo across the
main diagonal is added to another (2, 5) SCo parity check sub-symbols x[t] and y[t] but applied across the opposite diagonal and shifted by T + B = 7
(i.e., the two parity check checks at time instant t are p[t] + x[t− 7] and q[t] + y[t− 7]).

After recovering all non-urgent sub-symbols in the pre-
vious steps, we can directly recover the urgent ones
(i.e., the bottom two rows) using parity checks pII[t] for
8 < t ≤ 11.

We now study the general case.

D. Decoding at User 1

Suppose that the symbols at time i−B, . . . , i−1 are erased
by the channel of user 1. User 1 first recovers parity checks
pI[i], . . . ,pI[i+T−1] from q[i], . . . ,q[i+T−1] by canceling
the parity checks pII[·] that combine with pI[·] in this period.
Indeed at time i+T −1 the interfering parity check is pII[i+
T −Δ − 1] = pII[i − B − 1], which clearly depends on the
(non-erased) source sub-symbols before time i−B. All parity
checks pII[·] before this time are also non-interfering. The
erased source symbols can be recovered from pI[i], . . . ,pI[i+
T − 1] by virtue of code C1.

E. Decoding at User 2

Suppose that the symbols at times i − αB, . . . , i − 1 are
erased for receiver 2. Let T Δ

= i − αB + T �
2 . We use parity

checks at time i ≤ t ≤ T −1 to recover {sN [τ ]}i−1
τ=i−αB in the

first five steps where sN [τ ] = (s0[τ ], . . . , sT−B−1[τ ]) denote
the set of non-urgent sub-symbols for C2. In the last step, we
use parity checks at time t ≥ T to recover the set of non-
urgent sub-symbols for C2, sU [τ ] = (sT−B [τ ], . . . , sT−1[τ ]).
(1) Recover {pII[t−Δ]}t≥i+T :

For t ≥ i+T , the decoder recovers parity check pII[t−Δ]
from q[t] by canceling the parity checks pI[t] which
depend only on (non-erased) source symbols at time i
or later as via (19) the memory in C1 is limited to previ-
ous T symbols. Consequently the parity check symbols
{pI[t]}t≥i+T depend only on source sub-symbols after
time i. Hence these parity checks can be canceled.

(2) Upper-left triangle:
In this step, the decoder recovers the non-urgent sub-
symbols in bII

i−αB , . . . ,b
II
i−B−1 using the parity check

symbols {pII[t − Δ]}T −1
t=i+T . Clearly these vectors are

affected by at most (α − 1)B erasures between times
i − αB, . . . , i − B − 1. Furthermore, the corresponding
parity checks {pII[t − Δ]}t≥i+T ≡ {pII[t]}t≥i−B have
been recovered in step (1). By construction C2 can recover
the erased source sub-symbols in the stated diagonal
vectors. Furthermore by applying Prop. 1, the non-urgent
sub-symbols are recovered from the first (α− 1)(T −B)
parity check columns. Taking into account the shift of
Δ = T +B, it follows that all the non-urgent source sub-
symbols are recovered by time i+T+(α−1)(T−B)−1 =
T − 1.

(3) Recover pI[t] for i ≤ t ≤ i+ T − 1:
We consider the last column of parity checks, q[i+ T −
1] = pI[i + T − 1] + pII[i − B − 1]. From (27), for
k = 0, 1, . . . , B − 1 we have,

pIIk [i−B − 1] = Bk(b
II
i−B−(α−1)(k+1)−1)

= sT−k−1[i−B − 1− (α− 1)T ]

+ hk(sT−B−1[i−B − 1− (α− 1)(T −B + k)],

. . . , s0[i−B − 1− (k + 1)(α− 1)]).

Thus the only urgent sub-symbols involved in pII[i −
B − 1] are at time t = i−B − 1− (α− 1)T , which are
unerased. Moreover, the non-urgent sub-symbols involved
are those of bII

i−B−(α−1)(k+1)−1 which have already
been recovered in step (2). Thus, it follows that we
can reconstruct pII[i − B − 1]. A similar argument can
be used to show that we can recover all the columns
pII[i−B− T ], . . . ,pII[i−B− 1], cancel their effect on
q[i], . . . ,q[i+T −1] and recover pI[i], . . . ,pI[i+T −1].

(4) Upper-right triangle:
In this step, the decoder recovers the non-urgent sub-
symbols in bI

i−1, . . . ,b
I
i−B using the parity checks

pI[i], . . . ,pI[i + T − 1]. Step (4) follows in a similar
way to step (2). The diagonal vectors bI

i−B , . . . ,b
I
i−1

spanning the upper-right triangle of the erased source
sub-symbols are affected by a burst erasure of length B
between times i − B, . . . , i − 1. Furthermore, the corre-
sponding parity checks {pI[t]}i≤t<i+T recovered earlier
are capable of recovering the erased source sub-symbols
in these diagonal vectors by at most time i+T − 1 < T .
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(5) Recover non-urgent sub-symbols recursively:
For each k ∈ {1, . . . , T −B− 1} recursively recover the
remaining non-urgent sub-symbols as follows:

(Ind. 1) Recover the non-urgent sub-symbols in
bI
i−B−k using the non-urgent sub-symbols in

{bII
j }j≤i+(k−1)(α−1)−B−1 and parity checks pI[·]

between i ≤ t < i+ T .
(Ind. 2) Recover the non-urgent sub-symbols in

bII
i−B+(k−1)(α−1), . . . ,b

II
i−B+k(α−1)−1 using

{bI
j}j≥i−B−(k−1) and the parity checks pII[·]

between i+ T ≤ t < T .

Once this recursion terminates, all the non-urgent sub-
symbols {sN [τ ]}i−1

τ=i−αB are recovered by time T − 1.
We establish the claim of the recursion using induction.
Consider the case when k = 1. According to Ind. 1
the non-urgent sub-symbols {bII

j }j≤i−B−1 are available
(from step 1). To recover bI

i−B−1, note that the only
erased sub-symbol in this vector before time i − B is
s0[i−B−1] which has already been recovered in bII

i−B−1.
Hence the parity checks of C1 at the times i, . . . , i+T−1
suffice to recover the remaining sub-symbols. According
to Ind. 2 the non-urgent sub-symbols in {bI

j}j≥i−B

have been recovered in step (4). Furthermore in vectors
bII
i−B , . . . ,b

II
i−B+α−2 the only erased sub-symbols after

time i−B−1 are s0[i−B], . . . , s0[i−B+α−2], which
are available from {bI

j}j≥i−B . Thus the parity checks
pII[·] can be used to recover the remaining non-urgent
sub-symbols in these vectors.
Next suppose the statement holds for some t = k. We
establish that the statement holds for t = k+1. In Ind. 1
the vector of interest is,

bI
i−B−(k+1) =(s0[i−B − (k + 1)], ..., sk[i−B − 1], ...,

sT−1[i−B − k + (T − 2)]).

The erased elements in the interval i−αB, . . . , i−B−1
are sj [i − B − k + j − 1] for j = 0, . . . , k. Note that
sj [i − B − k + j − 1] is precisely the j−th sub-symbol
in the diagonal vector bII

i−B−k+αj−1. Furthermore the
diagonals of interest bII

i−B−k−1, . . . ,b
II
i−B+(α−1)k−1, al-

ready visited in Ind. 2 in the k-th recursion. Hence the
remaining sub-symbols are recovered using the parity
checks of C1.
For Ind. 2, the first vector of interest at step k + 1 is

bII
i−B+k(α−1) = (s0[i−B + k(α− 1)], ...,

sk[i−B], sk+1[i−B − (α− 1)], ...).

Note that the sub-symbols s0[.], . . . , sk[.] above, also
belong to vectors bI

i−B+(α−1)k, . . . ,b
I
i−B−k, and are

recovered in Ind. 1 by the k−th step. Since the remaining
erased symbols span the interval [i−αB, i−B) the parity
checks {pII[·]}t≥i−B recovered in step (3) can be used
to recover these erased symbols.
Likewise, the last vector of interest at step k + 1 is

bII
i−B+(k+1)(α−1)−1 = (s0[i−B + (k + 1)(α− 1)− 1],

. . . , sk[i−B + (α− 1)− 1], sk+1[i−B − 1], ...).

Note that the sub-symbols s0[.], . . . , sk[.] above,
also belong to vectors bI

i−B+(k+1)(α−1)−1, . . .

bI
i−B+(α−1)−k−1 which are recovered in Ind. 1 by step

number k + 1 − (α − 1) < k + 1. Since the remaining
erased symbols span the interval [i − αB, i − B) the
parity checks {pII[·]}t≥i−B recovered in step (3) can be
used to recover these erased symbols.
It only remains to show that the non-urgent symbols
in the diagonal bII are all recovered before time T .
From Proposition. 1 all the non-urgent sub-symbols
are recovered using the first (α − 1)(T − B) columns
of the parity checks {pII[·]}t≥i−B . Since these parity
checks are shifted by T + B, the fall in the interval
i + T, . . . , i + T + (α − 1)(T − B) − 1 = T − 1. Thus
only the parity checks before time T are required to
recover the non-urgent source sub-symbols.

This completes the claim in the Ind. 1 and Ind. 2. We
finally show that all the non-urgent erased source sub-
symbols are recovered at k = T − B − 1. Because of
the recovery along the diagonals, it suffices to show that
the lower left most non-urgent sub-symbol in the region
i − B, . . . , i − 1 i.e., sT−B−1[i − B] is an element of
bI
i−B−k = bI

i−T+1 which is clear from the definition of
bI
i at i− T + 1 as,

bI
i−T+1 = (s0[i− T + 1], . . . , sT−B−1[i−B], . . . , sT−1[i]).

Similarly, we need to show that bII
i−B+k(α−1)−1 =

bII
i−B+(T−B−1)(α−1)−1 contains the lower right most

non-urgent sub-symbol in the region i−αB, . . . , i−B−1
i.e., sT−B−1[i−B−1]. This too immediately follows by
applying the definition of bII

i at time i−B + (T −B −
1)(α− 1)− 1 as,

bII
i−B+(T−B−1)(α−1)−1 = (s0[i−B + (T −B − 1)(α− 1)− 1],

. . . , sT−B−1[i−B − 1], . . . , sT−1[i− αB − 1]).

(6) Recover urgent sub-symbols:
Finally, the decoder recovers urgent sub-symbols
sU [τ ] = (sT−B [τ ], . . . , sT−1[τ ]) for i − αB ≤ τ < i at
time t = τ + T �

2 using the parity check symbols pII[t]
and the previously decoded non-urgent sub-symbols.
We establish this claim as follows. After recovering all
the non-urgent source sub-symbols {sN [τ ]}i−1

τ=i−αB , we
can directly apply the construction of C2 to recover the
urgent sub-symbols {sU [τ ]}i−1

τ=i−αB using parity checks
pII[·] within a delay of T �

2 .

Note on Computational Complexity: We note that a DE-
SCo encoder and decoder are of a polynomial complexity as
the DE-SCo constructions are built upon a linear convolutional
code with finite memory. Specifically, going through the
steps (1)-(4) of the DE-SCo decoder, we can conclude that
since every erased sub-symbol is processed at-most once, the
complexity of any step is no more than αBT . In step (5) we
use a recursive decoder that terminates in T+B−1 recursions.
Also each step has at-most αBT and thus the complexity is
polynomial in α, B and T .



10

VII. GENERAL VALUES OF α

In this section, we show that DE-SCo codes
{(B, T ), (αB,αT + B)} can be constructed for any
non-integer value of α such that B2 = αB is an integer. For
any α = B2

B > 1, let α = a
b where a and b are integers and

a
b is in the simplest form.

A. DE-SCo Construction

We introduce suitable modifications to the construction
given in the previous section. Clearly since a

b is in simplest
form B must be an integer multiple of b i.e., B0 = B

b ∈ N.
We first consider the case when T is also an integer multiple
of b i.e., T0 = T

b ∈ N. The case when T is not an integer
multiple, can be dealt with by a suitable source expansion, as
outlined at the end of the section.

• Let C1 be the single user (B, T ) = (bB0, bT0) SCo
obtained by splitting each source symbol s[i] into T0 sub-
symbols (s0[i], . . . , sT0−1[i]) and producing B0 parity
check sub-symbols pI = (pI0[i], . . . , p

I
B0−1[i]) at each

time by combining the source sub-symbols along the
main diagonal with an interleaving step of size b i.e.,

pIk[i]=Ak(s0[i− bT0− kb], . . . , sT0−1[i− b− kb]) (30)

• Let C2 be a ((α−1)B, (α−1)T ) = ((a−b)B0, (a−b)T0)
SCo also obtained by splitting the source symbols into T0

sub-symbols (s0[i], . . . , sT0−1[i]) and then constructing
a total of B0 parity checks pII = (pII0 [i], . . . , p

II
B0−1[i])

by combining the source sub-symbols along the opposite
diagonal and with an interleaving step of size � = (a−b)
i.e.,

pIIk [i] = Bk(s0[i−�−k�], . . . , sT0−1[i−�T0−k�]). (31)

• Introduce a shift Δ = T +B = b(T0+B0) in the stream
pII[·] and combine with the parity check stream pI[·] i.e.,
q[i] = pI[i] +pII[i−Δ]. The output symbol at time i is
x[i] = (s[i],q[i]).

B. Decoding

The decoding steps is analogous to the case when α is
integer. We sketch the main steps. As before the decoding
is done along the diagonal vectors bI

i =(s0[i], . . . , sT0−1[i +
(T0 − 1)b]), bII

i =(s0[i], . . . , sT0−1[i− (T0− 1)�]).
Decoding at User 1: For the first user, the same argument

applies as in previous section i.e., a shift of Δ = b(T0+B0) in
pII[·] guarantees that user 1 can cancel the interfering parity
checks to recover the pI[·] stream of interest.

Decoding at User 2: We verify that steps in section VI-E
continue to apply. A little examination shows that the
claims (1)—(4) as well as the proofs in the previous case
follow immediately as they hold for an arbitrary interleaving
step for C2 and do not rely on the interleaving step of C1 being
1. The induction step needs to be modified to reflect that the
interleaving step size of C1 is b > 1.

For each k ∈ {1, . . . , T − B − 1} recursively recover the
remaining non-urgent sub-symbols as follows:

• Ind. 1 Recover the non-urgent sub-symbols in
bI
i−B−(k−1)b−1, . . . ,b

I
i−B−kb using the non-urgent

sub-symbols in {bII
j }j≤i+(k−1)(a−b)−B−1 and parity

checks pI[·] between i ≤ t < i+ T .
• Ind. 2 Recover the non-urgent sub-symbols

in bII
i−B+(k−1)(a−b), . . . ,b

II
i−B+k(a−b)−1 using

{bI
j}j≥i−B−(k−1)b and the parity checks pII[·] between

i+ T ≤ t < T .
Once this recursion terminates, all the non-urgent sub-symbols
{sN [τ ]}i−1

τ=i−αB are recovered by time T − 1. The proof of
this recursion is also similar to the previous section and will
be omitted.

Finally the assumption that T is a multiple of b (i.e. αT is
an integer) can be relaxed through a source pseudo-expansion
approach as follows:

• Split each source symbol into nT sub-symbols
s0[i], . . . , snT−1[i] where n is the smallest integer such
that nαT is an integer.

• Construct an expanded source sequence s̃[.] such that
s̃[ni + r] = (srT [i], . . . , s(r+1)T−1[i]) where r ∈
{0, . . . , n− 1}.

• We apply a DESCo code with parameters {(nB, nT ) −
(nαB, n(αT +B))} to s̃[.] using the earlier construction.

Notice that since the channel introduces a total of Bi erasures
on the original input there will be nBi erasures on the
expanded stream. These will be decoded with a delay of nTi

on the expanded stream, which can be easily verified to incur
a delay of T1 and �T2	 on the original stream for user 1 and
2 respectively.

VIII. NUMERICAL RESULTS

To examine fundamental performance, we compare between
the proposed DE-SCo codes and sequential random linear
codes (RLC) numerically and discuss advantages and disad-
vantages of the proposed codes. The encoder for DE-SCo
codes is the one discussed in section VI-B. For RLC, at each
time step t a new source symbol s[t] over an alphabet S is
revealed to the transmitter and encoded into a channel symbol
x[t] through a random mapping ft(.) as follows,

x[t] = ft(s[0], . . . , s[t]), (32)

i.e., ft : St → X .
In our simulations, we do not construct an explicit function

ft(·) but instead assume that the decoder succeeds with
high probability whenever the instantaneous information debt
becomes non-positive. Intuitively, the information debt is a
running sum of the gap between information transmitted over
the channel and the information acquired by the receiver.
We refer the reader to [1, Chapter 9], [19] for details. Our
simulated decoder keeps track of the erasure pattern and
retrieves the current segment of source symbols as soon as
the information debt is non-positive. While every symbol in
this setup is ultimately decoded, any symbols that incur a delay
that exceeds the maximum delay, are declared to be lost.

In our simulations we divide the coded data stream into
segments of 2000 symbols each and generate one burst erasure
in each segment. Each symbol occupies one millisecond. The
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DESCo − (2) Users − (15,20) − (30,55)
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Fig. 6. Loss Probability at the first receiver.
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Fig. 7. Loss Probability at the second receiver.

burst erasure length is uniformly distributed between [0, Bmax]
symbols and a symbol is declared to be lost if it is not
recovered by its deadline. We plot the average loss probability
for a stream of 105 segments for both; (1) DE-SCo code with
burst-delay parameters {(B, T ), (αB,αT + B)} for α = 2
and (2) sequential RLC of the same rate for the two users in
Fig. 6 and Fig. 7 respectively as a function of the maximum
erasure burst length.

We make a few remarks on the numerical results. We see
that if the maximum size of erasure burst is less than a critical
threshold for each scheme then the loss probability is zero. For
the DES-Co construction this threshold equals Bi. For RLC at
rate R it can be easily verified that if the burst-length exceeds
�(1−R)T 	, the first symbol will not be decoded with a delay

of T .
Next we see that DE-SCo always outperforms RLC for user

1. This can be explained as follows. A rate R DE-SCo can
recover completely from an erasure burst of length B1 or
smaller for user 1. It fails to recover the erased symbols if the
burst length exceeds B1. The RLC only recovers completely
from an erasure burst of length �(1−R)Ti	. It provides partial
recovery for burst erasures up to length B1 and fails to recover
any source symbols when the erasure length exceeds B1. Thus
the performance of DE-SCo always dominates RLC for user
1 as illustrated in Fig. 6.

For user 2, the delay is given by T2 = B2

B1
T1 + B1. DE-

SCo can correct all erasures up to length B2 and fail to
recover any symbols if the erasure length is beyond B2. While
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threshold for perfect recovery for RLC is �(1−R)Ti	 ≤ B2,
interestingly it allows for partial recovery for burst lengths up
to β = B2+

B2
1

T1
. This threshold is obtained as follows. Suppose

an erasure of length β occurs at time t = 0, 1, . . . , β− 1. The
total information debt at this point is βR. If the information
debt becomes non-positive after ν subsequent non-erased
channel symbols then we must have that βR ≤ ν(1 − R).
Substituting R = T1

T1+B1
and ν = T2 = B2

B1
T1 + B1, which

is the maximum allowable delay for user 2, we recover the
desired threshold. Since β > B2, there is a range of erasure
burst lengths where the RLC code can recover a partial subset
of source sub-symbols whereas DE-SCo fails to recover any
source sub-symbols. This explains why DE-SCo does not
outperform random network coding in the high loss regime
for user 2.

IX. CONCLUSION

This paper constructs a new class of streaming erasure codes
that do not commit apriori to a given delay, but rather achieve a
delay based on the channel conditions. We model this setup as
a multicast problem to two receivers whose channels introduce
different erasure-burst lengths and require different delays.
The DE-SCo construction embeds new parity checks into the
single-user code, in a way such that we do not compromise
the single user performance of the stronger user while the
supporting the weaker receiver with an information theoreti-
cally optimum delay. We provide an explicit construction of
these codes as well as the associated decoding algorithm.
Numerical simulations suggest that these codes outperform
simple random linear coding techniques that do not exploit
the burst-erasure nature of the channel.

A number of interesting future directions remain to be
explored. The general problem of designing codes that are op-
timal for any feasible pair {(B1, T1), (B2, T2)} remains open.
We expect to report some recent progress along this lines in the
near future. While our construction can be naturally extended
to more than two users the optimality remains to be seen. Our
initial simulation results indicate that the performance gains of
the proposed code constructions are limited to burst-erasure
channels. Designing codes with similar properties for more
general channels remains an interesting future direction.
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