
1

Diversity Embedded Streaming Erasure Codes
(DE-SCo): Constructions and Optimality

Ahmed Badr, Ashish Khisti, Member IEEE, and Emin Martinian

Abstract—Streaming erasure codes encode a source stream to
guarantee that each source packet is recovered within a fixed
delay at the receiver over a burst-erasure channel. This paper
introduces diversity embedded streaming erasure codes (DE-SCo),
that provide a flexible tradeoff between the channel quality and
receiver delay. When the channel conditions are good, the source
stream is recovered with a low delay, whereas when the channel
conditions are poor the source stream is still recovered, albeit with
a larger delay. Information theoretic analysis of the underlying
burst-erasure broadcast channel reveals that DE-SCo achieve the
minimum possible delay for the weaker user, without sacrificing
the performance of the stronger user. Our constructions are
explicit, incur polynomial time encoding and decoding complexity
and outperform random linear codes over burst-erasure channels.

Index Terms—Low Delay, Streaming Erasure Correction
Codes, Burst Erasure Channel, Broadcast Channel, Network
Information Theory, Delay Constrained Coding, Application
Layer Error Correction

I. INTRODUCTION

Forward error correction codes designed for streaming
sources require that (a) the channel input stream be produced
sequentially from the source stream (b) the decoder sequen-
tially reconstructs the source stream as it observes the channel
output. In contrast, traditional error correction codes such as
maximum distance separable (MDS) codes map blocks of data
to a codeword and the decoder waits until the entire codeword
is received before the source data can be reproduced. Rateless
codes such as the digital fountain codes also do not form ideal
streaming codes. First they require that the entire source data
be available before the output stream is reproduced. Secondly
they provide no guarantees on the sequential reconstruction
of the source stream. Non-block codes such as convolutional
codes in conjunction with sequential decoding can be designed
for low delay applications [4]. However to our best knowledge,
these constructions need to be optimized through a numerical
search for finite constraint lengths. Low-delay codes with
feedback are recently studied in [5], [6] while compression
of streaming sources is studied in [7].

In [1, Chapter 8] a new class of codes, streaming erasure
codes (SCo) are proposed. The encoder observes a semi-
infinite source stream — one packet is revealed in each time
slot — and maps it to a coded output stream of rate R. The
channel is modelled as a burst-erasure channel. Starting at

Ahmed Badr and Ashish Khisti are with the University of Toronto, Toronto,
ON, Canada email: {akhisti, abadr}@comm.utoronto.ca. Emin Martinian is
with the Massachusetts Institute of Technology (MIT), Cambridge, MA,
02139, USA. Email: emin@alum.mit.edu. Financial support for this work is
provided in part by a Natural Science Engineering and Research Council
(NSERC) discovery research grant. Part of this paper will appear in IEEE-
GLOBECOM Conference, 2010, Miami, FL.

an arbitrary time, it introduces an erasure-burst of maximum
length B. The decoder is required to reconstruct each source
packet with a maximum delay T . A fundamental relationship
between R, B and T is established and SCo codes are
constructed that achieve this tradeoff. We emphasize that the
parity check symbols in these constructions involve a careful
combination of source symbols. In particular, random linear
combinations, popularly used in e.g., network coding, do not
attain the optimal performance.

The SCo framework however requires that the value of B
and T be known apriori. In practice this forces a conservative
design i.e., we design the code for the worst case B thereby
incurring a higher overhead (or a larger delay) even when the
channel is relatively good. Moreover there is often a flexibility
in the allowable delay. Techniques such as adaptive media
playback [8] have been designed to tune the play-out rate as a
function of the received buffer size to deal with a temporary
increase in delay. Hence it is not desirable to have to fix T
during the design stage either.

The streaming codes introduced in this work do not commit
apriori to a specific delay. Instead they realize a delay that
depends on the channel conditions. At an information theoretic
level, our setup extends the point-to-point link in [1] to
a multicast model — there is one source stream and two
receivers. The channel for each receiver introduces an erasure-
burst of length Bi and each receiver can tolerate a delay
of Ti. We investigate diversity embedded streaming erasure
codes (DE-SCo). These codes modify a single user SCo such
that the resulting code can support a second user, whose
channel introduces a larger erasure-burst, without sacrificing
the performance of the first user. Our construction embeds
new parity checks in an SCo code in a manner such that (a)
no interference is caused to the stronger (and low delay) user
and (b) the weaker user can use some of the parity checks of
the stronger user as side information to recover part of the
source symbols. DE-SCo constructions outperform baseline
schemes that simply concatenate the single user SCo for the
two users. An information theoretic converse establishes that
DE-SCo achieves the minimum possible delay for the weaker
receiver without sacrificing the performance of the stronger
user. Finally all our code constructions can be encoded and
decoded with a polynomial time complexity in T and B.

II. SYSTEM MODEL

The transmitter encodes a stream of source packets
{s[t]}t≥0 intended to be received at two receivers as shown in
Fig. 1. The channel packets {x[t]}t≥0 are produced causally
from the source stream, .

2

Encoder

Decoder

Decoder

Burst = B1

Burst = B2

s [t]

s [t]{y2[t]}t ≥ O

{y1[t]}t ≥ O

{x [t]}t ≥ O

x [t]= f i s [0] ,... , s [t]

{s [t]}t ≥O

s [t]

s [t]

{y1[t]}t ≥ O

{y2[t]}t ≥ Ox [t]= f i s [0] ,... , s [t]

{s [t]}t ≥O {x [t]}t ≥ O

Fig. 1: The source stream {s[i]} is causally mapped into an output
stream {x[i]}. Both the receivers observe these packets via their
channels. The channel introduces an erasure-burst of length Bi, and
each receiver tolerates a delay of Ti, for i = 1, 2.

x[t] = ft(s[0], . . . , s[t]) (1)

The channel of receiver i introduces an erasure-burst of length
Bi i.e., the channel output at receiver i at time t is given by

yi[t] =

{
? t ∈ [ji, ji +Bi − 1]
x[t] otherwise (2)

for i = 1, 2 and for some ji ≥ 0. Furthermore, user i
tolerates a delay of Ti, i.e., there exists a sequence of decoding
functions γ1t(.) and γ2t(.) such that

ŝi[t] = γit(y1[0], y1[1], . . . , y1[i+ Ti]), i = 1, 2, (3)

and Pr(si[t] 6= ŝi[t]) = 0, ∀t ≥ 0, .
The source stream is an i.i.d. process and for convenience

we assume that each symbol is an element of FTQ; each source
symbol is sampled from a distribution ps(·). The rate of the
multicast code is defined as ratio of the (marginal) entropy of
the source symbol to the (marginal) entropy of each channel
symbol i.e., R = H(s)/H(x). An optimal multicast streaming
erasure code (MU-SCo) achieves the maximum rate for a
given choice of (Bi, Ti). Of particular interest is the following
subclass.

Definition 1 (Diversity Embedded Streaming Erasure Codes
(DE-SCo)). Consider the multicast model in Fig. 1 where the
channels of the two receivers introduce an erasure burst of
lengths B1 and B2 respectively with B1 < B2. A DE-SCo
is a rate R = T1

T1+B1
MU-SCo construction that achieves a

delay T1 at receiver 1 and supports receiver 2 with delay T2.
An optimal DE-SCo minimizes the delay T2 at receiver 2 for
given values of B1, T1 and B2.

Our setup generalizes the point-to-point case in [1, Chapter
8] where single user SCo codes for parameters (B1, T1)
achieve the streaming capacity T1

T1+B1
. An optimal MU-SCo

construction, attains the maximum rate for fixed parameters
(Bi, Ti). An optimal DE-SCo fixes the rate to the capacity of
user 1, and supports user 2 with the minimum possible delay
T2. In this paper we focus on DE-SCo constructions. The more
general MU-SCo constructions will be treated in a subsequent
paper.

Note that our model only considers a single erasure burst
on each channel. As is the case with (single user) SCo,
our constructions correct multiple erasure-bursts separated
sufficiently apart. Also we only consider the erasure channel
model. It naturally arises when these codes are implemented in
application layer multimedia encoding. More general channel
models can be transformed into an erasure model by applying
an appropriate inner code [1, Chapter 7].

III. BACKGROUND: STREAMING CODES (SCO)

Streaming burst-erasure codes developed in [1] and [2] are
single user codes for the model in the previous section. They
correct an erasure burst of length B with a delay of T symbols
and achieve the largest possible rate

C =

{
T

T+B T ≥ B
0 otherwise.

(4)

A. Construction

The construction in [1] is described three steps.
1) Create (T, T −B) Burst Erasure Block Code (BEBC)

The construction begins with a systematic generator
matrix G for a (T, T − B) Burst Erasure Block Code
(BEBC) over a finite field FQ, without regard to de-
coding delay. The code must also correct ”end-around”
bursts. Recall that any (n′, k′) cyclic code corrects
burst erasures of length n′ − k′. Since the matrix G
is systematic we can express it in the form

G =
[T−B B

(T−B) I H
]

(5)
where I denotes the identity matrix whereas H is a (T−
B)×B matrix.

2) Create (B+T, T) Low-Delay Burst Erasure Block Code
(LD-BEBC)
The LD-BEBC code maps a vector of T information
symbols b ∈ FTQ to a systematic codeword c ∈ FT+B

Q as
follows. We first split b into two sub-vectors of lengths
B and T −B

b =
[B T−B

u n
]
, (6)

and the resulting codeword is1

c =
[
u n

]
·
[

IB×B 0B×(T−B) IB×B
0(T−B)×B I(T−B)×(T−B) H

]
(7)

=
[
u n u + n ·H

]
=

[
b r

]
(8)

where we have used (6) and introduced r = u + n ·H
to denote the parity check symbols in c in the last step.
The codeword c has the property that it is able to correct
any erasure burst of length B with a delay of at-most
T symbols. If we express b = (b0, . . . , bT−1) then, for
any erasure-burst of length B, b0 is recovered at time
T , b1 at time (T + 1) and bB−1 at time (T + B − 1).
The remaining symbols bB . . . , bT−1 are all recovered
at the end of the block.
The information symbols in vector u = (b0, . . . , bB−1)
are referred to as urgent symbols whereas the symbols in
vector n = (bB , . . . , bT−1) are referred to as non-urgent
symbols.

3) Diagonal Interleaving
The final step is to construct a streaming code (SCo)
from the LD-BEBC code in step 2. Recall that the
SCo specified a mapping between the symbols s[t] of

1All addition in this paper is defined over FQ or its extension field.

3

s0[i]

sT-1[i]

z-(T-1)

z-1
sT-2[i]

z(T-1)

z

z-1

z-B

Sy
st

em
at

ic
 B

lo
ck

 C
od

e

s0[i]

sT-2[i]

sT-1[i]

p0[i]

pB-1[i]

Fig. 2: Streaming Code (SCo) structure based on diagonal interleav-
ing. The z−λ and zλ elements denote delay or advance by λ.

the incoming source stream to the symbols x[t] of the
channel input stream. This mapping is of the form

s[t] =
[
s0[t], . . . , sT−1[t]

]† ∈ FTQ,

x[t] =
[
s0[t], . . . , sT−1[t], p0[t], . . . , pB−1[t]

]† ∈ FT+B
Q

(9)
i.e., we split each source symbol s[t] ∈ FTQ into T equal
sized sub-symbols over FQ and then append B parity
check sub-symbols over FQ. Thus we have that x[t] ∈
FT+B
Q . The parity check sub-symbols p0[t], . . . , pB−1[t]

constructed through a diagonal interleaving technique
described below.
An information vector bt in (6) is constructed by col-
lecting symbols along the diagonal of the sub-streams
i.e.,

bt = (s0[t], s1[t+ 1],. . . ,sT−1[t+ T − 1]). (10)

The corresponding codeword ct = (bt, rt) is then
constructed according to (7). The resulting parity check
sub-symbols in r[t] are then appended diagonally to the
source stream to produce the channel input stream i.e.,

(p0[t+T], . . . , pB−1[t+T+B−1]) = (r0[t], . . . , rB−1[t])
(11)

Notice that the operations in (9), (10) and (11) construct
a codeword diagonally across the incoming source sub-
streams as illustrated in Table. I. A diagonal codeword
is of the form

dt= (s0[t], . . . , sT−1[t+ T − 1], p0[t+ T], (12)
. . . ,pB−1[t+ T +B − 1]).

The SCo code is a time-invariant convolutional code [9].
The inputs to the convolutional code are source packets
s ∈ FTQ, while the outputs are channel packets x ∈
FT+B
Q . The relationship between the properties of the

LD-BEBC and the convolutional code obtained by the
diagonal interleaving structure is clarified in Fig. 2.

B. Decoding of SCo Codes

The structure of the diagonal codeword (12) is also impor-
tant in decoding. Suppose that symbols x[t], . . . , x[t+B − 1]

Source Stream
s[0],s[1],s[2],s[3]…

De-Mux

(B,T) SCo

(B,T) SCo

Output Stream

s[0], s[2], s[4]…

s[1], s[3], s[5]…

x[0], x[2], x[4]…

x[1], x[3], x[5]…

Mux
x[0], x[1],x[2],x[3]…

Fig. 3: A vertical interleaving approach to construct a (2B, 2T) SCo
code from a (B, T) SCo code.

are erased. It can be readily verified that there are no more than
B erasures in each diagonal codeword dt, . . . ,dt+B−1. Since
each codeword is a is a (T + B, T) LD-BEBC, it recovers
each erased symbol with a delay of no more than T symbols.
This in turn implies that all erased symbols are recovered.

C. Example: (2,3) SCo Code

Suppose we wish to construct a code capable of correcting
any packet burst erasure of length B = 2 with delay T = 3.
A LD-BEBC (7) for these parameters is

c = (b0, b1, b2, b0 + b2, b1 + b2). (13)

To construct the SCo code, we divide the source symbols into
T = 3 sub-symbols. The diagonal codeword (12) is of the
form

dt=(s0[t], s1[t+1], s2[t+2], s0[t]+s2[t+2], s1[t+1]+s2[t+2])
(14)

and the channel input x(t) is given by

x[t] =
[
s0[t], s1[t], s2[t], s0[t− 3] + s2[t− 1], s1[t− 3] + s2[t− 2]

]†
.

(15)
The resulting channel input stream is illustrated in Table. I.

Note that the rate of this code is 3/5 as it introduces two
parity check sub-symbols for each three source sub-symbols.
It can be easily verified that this code corrects a burst erasure
of length 2 with a worst-case time delay 3.

IV. SCO PROPERTIES

In this section we describe some additional properties of
SCo codes that will be useful in the DE-SCo construction.

A. Vertical Interleaving for (αB,αT) SCo

Suppose α ≥ 2 is an integer and we need to construct a
SCo code with parameters (αB,αT). The scheme described
in section III-A requires us to split each source symbol into
αT sub-symbols. However we can take advantage of the
multiplicity factor α and simply construct the (αB,αT) SCo
code from the (B, T) SCo code via vertical interleaving of
step α.

Fig. 3 illustrates this approach for constructing a (2B, 2T)
SCo from a (B, T) SCo. We split the incoming source
stream into two disjoint sub-streams; one consisting of source
symbols at even time slots and the other consisting of symbols
at odd time slots. We apply a (B, T) SCo on the first sub
stream to produce channel packets at even time slots. Likewise

4

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s2[i− 1] s2[i] s2[i+ 1] s2[i+ 2] s2[i+ 3] s2[i+ 4]

s0[i− 4] + s2[i− 2] s0[i− 3] + s2[i− 1] s0[i− 2] + s2[i] s0[i− 1] + s2[i+ 1] s0[i] + s2[i+ 2] s0[i+ 1] + s2[i+ 3]

s1[i− 4] + s2[i− 3] s1[i− 3] + s2[i− 2] s1[i− 2] + s2[i− 1] s1[i− 1] + s2[i] s1[i] + s2[i+ 1] s1[i+ 1] + s2[i+ 2]

TABLE I: (2,3) SCo Code Construction

we apply a (B, T) SCo on the second sub stream to produce
channel packets at odd time slots. Since a burst of length 2B
introduces B erasures on either sub streams each of the SCo,
each of the (B, T) code suffices to recover from these erasures.
Further each erased symbol is recovered with a delay of T
symbols on its individual sub stream, which corresponds to
an overall delay of 2T symbols.

More generally we split each source symbol into T sub-
symbols. The information vector bt is modified from (10) as

bt = (s0[t], s1[t+ α],. . . ,sT−1[t+ (T − 1)α]). (16)

The resulting codeword c[t] of the LD-BEBC is then mapped
to a diagonal codeword by introducing a step-size of α in (12)
i.e.,

dt = (s0[t], s1[t+ α], . . . , sT−1[t+ (T − 1)α],

p0[t+ Tα], . . . , pB−1[t+ (T +B − 1)α]). (17)

As in the case of α = 2, the decoding proceeds by splitting the
source stream into α sub-streams and applying the decoder for
(B, T) SCo on each of the sub-streams. This guarantees that
each symbol is recovered with a delay of αT on the original
stream.

B. Memory in Channel Input Stream {x[t]}
While the definition of SCo allows the channel input symbol

x[t] to depend on an arbitrary number of source symbols, the
construction limits the memory of symbol x[t] to previous T
symbols i.e.,

x[t] = f(s[t], s[t− 1], . . . , s[t− T]). (18)

Furthermore a closer look at the parity check symbols (9) of
x[t] reveals that the parity checks p0[t], . . . , pB−1[t] have the
form

pj [t] = sj [t−T]+hj(sB [t−j−T+B], . . . , sT−1[t−j−1]),

j = 0, . . . , B − 1, (19)

where hj(·) denotes a linear combination arising from the LD-
BEBC code (8) when applied along the main diagonal.

C. Urgent and Non-Urgent Sub-Symbols

In the construction of LD-BEBC codes we split the infor-
mation vector b into urgent and non-urgent symbols (6). The
mapping of source sub-symbols to information vector (10)
then implies that the sub-symbols s0, . . . , sB−1 are the ur-
gent symbols in the source stream whereas the sub-symbols

sB , . . . , sT−1 are non-urgent sub-symbols. We will denote
these by

sU [t] = (s0[t], . . . , sB−1[t]),

sN [t] = (sB [t], . . . , sT−1[t]). (20)

The urgent and non-urgent symbols are combined into a
parity check sub symbol as illustrated in (19). The following
observation is useful in the construction of DE-SCo.

Proposition 1. Suppose that the sequence of channel symbols
x[i−B], . . . , x[i−1] are erased by the burst-erasure channel.
Then

1) All sub-symbols in sN [i−B], . . . , sN [i−1] are obtained
from the parity checks p[i], . . . ,p[i+ T −B − 1].

2) The sub-symbols in sU [j] for i − B ≤ j < i are
recovered at time j + T from parity check p[j + T]
and the previously recovered non-urgent sub-symbols.

The proof follows via (19) and will be omitted due to space
constraints.

D. Off-Diagonal Interleaving

The constructions in section III-A involve interleaving along
the main diagonal of the source stream (c.f. (12),(10)). An
analogous construction of the (B, T) code along the off
diagonal results in

b̄t = (s0[t], s1[t− 1], . . . , sT−1[t− (T − 1)]) (21)
d̄t = (sT−1[t− (T − 1), . . . , s1[t− 1], s0[t], p̄0[t+ 1],

. . . , p̄B−1[t+B]]) (22)

and the parity checks p̄j are given by

p̄j [t] = sT−j−1[t− T]

+ hj(sT−B−1[t− j − T +B], . . . , s0[t− j − 1]), j = 0, . . . , B − 1,
(23)

when applied along the opposite diagonal. Finally off-diagonal
interleaving also satisfies Prop. 1 provided with appropriate
modifications in the definitions of urgent and non-urgent
symbols

s̄U [t] = (sT−1[t], . . . , sT−B [t]),

s̄N [t] = (sT−B−1[t], . . . , s0[t]). (24)

5

(a) SCo Construction for (B, T) = (1, 2)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 3] + s1[i− 2] s0[i− 2] + s1[i− 1] s0[i− 1] + s1[i] s0[i] + s1[i+ 1] s0[i+ 1] + s1[i+ 2] s0[i+ 2] + s1[i+ 3]

(b) SCo Construction for (B, T) = (2, 4)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 5] + s1[i− 3] s0[i− 4] + s1[i− 2] s0[i− 3] + s1[i− 1] s0[i− 2] + s1[i] s0[i− 1] + s1[i+ 1] s0[i] + s1[i+ 2]

TABLE II: Single user SCo constructions are shown in the upper two figures. Note that the (1, 2) SCo code recovers a single erasure with
a delay T = 2 but cannot recover from B = 2. The (2, 4) SCo code recovers from B = 2 with a delay of T = 4 but does not incur a
smaller delay when B = 1.

V. EXAMPLE

We first highlight our results via a numerical example:
(B1, T1) = (1, 2) and (B2, T2) = (2, 4). Single user SCo
constructions from [1], [2] for both users are illustrated in Ta-
ble II(a) and II(b) respectively. In each case, the source symbol
s[i] is split into two sub-symbols (s0[i], s1[i]) and the channel
symbol x[i] is obtained by concatenating the source symbol s[i]
with a parity check symbol p[i]. In the (1, 2) SCo construction,
parity check symbol pI[i] = s1[i− 1] + s0[i− 2] is generated
by combining the source sub-symbols diagonally across the
source stream as illustrated with the rectangular boxes. For
the (B, T) = (2, 4), the choice pII[i] = s1[i − 2] + s0[i − 4]
is similar, except that an interleaving of step of size 2 is
applied before the parity checks are produced. Note that both
these codes are single user codes and do not adapt to channel
conditions.

In Table III(a) we illustrate a construction that achieves a
rate 2/3 and (B1, T1) = (1, 2) and still enables user 2 to
recover the entire stream with a delay of T2 = 6. It is obtained
by shifting the parity checks of the SCo code in Table II(b) to
the right by two symbols and combining with the parity checks
of the SCo code in Table II(a) i.e., q[i] = pI[i] + pII[i − 2].
Note that parity check symbols pII[·] do not interfere with
the parity checks of user 1 i.e., when s[i] is erased, receiver
1 can recover pI[i + 1] and pI[i + 2] from q[i + 1] and
q[i+2] respectively by canceling pII[·] that combine with these
symbols. It then recovers s[i]. Likewise if s[i] and s[i − 1]
are erased, then receiver 2 recovers pII[i + 1], . . . , pII[i + 4]
from q[i + 3], . . . , q[i + 6] respectively by canceling out the
interfering pI[·], thus yielding T2 = 6.

The interference avoidance strategy illustrated above is sub-
optimal. Table. III(b) shows the DE-SCo construction that
achieves the minimum possible delay of T2 = 5. In this
construction we first construct the parity checks p̌II[i] =
s1[i−2]+s0[i−1] by combining the source symbols along the
opposite diagonal of the (1, 2) SCo code in Table II(a). Note
that x(i) = (s[i], p̌II[i]) is also a single user (1, 2) SCo code.
We then shift the parity check stream to the right by T+B = 3
symbols and combine with pI[i] i.e., q[i] = pI[i]+ p̌II[i−3]. In
the resulting code, receiver 1 is still able to cancel the effect
of p̌II[·] as before and achieve T1 = 2. Furthermore at receiver
2 if s[i] and s[i − 1] are erased, then observe that receiver 2

αB

B

 T+B < T2 < αT+B

T

Fig. 4: One period illustration of the Periodic Erasure Channel for
T + B < T2 ≤ αT + B. Black and white circles resemble erased
and unerased symbols respectively.

αB

B

T2 ≤ T + B

T

Fig. 5: One period illustration of the Periodic Erasure Channel for
T2 < T +B. Black and white circles resemble erased and unerased
symbols respectively.

obtains s0[i] and s0[i−1] from q[i+2] and q[i+3] respectively
and s1[i− 1] and s1[i] from q[i+ 4] and q[i+ 5] respectively,
thus yielding T2 = 5 symbols.

In the remainder of the paper we generalize this example
to arbitrary values of (Bi, Ti).

VI. CONSTRUCTION OF DE-SCO

In this section we describe the DE-SCo construction. We
rely on several properties of the single user SCo explained in
section III.

Theorem 1. Let (B1, T1) = (B, T) and suppose B2 = αB
where α is any integer that exceeds 1. The minimum possible
delay for any code of rate R = T

T+B is

T ?2 = αT +B, (25)

and is achieved by the optimal DE-SCo construction.

A. Converse

We first establish converse to theorem 1. Consider any code
that achieves {(B, T), (B2, T2)} with T2 < T ?2 . The rate of
this code is strictly below R = T

T+B .

6

(a) IA-SCo Code Construction for (B1, T1) = (1, 2) and (B2, T2) = (2, 6)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]
s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 3] + s1[i− 2] s0[i− 2] + s1[i− 1] s0[i− 1] + s1[i] s0[i] + s1[i+ 1] s0[i+ 1] + s1[i+ 2] s0[i+ 2] + s1[i+ 3]
+ + + + + +

s0[i− 7] + s1[i− 5] s0[i− 6] + s1[i− 4] s0[i− 5] + s1[i− 3] s0[i− 4] + s1[i− 2] s0[i− 3] + s1[i− 1] s0[i− 2] + s1[i]

(b) DE-SCo Code Construction for (B1, T1) = (1, 2) and (B2, T2) = (2, 5)

s0[i− 1] s0[i] s0[i+ 1] s0[i+ 2] s0[i+ 3] s0[i+ 4]

s1[i− 1] s1[i] s1[i+ 1] s1[i+ 2] s1[i+ 3] s1[i+ 4]

s0[i− 3] + s1[i− 2] s0[i− 2] + s1[i− 1] s0[i− 1] + s1[i] s0[i] + s1[i+ 1] s0[i+ 1] + s1[i+ 2] s0[i+ 2] + s1[i+ 3]

+ + + + + +

s1[i− 6] + s0[i− 5] s1[i− 5] + s0[i− 4] s1[i− 4] + s0[i− 3] s1[i− 3] + s0[i− 2] s1[i− 2] + s0[i− 1] s1[i− 1] + s0[i]

TABLE III: Rate 2/3 code constructions that satisfy user 1 with (B1, T1) = (1, 2) and user 2 with B2 = 2.

To establish this we separately consider the case when T +
B ≤ T2 < T + αB and the case when T2 ≤ T + B. Let us
assume the first case.

As shown in Fig. 4, construct a periodic burst-erasure
channel in which every period of (α − 1)B + T2 symbols
consists of a sequence of αB erasures followed by a sequence
of non-erased symbols. Consider one period of the proposed
periodic erasure channel with a burst erasure of length αB
from time t = 0, 1, . . . , αB − 1 followed by a period of non-
erasures for t = αB, . . . , TP = (α − 1)B + T2 − 1. For
time t = 0, . . . , TP the channel behaves identically to a burst-
erasure channel with αB erasures. The first (α−1)B erasures
at time t = 0, 1, . . . , (α − 1)B − 1 can be recovered using
decoder of user 2 with a delay of T2 i.e., by time TP and
hence the channel packets x[0], . . . , x[(α− 1)B − 1] can also
be recovered via (1).

It remains to show that the symbols at time t = (α −
1)B, . . . , αB − 1 are also recovered by time TP . Note that
since the channel symbols x[0], . . . , x[(α − 1)B − 1] have
been recovered, the resulting channel between times t =
0, . . . , αB − 1 is identical to a burst erasure channel with
B erasures between time t = (α − 1)B, . . . , αB − 1. The
decoder of user 1 applied to this channel recovers the source
symbols by time αB − 1 + T ≤ TP , which follows since
T2 ≥ T +B. Thus all the erased channel symbols in the first
period are recovered by time TP . Since the channel introduces
periodic bursts, the same argument can be repeated across all
periods. Since the length of each period is (α− 1)B+T2 and
contains of αB erasures,thus the capacity is upper bounded
by R = 1− αB

(α−1)B+T2
which is less than R if T2 < T ?2 and

the converse follows.

For the other case with T2 ≤ T + B shown in Fig. 5,
the same argument applies except that the decoder of user 2
recovers the (α−1)B erasures at time t = 0, 1, . . . , (α−1)B−
1 by time TP ≤ αB+T −1. Furthermore, the decoder of user
1 recovers the B erasures at time t = (α−1)B, . . . , αB−1 by
time αB+T−1. Now, the length of each period is αB+T−1
with T available symbols, the rate is T

T+αB strictly smaller
than R as α > 1.

B. Code Construction

For achievability, T ?2 in (25) we construct the following
code:
• Let C1 be the single user (B, T) SCo obtained by

splitting each source symbol s[i] into T sub-symbols
(s0[i], . . . , sT−1[i]) and producing B parity check sub-
symbols pI = (pI

0[i], . . . , pI
B−1[i]) at each time by com-

bining the source sub-symbols along the main diagonal
c.f. (19).

• Let C2 be a ((α − 1)B1, (α − 1)T1) SCo also obtained
by splitting the source symbols into T sub-symbols
(s0[i], . . . , sT−1[i]) and then constructing a total of B
parity checks pII[i] = (pII

0 [i], . . . , pII
B−1[i]) by combining

the source sub-symbols along the opposite diagonal and
with an interleaving step of size ` = (α− 1) i.e.,

pII
k [i] = Bk(s0[i− `− k`], . . . , sT−1[i− `T − k`]). (26)

• Introduce a shift ∆ = T + B in the stream pII[·] and
combine with the parity check stream pI[·] i.e., q[i] =
pI[i] +pII[i−∆]. The output symbol at time i is x[i] =
(s[i],q[i])

Since there are B parity check sub-symbols for every T
source sub-symbols it follows that the rate of the code is T

T+B .

C. Example

Fig. 6 illustrates the DE-SCo {(4, 7), (8, 18)} construction.
Each column represents one time-index between [−8, 17]
shown in the top row of the table. We assume that a burst-
erasure occurs between time [−8,−1] and only show the
relevant symbols and parity-checks. Each source symbol is
split into seven sub-symbols, each occupying one row. Each
source sub-symbol has two labels - one number and one letter.
The letter represents the main diagonal that passes through
the sub-symbol e.g., sub-symbols in bI

−1 are marked a. The
number represents the off-diagonal that passes through the sub-
symbols e.g., sub-symbols in bII

−1 are marked 8. The next four
rows denote the parity check sub-symbols. The parity checks
for C1, generated by diagonal bI

i, (c.f. (19)) are marked by the
same letter. The four top rows, in lighter font, show the parity
checks generated by the diagonal bII

i for C2 (c.f. (26)), shifted

7

by T +B = 11 slots. These parity checks are combined with
the corresponding parity checks of C1 as shown in Fig. 6. For
example the cell marked (c1) at time t = 4 indicates that this
sub-symbol of q[4] results by adding the parity check of C1,
marked c, with the parity check of C2, marked 1, at t = 4.

We illustrate the decoding steps as follows.

Step (1): Recovery of {pII[t−∆]}t≥T :
By construction of C1 all the parity checks pI[t] for
t ≥ 7 do not involve the erased symbols. In particular
the parity checks marked by a, b and c at t ≥ 7 do
not involve source sub-symbols before t = 0 and hence
these can be canceled to recover parity checks marked
by 1, 2, 3. The remaining parity checks pII[t − 11] for
t ≥ 7 can also be obtained in a similar manner.

Step (2): Upper-left triangle:
The parity checks in step (1) enable us to recover the non-
urgent erased sub-symbols in bII

−8, . . . ,b
II
−5 by t = 9.

See Fig. 6-Step (2). The proof (which will be established
for the general case) exploits the fact that the non-urgent
symbols in these diagonals all begin before time t = −4
and that in each diagonal codeword of a streaming code,
the non-urgent symbols are recovered before the urgent
symbols.

Step (3): Recovery of pI[t] for 0 ≤ t ≤ T − 1:
The sub-symbols recovered in step (2) suffice to recover
all parity checks pI[t] for 0 ≤ t ≤ 6. Note that
the relevant interfering parity checks from pII[·] in this
interval are marked by 1, 2 and 3 as illustrated in the
shaded area in Fig. 6-Step (3). Since all the corresponding
source sub-symbols have been recovered, these parity
checks can be canceled.

Step (4): Upper-right triangle:
Since the diagonals bI

−1, . . . ,b
I
−4 involve four or fewer

erasures we can now recover these sub-symbols using
parity checks recovered in the previous step.

Step (5): Recovery of non-urgent sub-symbols recursively:
The remaining non-urgent sub-symbols need to be
recovered in a recursive manner. Note that bI

−5, marked
by e, has five erased symbols. However the first symbol
marked by (4e) also belongs to bII

−5 and has already
been recovered. The remaining four sub-symbols can be
recovered by the four available parity checks of pI[·]
marked by e. Similarly bII

−4, marked by 5, also has
five erasures, but the first symbol (5d) also belongs
to bI

−4 and has been recovered. Hence the remaining
parity checks can be recovered using the parity checks
of pII[·]. Of these, by construction of C2, the non-urgent
symbols will be recovered by time t = 9. The decoder
then recovers bI

−6 and bII
−3 in the next step to recover

all non-urgent sub-symbols.

Step (6): Recovery of urgent sub-symbols:
After recovering all non-urgent sub-symbols in the pre-
vious steps, we can directly recover the urgent ones
(i.e., the bottom for rows) using parity checks pII [t] for

9 < t ≤ 17.

D. Decoding at User 1

Suppose that the symbols at time i−B, . . . , i−1 are erased
by the channel of user 1. User 1 first recovers parity checks
pI[i], . . . ,pI[i+T−1] from q[i], . . . ,q[i+T−1] by canceling
the parity checks pII[·] that combine with pI[·] in this period.
Indeed at time i+T −1 the interfering parity check is pII[i+
T −∆ − 1] = pII[i − B − 1], which clearly depends on the
(non-erased) source symbols before time i − B. All parity
checks pII[·] before this time are also non-interfering. The
erased source symbols can be recovered from pI[i], . . . ,pI[i+
T − 1] by virtue of code C1.

E. Decoding at User 2

Suppose that the symbols at times i − 1, . . . , i − αB are
erased for receiver 2. The decoding involves two main steps:
recovery of non-urgent symbols followed by recovery of
urgent symbols.

Step 1 Recover Non-Urgent Symbols: Let T ∆
= i−αB+ T ?2 .

Use parity checks at time i ≤ t ≤ T − 1 to recover
{sN [τ]}i−1

τ=i−αB where sN [τ] = (s0[τ], . . . , sT−B−1[τ])
denote the set of non-urgent sub-symbols for C2.

Step 2 Recover Urgent Symbols: Recover symbols sU [τ] =
(sT−B [τ], . . . , sT−1[τ]) for i − αB ≤ τ < i at time
t = τ + T ?2 using the parity check symbols pII[t] and
the previously decoded non-urgent symbols. The sub-
symbols sU [·] are the urgent sub-symbols of C2

We now establish step 1 below. Our decoding steps will
exploit diagonal codewords bI

i=(s0[i], . . . , sT−1[i+ T − 1]),
bII
i =(s0[i], . . . , sT−1[i− (T− 1)]̀) that are embedded in the

source stream as described earlier.

Lemma 1. The decoder for user 2 recovers the non-urgent
symbols sN [·] in the following order

1) For t ≥ i+T , recover parity check pII[t−∆] from q[t]
by canceling the parity checks pI[t] which depend only
on (non-erased) source symbols at time i or later.

2) Recover the non-urgent symbols in bII
i−αB , . . . ,b

II
i−B−1

using the parity check symbols {pII[t−∆]}T −1
t=i+T ;

3) Recover the parity checks pI[i], . . . ,pI[i+ T − 1] from
q[i], . . . ,q[i+ T − 1].

4) Recover the non-urgent symbols in bI
i−1, . . . ,b

I
i−B us-

ing the parity checks pI[i], . . . ,pI[i+ T − 1].
5) For each k ∈ {1, . . . , T − B − 1} recursively recover

the remaining non-urgent symbols as follows:
(Ind. 1) Recover the non-urgent sub-symbols in

bI
i−B−k using the non-urgent sub-symbols in
{bII

j }j≤i+(k−1)(α−1)−B−1 and parity checks pI[·]
between i ≤ t < i+ T .

(Ind. 2) Recover the non-urgent sub-symbols in
bII
i−B+(k−1)(α−1), . . . ,b

II
i−B+k(α−1)−1 using

{bI
j}j≥i−B−(k−1) and the parity checks pII[·]

between i+ T ≤ t < T .
Once this recursion terminates, all the non-urgent sub-
symbols {sN [τ]}i−1

τ=i−αB are recovered by time T − 1.

8

{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14

t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13 14
h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13
i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12
j i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7
{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11

Step (1) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13 14
h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13
i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12
j i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7

{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11

Step (2) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13 14
h g f e d c1 b2 3 4 5 6 7 8 9 10 11 12 13
i h g f e d c1 2 3 4 5 6 7 8 9 10 11 12
j i h g f e d 1 2 3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7

{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11

Step (3) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13 14
h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13
i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12
j i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7

{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11

Step (4) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c b a 4 5 6 7 8 9 10 11 12 13 14
h g f e d c b a3 4 5 6 7 8 9 10 11 12 13
i h g f e d c b2 a3 4 5 6 7 8 9 10 11 12
j i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7

{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11

Step (5) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13 14
h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13
i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12
j i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7

{(4,7),(8,18)}

Page 1

1 2 3 4 5 6 7 8 9 10 11

Step (6) 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1h 2g 3f 4e 5d 6c 7b 8a 9 10 11 12 13 14
2i 3h 4g 5f 6e 7d 8c 9b 10a 11 12 13 14
3j 4i 5h 6g 7f 8e 9d 10c 11b 12a 13 14
4 5j 6i 7h 8g 9f 10e 11d 12c 13b 14a
5 6 7j 8i 9h 10g 11f 12e 13d 14c b a
6 7 8 9j 10i 11h 12g 13f 14e d c b a
7 8 9 10 11j 12i 13h 14g f e d c b a

g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13 14
h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12 13
i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11 12
j i h g f e d c1 b2 a3 4 5 6 7 8 9 10 11

B = 4 T = 7

So
ur

ce

Su
b-

sy
m

bo
ls

Pa
rit

y
C

he
ck

Su

b-
sy

m
bo

ls

(α - 1)B = 4 (α – 1)T = 7

Fig. 6: Decoding for DE-SCo {(4, 7), (8, 18)}.

To show claim (1), note that via (19) the memory in channel
input stream is limited to previous T symbols. Consequently
the parity check symbols {pI[t]}t≥i+T depend only on source
symbols after time i. Hence these parity checks can be
canceled and the claim follows.

To show claim (2) consider the set of diagonal vectors
bII
i−αB , . . . ,b

II
i−B−1 spanning the upper left triangle. Clearly

these vectors are affected only by erasures between times
i − αB, . . . , i − B − 1. Furthermore, the corresponding par-
ity checks {pII[t − ∆]}t≥i+T ≡ {pII[t]}t≥i−B have been
recovered. Therefore, code C2 is capable of recovering the
erased source sub-symbols in the stated diagonal vectors. By

Proposition. 1 the non-urgent symbols are recovered from the
first (α − 1)(T − B) parity check columns which ends at
i+ T + (α− 1)(T −B)− 1 = T − 1 and the claim follows.

To establish claim (3), consider the column at time t =
i+T −1. The interfering parity check column pII[i+T −1−
∆] = pII[i− B − 1] only consists of source symbols at time
i−B− 1 or before. More specifically we have from (26) that
for k = 0, 1, . . . , B − 1,

pII
k [i−B − 1] = Bk(s0[i−B − (α− 1)(k + 1)− 1],

. . . , sT−1[i−B − (α− 1)(k + T)− 1])

= Bk(bII
i−B−(α−1)(k+1)−1),

9

which clearly is a function of the information vector bII
t before

time i − B − 1. Furthermore applying (23) and taking into
consideration the interleaving step of (α− 1),

pIIk [i−B − 1] = sT−k−1[i−B − 1− (α− 1)T]

+hk(sT−B−1[i−B − 1− j − (α− 1)(T −B)],

. . . , s0[i−B − 1− j − (α− 1)]).

Thus the only urgent symbols involved are at i − B − 1 −
(α − 1)T . Since these are unerased and since the non-urgent
symbols in bII

i−B−(α−1)(k+1)−1have been already recovered
by claim (2), it follows that we can reconstruct pII[i−B−1]. A
similar argument can be used to show that we can recover the
all columns pII[i−B−T], . . . ,pII[i−B−1], cancel their effect
on q[i], . . . ,q[i+ T − 1] and recover pI[i], . . . ,pI[i+ T − 1].

Claim (4) follows in a similar way to claim (2). The diagonal
vectors bI

i−B , . . . ,b
I
i−1 spanning the upper-right triangle of

the erased source sub-symbols are affected by a burst erasure
of length B between times i−B, . . . , i− 1. Furthermore, the
corresponding parity checks {pI[t]}i≤t<i+T recovered earlier
are capable of recovering the erased source sub-symbols in
these diagonal vectors by at most time i+T − 1 < T and the
claim follows.

Finally we consider the recursion in the last part of
Lemma 1. Consider the case when k = 1. According to Ind. 1
the non-urgent symbols {bII

j }j≤i−B−1 are available (from step
1). To recover bI

i−B−1, note that the only erased symbol in
this vector before time i−B is s0[i−B−1] which has already
been recovered in bII

i−B−1. Hence the parity checks of C1 at
the times i, . . . , i + T − 1 suffice to recover the remaining
symbols. According to Ind. 2 the non-urgent sub-symbols in
{bI

j}j≥i−B have been recovered in claim (4). Furthermore in
vectors bII

i−B , . . . ,b
II
i−B+α−2 the only erased symbols after

time i − B − 1 are s0[i − B], . . . , s0[i − B + α − 2], which
are available from {bI

j}j≥i−B . Thus the parity checks pII[·]
can be used to recover the remaining non-urgent sub-symbols
in these vectors.

Next suppose the statement holds for some t = k. We
establish that the statement holds for t = k + 1. In Ind. 1
the vector of interest is,

bI
i−B−(k+1) = (s0[i−B − (k + 1)],

..., sk[i−B − 1], ..., sT−1[i−B − k + (T − 2)]).

The erased elements in the interval i−αB, . . . , i−B− 1 are
sj [i−B−k+j−1] (for j = 0, . . . , k) which are also elements
of bII

i−B−k+αj−1 (i.e., bII
i−B−k−1, . . . ,b

II
i−B+(α−1)k−1), al-

ready recovered in Ind. 2 in the kth recursion. Hence the
remaining symbols are recovered using the parity checks of
C1. The first vector of interest in Ind. 2 is

bII
i−B+k(α−1) = (s0[i−B + k(α− 1)],

..., sk[i−B], sk+1[i−B − (α− 1)], ...),

and its erased elements that belong to the interval i −
B, . . . , i − 1 are sj [i − B + (k − j)(α − 1)] (for j =
0, . . . , k) are also elements of the vectors bI

i−B+(k−j)(α−1)−j
(i.e.,bI

i−B−k, . . . ,b
I
i−B+(α−1)k). These are recovered in Ind. 1

by the kth step. Likewise, the latest vector of interest,

bII
i−B+(k+1)(α−1)−1 = (s0[i−B + (k + 1)(α− 1)− 1],

..., sk[i−B + (α− 1)− 1], sk+1[i−B − 1], ...),

has the erased elements in the interval i − B, . . . , i −
1 are sj [i − B + (k − j + 1)(α − 1) − 1] (for
j = 0, . . . , k) belonging to vectors bI

i−B+(k−j+1)(α−1)−j−1

(i.e.,bI
i−B+(α−1)−k−1, . . . ,b

I
i−B+(k+1)(α−1)−1). These are

recovered in Ind. 1 in step number k + 1− (α− 1) < k + 1.
Hence the remaining symbols in these diagonals can be
recovered using the parity checks of C2 and furthermore the
non-urgent symbols of interest are recovered by time T − 1.
This completes the claim of the recursion.

It finally remains to show that all the non-urgent symbols are
recovered at k = T −B− 1, it suffices to show that the lower
left most non-urgent sub-symbol in the region i−B, . . . , i−1
i.e., sT−B−1[i−B] is an element of bI

i−B−k = bI
i−T+1 which

is clear when applying the definition of bI
i at i− T + 1 as,

bI
i−T+1 = (s0[i− T + 1], . . . , sT−B−1[i−B], . . . , sT−1[i]).

Similarly, we need to show that bII
i−B+k(α−1)−1 =

bII
i−B+(T−B−1)(α−1)−1 contains the lower right most non-

urgent sub-symbol in the region i − αB, . . . , i − B − 1 i.e.,
sT−B−1[i−B − 1]. By applying the definition of bII

i at time
i−B + (T −B − 1)(α− 1)− 1 as,

bII
i−B+(T−B−1)(α−1)−1 = (s0[i−B + (T −B − 1)(α− 1)− 1],

. . . , sT−B−1[i−B − 1], . . . , sT−1[i− αB − 1]).

Furthermore, we use Proposition. 1 to show that these non-
urgent sub-symbols are recovered using the first (α−1)(T−B)
columns of code C2 parity checks which falls in the time range
i+T, . . . , i+T + (α− 1)(T −B)− 1 = T − 1 and the claim
in Step 2 follows.

The urgent symbols in step 2 is obtained as follows.
After recovering all the non-urgent source sub-symbols
{sN [τ]}i−1

τ=i−αB i we can directly apply the construction of
C2 to recover the urgent symbols {sU [τ]}i−1

τ=i−αB using parity
checks pII[·] within a delay of T ?.

VII. GENERAL VALUES OF α

In this section, we show that DE-SCo codes
{(B, T), (αB,αT + B)} can be constructed for any
non-integer value of α such that B2 = αB is an integer. For
any α = B2

B > 1, let α = a
b where a and b are integers and

a
b is in the simplest form.

A. DE-SCo Construction

We introduce suitable modifications to the construction
given in the previous section. Clearly since a

b is in simplest
form B must be an integer multiple of b i.e., B0 = B

b ∈ N.
We first consider the case when T is also an integer multiple
of b i.e., T0 = T

b ∈ N. The case when T is not an integer
multiple, can be dealt with by a suitable source expansion, as
outlined at the end of the section.
• Let C1 be the single user (B, T) = (bB0, bT0) SCo

obtained by splitting each source symbol s[i] into T0 sub-
symbols (s0[i], . . . , sT0−1[i]) and producing B0 parity

10

check sub-symbols pI = (pI
0[i], . . . , pI

B0−1[i]) at each
time by combining the source sub-symbols along the
main diagonal with an interleaving step of size b i.e.,

pI
k[i]=Ak(s0[i− bT0− kb], . . . , sT0−1[i− b− kb]) (27)

• Let C2 be a ((α − 1)B1, (α − 1)T1) = ((a −
b)B0, (a − b)T0) SCo also obtained by splitting the
source symbols into T0 sub-symbols (s0[i], . . . , sT0−1[i])
and then constructing a total of B0 parity checks
pII = (pII

0 [i], . . . , pII
B0−1[i]) by combining the source

sub-symbols along the opposite diagonal and with an
interleaving step of size `n = (a− b) i.e.,

pII
k [i] = Bk(s0[i− `n−k`n], . . . , sT0−1[i− `nT0−k`n]).

(28)
• Introduce a shift ∆ = T +B = b(T0 +B0) in the stream
pII[·] and combine with the parity check stream pI[·] i.e.,
q[i] = pI[i] +pII[i−∆]. The output symbol at time i is
x[i] = (s[i],q[i])

B. Decoding

The decoding follows steps analogous to the case when α
is integer. We sketch the main steps. As before the decoding
is done along the diagonal vectors bI

i = (s0[i], . . . , sT0−1[i +
(T0 − 1)b]), bII

i =(s0[i], . . . , sT0−1[i− (T0− 1)`n]).
Decoding at User 1: For the first user, the same argument

applies as in previous section i.e., a shift of ∆ = b(T0+B0) in
pII[·] guarantees that user 1 can cancel the interfering parity
checks to recover the pI[·] stream of interest.

Decoding at User 2: We verify that steps in section VI-E
continue to apply. A little examination shows that the
claims (1)—(4) as well as the proofs in the previous case
follow immediately as they hold for an arbitrary interleaving
step for C2 and do not rely on the interleaving step of C1 being
1. The induction step needs to be modified to reflect that the
interleaving step size of C1 is b > 1.

For each k ∈ {1, . . . , T − B − 1} recursively recover the
remaining non-urgent symbols as follows:
• Ind. 1 Recover the non-urgent sub-symbols in

bI
i−B−(k−1)b−1, . . . ,b

I
i−B−kb using the non-urgent

sub-symbols in {bII
j }j≤i+(k−1)(a−b)−B−1 and parity

checks pI[·] between i ≤ t < i+ T .
• Ind. 2 Recover the non-urgent sub-symbols

in bII
i−B+(k−1)(a−b), . . . ,b

II
i−B+k(a−b)−1 using

{bI
j}j≥i−B−(k−1)b and the parity checks pII[·] between

i+ T ≤ t < T .
Once this recursion terminates, all the non-urgent sub-symbols
{sN [τ]}i−1

τ=i−αB are recovered by time T − 1. The proof of
this recursion is also similar to the previous section and will
be omitted.

Finally the assumption that T1 is a multiple of b (i.e. αT1 is
an integer) can be relaxed through a source pseudo-expansion
approach as follows:
• Split each source symbol into nT1 sub-symbols
s0[i], . . . , snT1−1[i] where n is the smallest integer such
that nαT1 is an integer.

• Construct an expanded source sequence s̃[.] such that
s̃[ni + r] = (srT1 [i], . . . , s(r+1)T1−1[i]) where r ∈
{0, . . . , n− 1}.

• We apply a DESCo code with parameters {(nB1, nT1)−
(nαB1, n(αT1 +B1))} to s̃[.] using the earlier construc-
tion.

Notice that since the channel introduces a total of B erasures
on the original input there will be at-most nBi erasures on the
expanded stream. These will be decoded with a delay of nTi
on the expanded stream, which can be easily verified to incur
a delay of dTie on the original stream.

VIII. NUMERICAL RESULTS

We compare the performance of proposed DE-SCo codes
to that of sequential random network codes numerically and
discuss advantages and disadvantages of the proposed codes.
In our experiments we divide the coded data stream into
segments of 2000 packets each and generate one burst erasure
in each segment. Each packet occupies one millisecond. The
burst erasure length is uniformly distributed between [0, Bmax]
packets and a packet is declared to be lost if it is not recovered
by its deadline. We plot the average loss probability for a
stream of 105 segments for both; (1) DE-SCo code with burst-
delay parameters {(B, T), (αB,αT +B)} for α = 2 and (2)
sequential random network code of the same rate for the two
users in Fig. 7 and Fig. 8 respectively as a function of the
maximum erasure burst length.

We make the following observations based on the results.
• We see that if the maximum size of erasure burst is less

than a critical threshold for each scheme then the loss
probability is zero. For the DES-Co construction this
threshold equals Bi. For random codes at rate R this
threshold equals d(1 − R)T e where T is the allowable
reconstruction delay.

• The loss probability for each code increases beyond its
threshold. For DE-SCo we assume that whenever an
erasure burst of length Bi occurs, the entire burst is lost.
For random codes, partial bursts are lost starting from
d(1 − R)Tie but ultimately when the erasure burst is
sufficiently large the entire burst is lost. For example,
consider a DE-SCo (4, 4)−(8, 12) with rate R = 1/2 and
the delay at user 1 T1 = 4. Random codes starts losing
packets when burst length exceeds d(1− R)T1e = 2 for
the first user while the threshold for DE-SCo is B1 = 4.
When the burst erasure is 3, the random code is capable
of recovering the lost packets with delays 3, 4, 5 and only
the packet with delay of 5 is marked erased. if the burst
length reaches 5 > 4 then all the packets are declared
lost.

• DE-SCo outperforms random network coding for user
1 for the erasure bursts of length between B ∈
{d(1−R)T2e, B}. For burst lengths larger than Bi both
schemes do not recover the erased symbols by the
deadline. This explains why DE-SCo dominates random
network coding in Fig. 7.

• For user 2, unlike DES-Co, random codes fail to correct
all erasures for burst lengths between {d(1−R)Tie, B2}.

11

Fig. 7: Loss Probability @ First Receiver. Fig. 8: Loss Probability @ Second Receiver.

Beyond this threshold however DE-SCo experiences en-
tire erasure bursts whereas random network coding still
incurs partial erasures until a larger threshold of B2 +

B2
1

T
is reached. This explains why DE-SCo does not outper-
form random network coding in the high loss regime for
user 2.

IX. CONCLUSION

This paper constructs a new class of streaming erasure codes
that do not commit apriori to a given delay, but rather achieve a
delay based on the channel conditions. We model this setup as
a multicast problem to two receivers whose channels introduce
different erasure-burst lengths and require different delays.

The DE-SCo construction embeds new parity checks into the
single-user code, in a such a way that we do not compromise
the single user performance of the stronger user while the
supporting the weaker receiver with an information theoreti-
cally optimum delay. We provide an explicit construction of
these codes as well as the associated decoding algorithm.
Numerical simulations suggest that these codes outperform
simple random linear coding techniques that do not exploit
the burst-erasure nature of the channel.

A number of interesting future directions remain to be
explored. The general problem of designing codes that are op-
timal for any feasible pair {(B1, T1), (B2, T2)} remains open.
We expect to report some recent progress along this lines in the

12

near future. While our construction can be naturally extended
to more than two users the optimality remains to be seen. Our
initial simulation results indicate that the performance gains of
the proposed code constructions are limited to burst-erasure
channels. Designing codes with similar properties for more
general channels remains an interesting future direction.

REFERENCES

[1] E. Martinian, “Dynamic Information and Constraints in Source and Chan-
nel Coding,” Ph.D. Thesis, Massachusetts Inst. of Technology, September
2004.

[2] E. Martinian and M. Trott, “Delay-optimal Burst Erasure Code Construc-
tion,” International Symposium on Information Theory, (Nice, France)
July 2007.

[3] A. Khisti and J.P. Singh, “On multicasting with streaming burst-erasure
codes,” International Symposium on Information Theory, (Seoul, Korea)
July 2009.

[4] F. Jelinek, “Upper bounds on sequential decoding performance parame-
ters, IEEE Trans. Inform. Theory, vol. 20, no. 2, pp. 227—239, Mar.1974

[5] A. Sahai, “Why Do Block Length and Delay Behave Differently if
Feedback Is Present?,” IEEE Transactions on Information Theory, May
2008, Volume: 54, Issue: 5, pp. 1860 - 1886

[6] J.K.Sundararajan, D. Shah, and M. Medard, “ARQ for network coding,”
in IEEE ISIT 2008, Toronto, Canada, Jul. 2008.

[7] C. Chang, S. C. Draper and A. Sahai,“Lossless coding for distributed
streaming sources,” submitted IEEE Trans. Inform. Theory, 2007

[8] M.Kalman, E.Steinbach,and B.Girod, “Adaptive media playout for low-
delay video streaming over error-prone channels,” IEEE Trans. on Circuits
and Systems for Video Technology, 14(6):841851, 2004.

[9] G. D. Forney, Jr., “Convolutional Codes I: Algebraic Structure,” IEEE
Transactions on Information Theory, vol. IT-16, pp. 720738, November
1970.

