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Streaming Codes for Multiplicative Matrix Channels
with Burst Rank Loss

Rafid Mahmood, Ahmed Badr, and Ashish Khisti

Abstract

The burst rank loss channel is an extension of the burst erasure channel where the channel matrix between the sender and
receiver becomes rank-deficient for a certain period of consecutive time-slots. We study streaming communication over the burst
rank loss channel, propose a new class of codes, ROBIN codes, and establish their optimality. Our construction uses the Maximum
Rank Distance (MRD) and Maximum Sum Rank (MSR) codes from previous works as constituent codes, and combines them in
a layered fashion. Our results generalize previous work on both the single-link and multiple-parallel-link streaming setups over
burst erasure channels. We perform simulations over statistical network models to show that ROBIN codes attain low packet loss
rates in comparison to existing codes.

I. INTRODUCTION

Streaming communication is characterized by two factors: causality and delay. Source packets arrive sequentially at a
transmitter, which generates channel packets causally. The receiver collecting the transmitted packets must reconstruct the
source within a decoding deadline, using only what it has observed up to that point. A receiving user is interested in sequential
playback, meaning if a packet has not been recovered within the deadline, the decoder considers it lost and moves to the next
packet. Error correcting codes capable of low delay decoding have previously been designed in the context of a single-link
erasure channel connecting the transmitter and receiver [1]–[5]. In Internet communication, packet erasures primarily occur
in bursts [6], and consequently the works of [1], [3]–[5] focus primarily on low-delay recovery from a burst of consecutive
erasures. Alternatively, [2], [3], [5] also consider arbitrary loss patterns and guarantee low-delay recovery when there are fewer
than the maximum tolerable number of erasures in a window.

The above mentioned works consider the case of a single communication link between the sender and receiver. As
communication methods increase in sophistication, it is natural to consider streaming over a network where there are multiple
links and paths connecting the source and destination nodes [7], [8]. The simplest extension of a single-link setting is the case
when there are multiple parallel links. This extension has been previously studied for streaming in [7, Chapter 8], [9]. In the
network setting. multiple parallel links correspond to separate paths chosen by a naive routing algorithm. Link failures in the
network then lead to packet erasures over the associated path. It was shown that joint coding across packets transmitted over
different paths, can outperform separate coding applied to individual paths only. An alternative to path routing is generation-
based linear network coding, where the received packets are a linear transformation of the transmitted packets [10]–[12]. Links
failures in the network now can potentially reduce the channel rank [13]. Rank metric codes such as Gabidulin codes can be
used as end-to-end codes for protecting packets in such rank-deficient channels [14]–[17].

In this work, we extend streaming under the burst packet loss model, see e.g., [18], to a rank-deficient matrix channel. In
the context of network coding, the rank is equal to the min-cut of the network, decreasing to a minimum tolerable rank when
links fail in a burst [10], [13], [19]. For such a burst rank loss model, we design an end-to-end code with a layered structure
and establish its optimality. Our approach generalizes the prior work in [7, Chapter 8], which addressed a network with naive
routing and permitted at most one link to fail during a burst. While there, the problem simplified to multiple parallel links with
one behaving as a periodic burst erasure channel, we permit both multiple bursts and linear transformations of the channel
packets that can ensue as a result of network coding. Furthermore, their code construction involved diagonally interleaving
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MDS block codes. This technique seems specific to the parallel link case and does not easily generalize to the matrix channel.
In reference [8], we introduced a new class of rank metric convolutional codes known as Maximum Sum Rank (MSR) codes.
These codes maximize the column sum rank, which determines the maximum tolerable rank loss in a window and are network
streaming counterparts of the m-MDS codes introduced in [20]. Our construction in this work uses both MSR codes and
Gabidulin codes in a layering technique that can be seen as a generalization of that used for the burst correcting codes in
[4], [5]. In comparison to the previous works, our constructions take advantage of the partial information recoverable in a
rank-deficient channel in order to achieve a higher rate.

This paper is outlined as follows. We set up the network streaming problem by defining the properties of the encoder,
network model, and decoder in Section II. Our main result is also stated there. In Section III, we review rank metric codes,
including Gabidulin codes and MSR codes. Both of these can be applied to the network streaming problem, although they are
not generally capacity achieving. We introduce a family of codes known as Recovery Of Bursts In Networks (ROBIN) codes
in Section IV. These codes are constructed by layering Gabidulin and MSR codes as constituents. The encoding and decoding
steps are detailed, proving that this code indeed achieves the maximum rate. A converse proof to the capacity is given in
Section V. Finally, simulation results are provided in Section VI, where we evaluate the performances of the various codes
over statistical network models. We conclude this paper with a discussion on the necessary field size, further improvements,
and more robust network models to be addressed in future works.

The following notation is used throughout this work. We count all indices of vectors and matrices starting from the 0-
th entry. A vector xt = (xt,0, . . . , xt,n−1) ∈ FnqM is denoted in lower-case bold type, whereas a matrix Xt is identified
using upper-case bold type. The first subscript refers to the time index of the vector. A sequence over multiple time indices
x[t,t+j] = (xt, . . . , xt+j) is denoted using bracketed subscripts. This notation naturally extends to matrices, i.e., A[t,t+j] =

diag (At, . . . ,At+j) is a block diagonal matrix. Moreover, block diagonal matrices constructed from copies of one base matrix
use a further simplified notation. We write diag (At; ν) = diag (At, . . . ,At) to refer to a block diagonal construction of ν
copies of At.

II. PROBLEM SETUP AND MAIN RESULT

Let q be a prime power and Fq the ground field with q elements. For M ≥ 0, let FqM be an extension field of Fq . Throughout
this paper, we assume a network with the max-flow min-cut capacity r achieved using a random linear network code [12], [21],
[22]. The channel matrix At ∈ Fr×rq lies in the ground field and is always known to the decoder. In practice, this is achievable
with the use of header bits that contain the coefficients for previous linear combinations. Thus, At is full rank and invertible
when no failures occur, but decreases in rank when links deactivate. Additional redundancy in the form of an end-to-end code
is considered in order to permit recovery from the rank-deficient matrix. This end-to-end code however is constructed over
an extension field FqM with a sufficiently large M . The problem is defined in three steps: the encoder, network model, and
decoder.

A. Encoder

At each time t ≥ 0, a source packet st ∈ FkqM arrives causally at a transmitter node. Each source packet is assumed to
be uniformly sampled and drawn independent of all other packets. A codeword xt ∈ FnqM is a function of the prior source
packets, i.e., xt = γt(s0, . . . , st), where γt(·) is the encoding function. We consider the class of linear time invariant encoders
and focus on convolutional code constructions. A rate R = k

n encoder with memory m generates the codeword

xt =
m∑
i=0

st−iGi (1)

using a set of generator matrices Gi ∈ Fk×n
qM

for 0 ≤ i ≤ m. Furthermore, recall that due to the max-flow min-cut capacity,
the network cannot transmit more than r channel packets in one time instance. We assume that n = rν for some ν > 0.
The codeword xt can be rearranged to a matrix Xt =

(
xt,0 . . . xt,r−1

)
∈ Fν×r

qM
. In the matrix notation, the codeword

is referred to as a channel macro-packet or a generation. We interchange between matrix and vector notation when one is
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Fig. 1: The Encoder and Decoder are connected by r disjoint paths, each of which is responsible for a channel packet, or
column of Xt, of ν symbols at each time instance. The received packets are all linear combinations of the transmitted packets.
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Fig. 2: An example of a Burst Rank Loss Network CH(4, 2, 3, 5). Every burst consists of at most B = 3 shots, with gaps
lasting at least G = 5 shots. The rank of each channel matrix is labelled inside its associated box and does not fall below
r − ρ = 2 during a burst.

preferable over the other in analysis. For 0 ≤ i ≤ r, the i-th column of Xt is a vector xt,i of length ν. This vector is referred
to as a channel packet and there are r such packets that comprise a macro-packet.

B. Network Model

At each time instance, a macro-packet is transmitted over the network with assumed zero delay. Although link delays
naturally affect the end-to-end transmission, we assume that a single time instance contains the encoding, transmission, and
decoding of one channel packet1. The channel transfer matrix At ∈ Fr×rq is determined by a random linear network code and
is known to the decoder [12], [19], [23]. Thus for t ≥ 0, the receiver observes Yt = XtAt. The network model is represented
in Fig. 1 as the collection of r disjoint paths connecting the transmitter and receiver. All channel packets are transmitted
simultaneously and the receiver observes r different linear combinations of the transmitted channel packets. We can write this
relationship in the vector notation as yt = xt diag (At; ν), where xt is the codeword in (1) and yt ∈ FnqM is a received vector.
Here, diag (At; ν) is the effective transfer matrix, a block diagonal matrix consisting of ν copies of At.

A single network use is referred to as a shot. Each shot is independent of all others. For j ≥ 0, the transfer matrix over a
window [t, t + j] of j + 1 shots is given by A[t,t+j] = diag (At, . . . ,At+j). The channel matrix in the window possesses a
block diagonal structure consisting of the channel matrices at each time instance [19].

Let ρt , rank (At). The rank of the channel in a window is equal to the sum rank of the blocks, i.e.,
∑t+j
i=t ρi =

rank (A[t,t+j]). At any time t, if the network operates perfectly, we have ρt = r and the decoder simply inverts the channel
matrix to retrieve the codeword. Unreliable links can modify the channel matrix to a rank-deficient form. The total rank
deficiency of A[t,t+j] is equal to r(j + 1) −

∑t+j
i=t ρi. We define below a model for a burst rank-deficient network that

generalizes the classic burst erasure channel introduced in [18].

Definition 1. Consider a network where for all t ≥ 0, the receiver observes Yt = XtAt. In the Burst Rank Loss Network
CH(r, p,B,G), the channel matrix may have rank (At) = ρt ≥ r − p for a burst of at most B consecutive shots but must
subsequently guarantee rank (At) = r for a gap of at least G ≥ B consecutive shots.

An example of a Burst Rank Loss Network is provided in Fig. 2. Analysis of streaming video traffic suggests that internet
streaming is susceptible primarily to burst losses [6]. Furthermore, these bursts often occur separated from each other by a
significant margin. This motivates the practical constraint G ≥ B. We use an adversarial model rather than a statistical model,
as it allows for tractable analysis in terms of producing perfect low delay recovery. However, we perform simulations of our

1For example in audio streaming, coded speech packets are generated once every 20 ms. If the propagation delays are sufficinetly smaller than this value,
they can be ignored.
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codes over Markov channel models in Section VI and can show that the Burst Rank Loss Network satisfactorily approximates
the more practical Markov models.

As the received channel packets are each linear combinations of the transmitted packets, the rank loss in At forces a number
of received packets to become redundant. In single-link streaming, the number of erased or erroneous received packets is
counted to determine the condition of a channel; we similarly count the number of redundant linear combinations in the
network model. The rank deficiency of the channel matrix is equivalent in discussion to the number of redundant received
packets.

The redundant received packets are not useful to the decoder. In analysis, the linearly dependent columns of the transfer
matrix and the associated columns of the received macro-packet are discarded. The receiver effectively observes Y∗t = XtA∗t ,
where A∗t ∈ Fr×ρtq is the reduced channel matrix, containing only the linearly independent columns.

Remark 1. One motivation for modelling rank deficiencies in the channel matrix is that a network with fewer nodes or links
can be represented as a channel matrix with a lower rank. According to [13], one deactivated link can damage at most one of
the disjoint paths connecting the transmitter and receiver, thereby reducing the rank of At by at most 1.

C. Decoder

Let T be the maximum delay permissible by the decoder. A packet received at time t must be recovered by t+T , i.e., there
should exist a sequence of functions that solves ŝt = ηt(Y0, . . . ,Yt+T ), where η(·) is the decoding function. If ŝt = st, then
the source packet is perfectly recovered by the deadline; otherwise, it is declared lost. A code capable of decoding every source
packet with delay T over CH(r, p,B,G) is defined as feasible over the network. A rate R = k

n is achievable for delay T if
there exists a feasible code with that rate. The supremum of all achievable rates for a network is the streaming capacity. The
streaming capacity of the single-link burst erasure channel was derived in [5], [18]. We propose below the streaming capacity
for the network setup, which is proved in later sections.

Theorem 1. The streaming capacity for the Burst Loss Network CH(r, p,B,G) with G ≥ B is given by

C =


Teffr+B(r−p)

(Teff+B)r T ≥ B
r−p
r T < B

(2)

where Teff = min (T,G) is the effective delay.

We make several remarks about Theorem 1.

Remark 2. When T < B, the recovery of the source packets must be initiated before the burst-loss terminates. In this case
we show that applying a MRD code separately to each packet suffices to achieve the capacity. When T ≥ B, we must use
both the partial information available during the burst-loss, as well as the subsequent channel packets in the recovery process.
This is accomplished using a layered coding scheme.

Remark 3. Setting r = p in (2) recovers the streaming capacity for the single-link burst erasure channel [5]. Under this
condition, the problem consists of all r paths between transmitter and receiver simultaneously disappearing, similar to an
erasure of the entire macro-packet.

Remark 4. Upon setting p = 1 in (2), we recover the streaming capacity of the parallel link burst loss model introduced in
[7, Chapter 8]. This earlier work featured r parallel paths between transmitter and receiver, with the restriction that only p = 1

path is erased in a burst within a window. In contrast, we relax p ≤ r as the maximum number of paths that may fail. Our
proposed codes are significantly different from the construction given in [7, Chapter 8]. Our constructions involved a layered
approach along the lines of [5] for the burst erasure channel. In contrast to [5], our choice of code parameters have been
carefully selected to incorporate partial information available to the decoder during bursts, which does not arise in the erasure
setting.

Remark 5. The upper bound above remains valid even when G < B. However, we do not address the achievability of this
region in this work. The precursory work on single-link burst erasure streaming did not include a general construction for this
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scenario either. One consideration is that for large T , the G < B region introduces the problem of low-delay recovery under
multiple bursts rather than a single burst. We refer the reader to [24] for some specific code constructions that are provided
for this problem for burst erasure channels.

III. RANK METRIC CODES

A. Maximum Rank Distance (MRD) Block Codes

There exists an isomorphism between the extension field FqM and the vector space FMq . Similarly for a vector space FnqM ,
there is an isomorphic matrix space FM×nq . Let φn : FnqM → FM×nq be a bijection between the two. We then denote the column
rank of a vector x ∈ FqM as the rank of its isomorphic matrix φn(x). The rank distance between two vectors x, x̂ ∈ FnqM is
defined

dR(x, x̂) = rank (φn(x)− φn(x̂)).

Rank distance was proven to be a metric in [14]. For a linear block code C[n, k] over FqM , the minimum rank is an analogue
of minimum Hamming distance and must meet a Singleton-like bound given by dR ≤ min

{
1, Mn

}
(n − k) + 1. Maximum

Rank Distance (MRD) codes achieve this bound with equality [14]. In addition, we assume M ≥ n; an MRD code is then
also MDS. These MRD codes possess the following property.

Theorem 2 (Gabidulin, [14]). Let G ∈ Fk×n
qM

be the generator matrix of an MRD code. The product of G with any full-rank
matrix A ∈ Fn×kq achieves rankGA = k.

A complementary theorem was proved in [14] for the parity-check matrix of an MRD code. We use an equivalent property
for the generator matrix, which arises from the fact that the dual of an MRD code is also an MRD code.

Gabidulin codes are the most common family of MRD codes in the M ≥ n regime [14]. Although they are naturally
constructed via non-systematic generator matrices, systematic Gabidulin codes can be constructed by applying Gaussian
elimination on a Gabidulin generator matrix. For the systematic version, we write each codeword as xt = (st,pt) where
pt consists of the parity-check symbols [23].

B. Maximum Sum Rank (MSR) Convolutional Codes

Let C[n, k,m] be a linear time invariant convolutional code with memory m over FqM . For a source sequence s[0,j] =

(s0, . . . , sj), the codeword sequence x[0,j] = s[0,j]GEX
j is calculated using the extended form generator matrix

GEX
j =


G0 G1 . . . Gj

G0 . . . Gj−1

. . .
...

G0

 , (3)

where Gj ∈ Fk×n
qM

and Gj = 0 for j > m [25].
The sum rank distance between codeword sequences x[0,j] and x̂[0,j] is defined as the sum of the rank distance between

each xt and x̂t. The j-th column sum rank of a code is defined

dR(j) = min
x[0,j]∈C,s0 6=0

j∑
t=0

rank (φn(xt))

as a convolutional extension to the minimum rank of a block code.
The column sum rank is bounded by dR(j) ≤ (n − k)(j + 1) + 1. It was shown in [8] that if dR(j) achieves the upper

limit, then dR(i) does as well for all i ≤ j. This naturally implies that G0 is also an MRD code generator matrix. The j-th
column sum rank determines the maximum tolerable rank deficiency of the channel matrix in any window of j consecutive
shots. MSR codes are convolutional codes with memory m that achieve the maximum dR(m). They possess the following
relevant properties.
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Lemma 1. Consider an MSR code C[n, k, T ] with rate R = k
n and n = rν for some ν > 0, that is being used to encode

packets in a network for the channel A[t,t+T ]. Suppose that all source packets before st are known to the decoder by some
time t+ j for j ≤ T .

1) If rank (A[t,t+j]) ≥ R(j + 1)r, then the first source packet st is entirely recoverable by time t+ j.
2) If rank (A[t,t+T ]) ≥ R(T + 1)r with the additional constraint that

rank (Ai) =

r − p i ∈ [t, t+B − 1]

r i ∈ [t+B, t+ T ]
, (4)

then every source packet st, . . . , st+T in the window is entirely recoverable by time t+ T .

Proof: The proof for Statement 1 was given in [8] for ν = 1. The extension to arbitrary ν is obvious when considering
the channel in the vector notation. For completeness, we provide the proof in Appendix A.

For Statement 2, (4) in conjunction with the constraint that rank (A[t,t+T ]) ≥ R(T + 1)r implies

Bp ≤ (1−R)(T + 1)r. (5)

The left hand side is the rank deficiency of A[t,t+T ]. The proof for Statement 2 is divided into two cases for when p ≤ (1−R)r
and when p > (1−R)r.

Case 1: If p ≤ (1 − R)r, each source packet is recovered immediately after the channel macro-packet is received. The
condition on p implies that rank (At) = r − p ≥ Rr for the first time slot. Using Statement 1 for j = 0, st is guaranteed
recoverable at time t. We repeat the argument for each subsequent packet.

Case 2: If p > (1 − R)r, each source packet is recovered at time t + T . Because rank (A[t,t+T ]) ≥ R(T + 1)r, st is
recoverable at time t+ T using Statement 1 and letting j = T . In order to recover st+1, we shrink the window of interest to
[t+ 1, t+ T ]. Due to the block diagonal structure, the rank of the channel matrix is bounded

rank (A[t+1,t+T ]) = rank (A[t,t+T ])− rank (At)

≥ R(T + 1)r − r + p

> RTr.

The third line follows from the lower bound on p. Using Statement 1 for j = T − 1 ensures that st+1 is recoverable at time
t+T . We then repeat the argument for the subsequent source packets st+i by showing that rank (A[t+i,t+T ]) > R(T +1− i)r
for all 0 ≤ i ≤ T and applying Statement 1 for j = T − i.

C. Numerical Comparison

Gabidulin codes can be directly used as end-to-end codes in network streaming. These codes are treated as convolutional
codes with zero memory. Each source packet is encoded and decoded independently of the others. As a result, neither the
burst length, gap length, nor the decoding deadline affect the code performance. The decoder successfully recovers the packet
immediately if rank (At) is sufficiently large; otherwise the packet is considered unrecoverable and discarded entirely. Thus, the
only parameters of interest are r and p. In general, a Gabidulin code achieves perfect recovery of every packet in CH(r, p,B,G)
when the rate is bounded

R ≤ r − p
r

. (6)

Comparing with (2), we conclude that the streaming capacity of CH(r, p,B,G) is achievable with a Gabidulin code when
T < B. However, for T ≥ B, these codes generally provide sub-optimal rates.

MSR codes can also be used directly for network streaming. Lemma 1 considers two different channel loss patterns, the
former being arbitrary rank losses in a window and the latter being a burst where several paths deactivate for consecutive
shots. The total tolerable rank deficiency of the channel matrix is the same for both cases and the decoder does not perform
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Fig. 3: A comparison of achievable rates using existing codes against the streaming capacity given in Theorem 1. The decoding
deadline T = 30 is fixed. The burst length is B = 10 and B = 30 for the two setups, while the tolerable rank loss per time
instance p is varied. The solid black line marking the capacity is achievable using our proposed code.

better for any specific pattern. An MSR code with memory m = Teff is feasible over CH(r, p,B,G) for

R ≤ max

(
(Teff + 1)r −Bp

(Teff + 1)r
,
r − p
r

)
. (7)

The two rates mark the different approaches an MSR code can take when decoding. The left value is drawn from rearranging
(5) and is dominant when Teff ≥ B. If the burst length exceeds the code memory, i.e., Teff < B, then the code must recover
portion of the packets before the burst ends. Given that G0 acts as an MRD code, simply adopting the MRD strategy and
recovering according to Theorem 2 yields a higher rate. Furthermore, Teff < B directly corresponds to the capacity when
T < B. The streaming capacity of CH(r, p,B,G) is not achievable by MSR codes for T ≥ B in general. It is achievable with
an MSR code only for T < B and B = 1 when T ≥ B.

Fig. 3 compares achievable rates for MRD and MSR codes in (6) and (7) respectively with the channel capacity in (2).
Baseline streaming codes used in the single-link scenario are also compared. The m-MDS code is designed to maximize the
column Hamming distance and acts effectively as a single-link version of the MSR code. The Maximally-Short (MS) code
achieves the streaming capacity for the single-link burst erasure channel. Both of these codes treat rank-deficient channel
matrices as erasure channels where the entire channel macro-packet is discarded. When rank (At) = r, the decoders invert the
channel matrix and apply the relevant single-link decoding technique. As a result, neither of these single-link codes vary their
rate as a function of p.

Two different streaming setups are considered in Fig. 3, comparing a smaller B = 10 versus larger B = 30 for a fixed
r = 10 and T = 30. The tolerable rank deficiency p is varied from 1 to r. When p = r, the channel is effectively an erasure
channel where At is either a full rank matrix or simply the zero matrix. At this point, the single-link codes achieve their
best rates relative to the capacity. This is also the area of highest disparity between the achievable rates of the MRD and
MSR codes and the channel capacity, as the codes are designed to take advantage of the partial information available in a
rank-deficient channel. While the MSR code excels in comparison to the other codes for small p, the code is equivalent to an
m-MDS code when p = r. Moreover, the MRD code fails absolutely at this point, as the receiver does not observe any useful
linear combinations of the transmitted channel packets.

IV. RECOVERY OF BURSTS IN NETWORKS CODES

We prove the achievability of Theorem 1 by using a new family of codes designed to recover from a burst of rank-deficient
channel matrices. These codes are referred to as ROBIN codes and achieve the streaming capacity over CH(r, p,B,G).

A. Encoder

Recall the prior assumption for the codeword length n = νr. For our construction, we further assume that k = κr for some
κ > 0. Consequently, the code rate simplifies to R = κ

ν and the encoder can be designed for any pair of κ and ν. When
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Fig. 4: A block diagram illustrating the encoding steps of a ROBIN code. The source packet is first split into two sub-packets and
a different code is applied to each sub-packet. The resulting parity-checks are then combined to form the overall parity-check
packet. Finally, the parity-check packet and the source packet are concatenated to generate the channel packet.

introducing the decoder, the values of κ and ν are fixed as a function of the channel parameters and decoding delay. The
encoding steps are provided below and summarized in Fig. 4.

1) Split source: Let κu, κv ≥ 0 be code parameters that satisfy κu + κv = κ. Split the source packet st ∈ FκrqM into two
groups of κur urgent (sut ) and κvr non-urgent (svt ) source symbols, i.e.,

st = (st,0, . . . , st,κur−1︸ ︷︷ ︸
sut

, st,κur, . . . , st,κur+κvr−1︸ ︷︷ ︸
svt

). (8)

The terminology of urgent and non-urgent symbols is inherited from prior layered streaming code constructions [1], [5].
The intuition is as follows. When decoding, all non-urgent source symbols affected by a burst are recovered simultaneously
once the decoder receives sufficient information. In contrast, the urgent source symbols are recovered immediately as the
associated parity-check symbols arrive.

2) MSR code: Let κp > 0 be a code parameter, to which we assign a value later. Apply an MSR code C[(κv+κp)r, κvr, Teff ]

over the non-urgent source component svt in order to generate the non-urgent codeword

xvt =
Teff∑
i=0

svt−iGi.

Here, Gi follow (1) for m = Teff .
3) MRD code: Apply a systematic MRD code C[(κu+ κp)r, κur] over the urgent source sub-packet sut in order to generate

the urgent codeword

(sut ,p
u
t ) = sut G. (9)

4) Shift and zero-pad: Shift the parity-check symbols put in time with delay Teff for later use. At time t, we receive the the
delayed parity-check symbols put−Teff

. Zero-pad this vector with κvr symbols in order to construct (put−Teff
, 0κvr). The

zero-padded vector now has the same length as xvt .
5) Concatenate: Concatenate the urgent source sub-packet with the summation of the non-urgent and parity-check symbols

to construct the codeword

xt = (sut,0, . . . , s
u
t,κur−1︸ ︷︷ ︸

urgent

, xvt,0 + put−Teff ,0
, . . . , xvt,κpr−1 + put−Teff ,κpr−1︸ ︷︷ ︸

overlapped

, xvt,κpr, . . . , x
v
t,(κp+κv)r−1︸ ︷︷ ︸

non-urgent

). (10)

We simplify the notation to xt = (sut , xvt + (put−Teff
, 0κvr)).

The codeword is effectively divided into three partitions: the urgent source symbols sut , the non-urgent codeword symbols
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from xvt , and the overlapped parity-check symbols from the summation of xvt and put−Teff
. The three partitions contain κur, κvr,

and κpr symbols respectively. The channel macro-packet is formed by sequencing the codeword into vectors of length r. The
codeword can be separated into κu, κv , and κp vectors comprised solely of urgent, non-urgent, and overlapped parity-check
symbols respectively. Each of these vectors becomes a row of the macro-packet

Xt =



sut,0 · · · sut,r−1

sut,r · · · sut,2r−1

...
. . .

...

sut,(κu−1)r · · · sut,κur−1

xvt,0 + put−Teff ,0
· · · xvt,r−1 + put−Teff ,r−1

xvt,r + put−Teff ,r
· · · xvt,2r−1 + put−Teff ,2r−1

...
. . .

...

xvt,(κp−1)r + put−Teff ,(κp−1)r · · · xvt,κpr−1 + put−Teff ,κpr−1

xvt,κpr · · · xvt,(κp+1)r−1

xvt,(κp+1)r · · · xvt,(κp+2)r−1

...
. . .

...

xvt,(κp+κv−1)r · · · xvt,(κp+κv)r−1



.

A single column of Xt contains κu, κv, and κp urgent, non-urgent, and overlapped symbols respectively. The columns are
each channel packets. The rank of At decreasing by one implies that a column of Xt, or ν = κu+κv+κp linear combinations
of symbols become redundant.

B. Decoder

We set the code parameters as follows:

κ = Teff +B(1− p

r
), κu = B, κv = Teff −B

p

r
, κp = B

p

r
. (11)

It is assumed that (11) yields integer valued results, but this may not always be the case in practice. When a parameter is not an
integer, we multiply all code parameters by a normalizing factor. As ν is simply a function of the parameters, the normalizing
factor affects it as well, leaving the code rate unchanged.

The urgent source sub-packet is protected by an MRD code C[B(r+p), Br] and the non-urgent source sub-packet is protected
by an MSR code C[Teffr, Teffr−Bp, Teff ]. We show below that the decoder with the parameters in (11) can completely recover
all packets from a burst of length B when there is a sufficiently large gap G ≥ B. The procedure consists of two steps.
The non-urgent source symbols erased in the burst are simultaneously recovered first. Then, the urgent source symbols are
iteratively recovered with delay Teff .

Suppose that there is a burst beginning at time t, i.e., rank (Ai) = r − p for i ∈ [t, t+B − 1]. All prior source packets are
known to the decoder and communication is perfect afterwards for [t+B, t+B + Teff − 1]. Recall that Teff ≤ G. We show
that all source packets s[t,t+B+Teff−1] are recoverable within their respective decoding deadlines. The steps to recover st by
time t+ Teff are detailed below. The remaining source packets affected by the burst are decoded using the same steps.

Step 1: The decoder recovers the non-urgent sv[t,t+Teff ]
by time t + Teff . This step is divided into two actions. To begin,

sv[t,t+Teff−1] are recovered simultaneously at time t+ Teff − 1. At time t, the decoder then recovers svt+Teff
.

All source packets before time t are known to the decoder, meaning pu[t−Teff ,t−1] can be computed and negated from the
associated overlapped symbols in the window [t, t+Teff − 1]. The remaining non-urgent and overlapped symbols are all linear
combinations of only xv[t,t+Teff−1]. The MSR code protecting the non-urgent source symbols is now decodable. From Statement
2 of Lemma 1, all non-urgent source symbols can be recovered at time t+ Teff − 1 if (5) is satisfied. By setting R = κv

κv+κp
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and T = Teff − 1, we find

Bp ≤ κp
κv + κp

Teffr. (12)

Substituting the code parameters in (11) to the above reveals that the condition is met with equality. Then sv[t,t+Teff−1] are all
recoverable by time t+ Teff − 1.

The non-urgent source sub-packet at time t + Teff is recovered immediately by considering a window of length 1. After
negating the effects of the prior source packets, the receiver effectively observes

svt+Teff
G0 diag (At+Teff

;κp + κv) + (put , 0κvr) diag (At+Teff
;κp + κv).

The second term is assumed to have caused a rank deficiency in the first κp columns of the channel matrix. Consequently,
we discard the affected columns and associated received symbols. Due to G0 possessing the properties of an MRD generator
matrix, Theorem 2 can be used to prove that svt+Teff

is recoverable.
Step 2: The decoder recovers the urgent sut at time t+Teff . Because the non-urgent sv[t,t+Teff ]

are all known to the decoder,
xvt+Teff

is computable and can be negated from the overlapped symbols at time t+ Teff . Thus, put is available to the decoder
at time t+ Teff . The MRD code protecting the urgent source sub-packet is now decodable. Using (9) shows that the receiver
observes

sut G

(
diag (A∗t ;κu)

diag (At+Teff
;κp)

)
,

the product of the codeword (sut ,put ) with a concatenation of the channel matrices at time t and t + Teff . The rank of the
channel matrix is κu(r − p) + κpr, being the summation of the ranks of the matrices A∗t and At+Teff

. By Theorem 2, the
source can be completely recovered if

κu(r − p) + κpr ≥ κur. (13)

Substituting the values of (11) to the above reveals the condition is met with equality. Thus, sut is recovered at time t+ Teff ,
completing recovery of the entire first source packet.

The next source packet st+1 must be recovered by time t+ Teff + 1. All prior non-urgent source symbols are known to the
decoder, so svt+Teff+1 can be computed using Step 1. Once xvt+Teff+1 is computed, Step 2 allows sut+1 to be recovered at time
t + Teff + 1. We repeat this technique for the subsequent packets in the burst by first recovering the non-urgent symbols at
each time instance. Each urgent source is thus sequentially recovered iteratively with delay Teff .

C. Decoding Example

In Fig. 5, we provide an example of the encoding and decoding steps. Consider a channel CH(3, 2, 3, 6), which experiences a
burst affecting the first two paths for 0 ≤ t ≤ 2. For simplicity, we assume that no linear transformations occur, i.e., A = I3×3

is an Identity matrix and A∗ contains only the third column of I3×3. The receiver simply receives all transmitted channel
packets when there are no losses and only one of the packets when there are. The rank deficiency in the channel matrix is
then equivalent to causing erasures. The network in the window [0, 6] is given in Fig. 5a, where the erased links are shaded.

We use a ROBIN code with memory Teff = 6. Using (11), the source st is split into urgent sut ∈ F9
qM and non-urgent

svt ∈ F12
qM . The non-urgent source is protected with an MSR code C[18, 12, 6], which generates xvt , whereas the urgent source

is protected with an MRD code C[15, 9], which generates (sut ,put−Teff
). In each channel packet, the encoder transmits κu = 3

urgent source symbols, κp = 2 overlapped symbols, and κv = 4 non-urgent symbols.
The decoding steps to recover s0 at time t = 6 are given as follows. We first show how the steps in the previous sub-section

are followed. We then remark how, due to our restricted channel matrix for this example, the results are equivalent to counting
un-erased symbols. In Fig. 5b, the decoder first negates pu[−6,−1] from the other overlapped symbols. This gives the decoder
complete access to xv[0,5]. With B = 3, Teff = 6, note that (12) is satisfied and sv[0,5] recoverable by time t = 5. From the
alternate perspective, there are 12 erased non-urgent symbols per time slot for 0 ≤ t ≤ 2, leading to a total of 36 erased
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

sut
xvt + put−Teff

xvt

3

2

4

(a) A slot consists of r = 3 channel packets—depicted as columns—each of which includes κu = 3 urgent source, κp = 2
overlapped, and κv = 4 non-urgent symbols. Failing links in the window [0, 2] force several columns (shown as shaded) of the
respective macro-packets redundant.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

sut
xvt + put−Teff

xvt

12 12 126 6 6 54

(b) pu
[−6,−1]

is negated from the overlapped symbols. The overlapped and non-urgent symbols form an MSR code with 12 rank losses
per shot in the first three shots. There are a total of 36 rank losses and 72 correctly received symbols, allowing the recovery of sv

[0,5]
.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

sut
xvt + put−Teff

xvt

6 3 6

(c) After recovering and negating sv6 , the overlapped section at t = 6 and urgent section at t = 0 form an MRD code with 6 rank
losses and 9 correctly received symbols, which are sufficient to recover all symbols of the urgent source.

Fig. 5: Example of a ROBIN code with memory Teff = 6 recovering from a burst B = 3 in a network with r = 3. Each
column represents a received channel packet along a given path, which is a linear combination of the transmitted packets. The
hatched columns are the linearly dependent combinations.

A∗ A∗ A∗ A A A A A A∗ A∗ A∗ A A A A A A∗ A∗ A∗ · · ·

B

G

B

G

B

Fig. 6: A periodic burst rank loss network, where the channel matrix rank (A∗) = r−p during bursts and rank (A) = r during
perfect communication.

non-urgent symbols. Furthermore note that there are a total of 72 correctly transmitted non-urgent symbols in the window
[0, 5]. This is sufficient to recover all 72 non-urgent symbols of sv[0,5]. Then at time t = 6, the decoder recovers sv6 by ignoring
the overlapped received symbols and using only the 12 non-urgent received symbols of xv6 .

In Fig. 5c, the decoder recovers su0 at time t = 6. Having recovered sv[0,6], the decoder reconstructs xv6 and negates it from
the overlapped symbols to recover pu0 that was transmitted at time t = 6. This gives us a Gabidulin codeword (su0 ,pu0 ), where a
part of su0 is affected by a rank-deficient matrix. Setting all of the code parameter values reveals that (13) is satisfied. From the
erased symbols perspective, there are 3 correctly received symbols of su0 and 6 recovered symbols of pu0 , which are sufficient
to recover all 9 symbols that comprise su0 within the deadline.
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V. UPPER BOUND ON THE BURST LOSS NETWORK

In this section, we prove the converse to Theorem 1. The proof for an upper bound on achievable rates for CH(r, p,B,G)
follows similar to prior proofs establishing the capacity of single-link burst erasure channels [1], [5].

A. Upper Bound for T ≥ B

We first address the case of T ≥ B. A network with r paths, out of which p paths are unavailable in a burst, is described
in Fig. 6. This network has a period of B +G, where the ranks of the channel matrices At in the i-th period is given by

rank (At) =

r − p t ∈ [i(B +G), i(B +G) +B − 1]

r t ∈ [i(B +G) +B, (i+ 1)(B +G)− 1]

for 0 ≤ i ≤ L, where L is the total number of periods over which communication occurs. When the channel matrix is full-rank,
we denote it At = A, whereas the rank-deficient channel matrix is At = A∗. Every period consists of the network experiencing
a burst of length B followed by a gap of full-rank channel matrices for G shots, meaning we can describe it as CH(r, p,B,G).
We use a counting argument for the number of linearly independent received combinations of symbols over the first period
[0, B +G− 1] to derive an upper bound on the rate:

(B +G)nR ≤ B(n− νp) +Gn

R ≤ Gr +B(r − p)
(B +G)r

. (14)

When T ≥ G, we substitute G = Teff to (14), returning the streaming capacity. Note that this result can be obtained also by
directly solving for the Shannon capacity of the periodic network.

This counting argument does not lead to the capacity when T < G. By considering the decoding delay constraint for a
streaming code, the upper bound in (14) can be tightened for this case. Consider a new periodic network with period B + T .
The channel matrices in the i-th period have the following ranks:

rank (At) =

r − p t ∈ [i(B + T ), i(B + T ) +B − 1]

r t ∈ [i(B + T ) +B, (i+ 1)(B + T )− 1]
. (15)

For this network, every burst of length B is followed by a gap of only T shots. The channel matrices remain A∗ and A
respectively as described above. This channel cannot be described by CH(r, p,B,G) as the gaps are insufficiently short.
Nonetheless, recall that any code that is feasible over CH(r, p,B,G) must recover every source packet with delay T . We argue
the following claim.

Claim 1. Any code feasible over CH(r, p,B,G) is also feasible over the periodic network defined in (15).

A simplified argument is presented here, with a rigorous information theoretic proof in Appendix B. The key insight is
that when the decoder is concerned with recovering st, the channel is only relevant in the window [0, t+ T ]. In analysis, the
periodic network can be replaced by a hypothetical effective network diag (A0, . . . ,At+T ,A, . . . ), comprised of the original
channel for [0, t+T ] with all subsequent shots assumed to be transmitted perfectly. We prove feasibility in two steps for each
period of the network, beginning with the first period [0, B + T − 1].

Step 1: First consider the packets affected by the burst, i.e., t ∈ [0, B− 1]. The maximum tolerable delay is T , but we relax
the constraints to require that every packet affected by the burst is completely recovered by time B+T − 1, before the second
burst begins. From the perspective of these packets, the network is equivalent to a hypothetical effective network where the
channel is rank-deficient in the window [0, B− 1] and full-rank for all subsequent shots. A feasible streaming code guarantees
that every packet in the burst is recoverable within the decoding constraint for this network.

Step 2: Next, we recover the source packets for t ∈ [B,B+T −1] remaining in the period. Similar to the previous packets,
we relax the requirement to every packet in this window being completely recovered by time 2B + 2T − 1 at the end of the
second period. At time B+T −1, the packets affected by the first burst have all been recovered and their effect can be negated
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Fig. 7 Fig. 8
α 5× 10−4 5× 10−4

β (0.1, . . . , 0.8) 0.3
r 6 16
p 3 (2, . . . , 16)
Channel Length 108 108

Rate R 10
13 (0.94, . . . , 0.52)

Delay T 7 17

B B
ROBIN Code 6 16
MSR Code 3 8
m-MDS Code 1 (1, . . . , 8)
MS Code 3 (1, . . . , 16)

TABLE I: Parameters used in simulations.

for the current packets of interest. We permit the network to start a new burst for B shots. The network is then equivalent to
a hypothetical effective network where the channel follows (15) for [0, 2B + T − 1], before becoming full-rank again for all
subsequent shots. A feasible streaming code guarantees that every packet in the window [B,B + T − 1] is recoverable within
the decoding constraint for this network.

The packets affected by the second burst at [B + T, 2B + T − 1] are then considered. The effect of all packets in the first
period is negated by time 2B + 2T − 1, so we reuse the argument for the packets affected by the first burst, i.e., all source
packets in the window [B+T, 2B+T −1] are completely recovered by time 2B+2T −1. The first burst has been recovered,
so the effective network contains only a single burst of length B and a feasible code guarantees recoverability. The remaining
packets in the second period are then recovered in the same way as in the above by time 3B + 3T − 1.

A feasible decoder effectively completes decoding from one period of the network before pursuing the next. Suppose that this
periodic channel continues for L periods. Furthermore, we permit an L+1-th grace period that ensures enough transmissions
for the packets in the L-th period to be recovered. Note that we are not concerned with recovering the packets in this period.
Reusing the counting argument reveals

L(B + T )nR ≤ (L+ 1)B(n− νp) + (L+ 1)Tn.

By substituting T = Teff and letting L grow asymptotically, this equation is re-arranged to recover (2). Thus, all achievable
rates are bounded by the capacity for both cases. This completes the converse for T ≥ B.

B. Upper Bound for T < B

When T < B, the first packet in a burst of length B must be recovered before the burst ends. In fact, assuming that all
prior source packets are known, any packet st is expected to be recoverable by the end of an window [t, t+ T ] experiencing
only bursts. Consequently, the inter-burst gap is irrelevant and any feasible code over CH(r, p,B,G) is also feasible over a
perpetual rank-deficient network, i.e., rank (At) = r − p for all t ≥ 0. Decoding is performed similar to the prior scenario
where T < G but by considering each source packet sequentially. Once st is recovered at time t + T , we move to the next
time instance and negate the effect of the recovered packet. Then st+1 is recovered in the same manner. Using the previous
counting argument, we can bound the rate

nR ≤ n− νp

An information theoretic argument similar to the one given in Appendix B can be made to show the same results.

VI. SIMULATION RESULTS

We use simulations to evaluate the performance of ROBIN codes over statistical networks. Single-link burst erasure streamins
have been modelled in previous works using a Gilbert channel [4], [5]. We appropriate this model to characterize a network
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Fig. 7: Simulations over a Gilbert Channel modelling a network with rank (At) = 6 in the good-state and 3 in the bad-state.
The channel and code parameters are given in Table I.

with bursts of rank-deficient matrices. The Gilbert channel is a Markov model with two states: a good-state where the channel
matrix At = A is full-rank, i.e., ρt = r, and a bad-state where the channel matrix At = A∗ is rank-deficient, i.e., ρt = r−p. The
bad-state represents a burst loss event, i.e., p paths deactivate forcing the receiver to observe p linearly dependent combinations
of the channel packets for each shot while the channel remains in the bad-state. The transition probability from good-state to
bad-state is given by the parameter α whereas the transition probability from bad-state to good-state is given by β. The length
of a burst is a geometric random variable with mean 1

β , whereas the length of the gaps between bursts is geometric with mean
1
α . The adversarial Burst Rank Loss Network approximates this Gilbert channel, with B and G chosen in proportion to 1

β and
1
α respectively.

Decoders are not explicitly implemented in the experiments. The analysis consists of calculating whether a given packet is
recoverable by counting the number of available linear combinations. To simplify the computations, we assume that the MSR
and m-MDS codes have infinite memory, including when used as constituents. Consequently, source packets can be recovered
after the deadline, but are not considered successfully decoded. We measure the packet loss rate, given by the frequency of
source packets that are not completely recoverable within their respective deadlines. The burst length parameter β is varied
along the x-axis in the first experiment, whereas in the second, we vary the rank-deficiency p. We plot loss probability on the
y-axis.

A. Variable Burst Length Parameter

For this experiment, the bad-state transition probability β is varied from 0.1 to 0.8. The good-state transition probability α
is equal to 5× 10−4. Both r = 6 and p = 3 are fixed. Fig. 7b shows the burst length distribution for β = 0.5. The code rate
is set at R = 20

26 ≈ 0.77 and the decoder permits a maximum tolerable delay T = 7. These channel and code parameters are
summarized in Table I. In Fig. 7a, the packet loss rate of the ROBIN code is measured and compared to the loss rate of the
MSR code and their single-link counterparts: the MS and m-MDS codes.

• m-MDS code: The m-MDS code loss rate is the dashed cyan line with ’4’. Having been designed for single-link channels,
the m-MDS code discards the macro-packet if the channel matrix is rank-deficient. The maximum burst length for perfect
recovery with delay T = 6 is B = 1, meaning if the channel is in the bad-state for two consecutive time instances, the
first packet is not recoverable within the deadline. However, this code is capable of recovering part of a burst within the
delay constraint. For example, if a burst of length 2 occurs at time t, both source packets are recovered simultaneously
at time t+7. Consequently, the second source packet meets its deadline even though the first packet fails. This ability to
recover a fraction of packets affected by a burst is referred to as ’partial recovery’.

• MS code: The dashed purple line with ’O’ represents the MS code loss rate. Having been designed for single-link
streaming, this code also considers a rank-deficient channel as an erasure of the entire macro-packet. The MS code
nonetheless affords a larger B = 3 than the m-MDS code, as marked in Fig. 7b. As a result, it achieves a slightly lower
loss rate in comparison to the m-MDS code.
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Fig. 8: Simulations over a Gilbert Channel modelling a network with rank (At) = 16 in the good-state and 16 − p in the
bad-state. The channel and code parameters are given in Table I.

Note that both the MS and the m-MDS codes perform slightly better than the rank metric codes for β = 0.1. This region
is characterized by long bursts which are not recoverable by any of the codes. The m-MDS code (and by extension, the
MS code) are systematic constructions, meaning that packets after a burst are immediately recovered simply by reading
the source symbols. In contrast, the MSR and ROBIN codes are non-systematic. As a result, even the packets after a burst
are not recoverable until all prior packets are recovered. Using a systematic code gives a technical improvement over the
non-systematic codes, but the effect is not visible except in the extreme case of long bursts.

• MSR code: The loss rate of the MSR code is given by the solid red line marked ’©’. This code does not discard the
entire macro-packet for a rank-deficient channel. Furthermore, this code is capable of partial recovery for bursts exceeding
the maximum tolerable length. These improvements permit the MSR code to have a significantly lower loss probability
in comparison to the single-link codes. If a burst of length 4 occurs at time t, the last three source packets in the burst
are recoverable within their respective deadlines using an MSR code. In contrast, all four source packets are lost when
using a MS code. The MSR code shows that rank metric codes designed for streaming over a network provide significant
gains in comparison to single-link codes. However, the maximum tolerable burst length B = 3 is significantly smaller
than that of the ROBIN code, as marked in Fig. 7b.

• ROBIN code: The solid blue line marked ’�’ shows the loss rate of the ROBIN code. Similar to the MSR code, this
code is capable of decoding using the linearly independent packets in rank-deficient channel matrices. In addition, the
ROBIN code guarantees the largest tolerable burst length B = 6. As a result, the ROBIN code easily outperforms all of
the other codes for nearly all values of β.
The only region where ROBIN codes do not significantly outperform the others is when β < 0.2. This region is indicative
of long bursts, with the mean burst length exceeding 10. Here, all codes fail to recover any packets affected by the bursts
and therefore all achieve similarly high loss rates. The m-MDS and MS codes slightly outperform the ROBIN codes for
β = 0.1 as previously discussed. This is due to ROBIN codes using a non-systematic construction, which makes it unable
to recover packets after a long burst with low delay.

B. Variable Rank-deficiency

For this experiment, we fix the Gilbert channel parameters α = 5 × 10−4 and β = 0.3. The decoder delay T = 17 and
network rate r = 16 are also fixed. We vary the bad-state rank-deficiency p to compare the performance to the achievable rates
shown in Fig. 3. For every tested value of p, we change the rate R of the codes, while keeping the ratio 1−R

p constant. This
ensures that for every pair (p,R), the maximum tolerable burst lengths B of the ROBIN Code and the MSR Code remain
fixed. Naturally, the single-link codes are not dependent on p and therefore their B values decrease as R increases for fixed
1−R
p . The channel and code parameters are summarized in Table I. The packet loss rates of the codes are displayed in Fig.

8b. Comparing with Fig. 3, the simulations match the predicted results and further, justifying the adversarial approach.

• m-MDS code: The m-MDS code loss rate is the dashed cyan line with ’4’. Predictably, this code reveals the worst
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performance throughout the experiment. Matching the achievable rates in Fig. 3, the m-MDS code and MSR code have
the highest disparity for small p and achieve the same performance when p approaches r. By forcing constant 1−R

p , the
code rate decreases as p increases, permitting larger bursts to be recoverable.

• MS code: The dashed purple line with ’O’ represents the MS code loss rate. The performance matches the m-MDS code
when p is small, but converges to the ROBIN code as p increases. Because the network for p = r effectively behaves
as an erasure channel, the MS code and m-MDS code match single-link streaming simulations in [5]. MS codes use a
similar layering technique to ROBIN codes. At p = r, their code parameters converge to the same values, and thus, they
are effectively equivalent.

• MSR code: The loss rate of the MSR code is given by the solid red line marked ’©’. This code has a constant tolerable
burst length B for every pair (p,R). As a result, the performance remains constant throughout the experiment. The MSR
and m-MDS code performances naturally become the same when p = r, similar to the comparison in Fig. 3 of achievable
rates. When p = r, burst recoverability condition in (5) for MSR codes is equivalent to that for m-MDS codes [20].

• ROBIN code: The solid blue line marked ’�’ shows the loss rate of the ROBIN code. By keeping the ratio 1−R
p constant,

we fix B of the ROBIN code. Thus, the loss rate does not change as p increases. When p = r, the channel behaves
as an erasure channel and the MS and ROBIN code effectively become the same. Once again, this result validates the
predictions from Fig. 3. The key difference between MS and ROBIN codes is the use of a non-systematic encoder to
protect the non-urgent symbols by the ROBIN code. However, this does not yield a significant difference in the loss rates
for the above simulations.

VII. CONCLUSION

In this paper, we address the problem of network streaming where links fail in a burst event. Random linear network codes
are assumed rather than naive routing. As a consequence channel packets mix amongst themselves before arriving at the
destination. We propose the Burst Rank Loss Network, extending the classic burst erasure channel to consider rank-deficient
channel matrices. Layered coding techniques are used to construct a new family of codes: ROBIN codes. These codes use
MSR and MRD codes as constituents and guarantee perfect low-delay recovery of every packet transmitted during a burst of
link failures. Furthermore, ROBIN codes achieve the streaming capacity of the Burst Rank Loss Network for the practical case
of T ≥ B. Simulations over statistical networks are performed to compare these to baseline rank metric codes such as the
MSR and MRD codes as well as single-link erasure correcting streaming codes such as the m-MDS and MS codes.

We remark on the size of the required field FqM to construct ROBIN codes. Both the constituent MSR and MRD codes
naturally require sufficiently large fields in order to be constructed. Given the ROBIN code parameters in (11), we write
M ≥ max (M1,M2), where M1 ≥ B(r+p) is the necessary field size to guarantee the construction of an appropriate Gabidulin
code [14] and M2 ≥ qTeffr(Teff+2)−1 is the necessary field size to guarantee an appropriate MSR code [8]. However, simulation
results can show that both structured and random linear code constructions exist over smaller fields for the substituents. Given
these alternatives, we conjecture that fields smaller than max (M1,M2) can be found to harbour ROBIN codes.

There exist several problems to be addressed in future works. A current concern is that in contrast to single-link burst
correcting MS codes which use systematic constructions, ROBIN codes use a non-systematic MSR constituent. It is not
immediately obvious whether a systematic MSR code exists to satisfy the delay constraints, but assuming their existence,
a hypothetical systematic ROBIN code is more easily decodable and offers protection in the event of long bursts. A second
problem to consider is the region of G < B. Currently, general achievable codes for the single-link problem under this scenario
are not known and may provide insights to the network scenario. Finally, the layered approach to solve the Burst Rank Loss
Network can be implemented for more sophisticated networks. Further sliding window erasure channels such as the robust
burst erasure channel and multi-cast burst erasure channels naturally possess network counterparts. As the layered technique
using MSR constituent codes has proven successful for burst correction, it would be interesting to observe whether the results
of streaming over more sophisticated erasure channels channels can be fully generalized to the network scenario.
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Fig. 9: The periodic rank loss channel, with the sets Ui, Vi,Wi identified for the i-th period.

APPENDIX A
PROOF OF STATEMENT 1 IN LEMMA 1

Recall the assumption in Section II on the code length n = νr. The proof below is nearly identical to the one provided in
[8], except for the key difference being that only ν = 1 was considered in the prior work.

Proof: We assume only that rank (A[t,t+j]) ≥ R(j+1)r for the first packet in a sequence to be recoverable. Consider two
source sequences s[t,t+T ] = (st, . . . , st+T ) and ŝ[t,t+T ] = (ŝt, . . . , ŝt+T ), where st 6= ŝt. Suppose they respectively generate
macro-packet sequences X[t,t+T ] and X̂[t,t+T ], where X[t,t+T ]A∗[t,t+T ] = X̂[t,t+T ]A∗[t,t+T ]. In vector notation, X[t,t+T ]A∗[t,t+T ]

expands to

(xt, . . . , xt+T )


diag (A∗t ; ν)

. . .

diag (A∗t+T ; ν)

 .

Note that rank (diag (At; ν)) = ν rank (At). The difference x[t,t+T ]− x̂[t,t+T ] is a hypothetical codeword sequence whose sum
rank is at least (n−k)(T +1)+1. However, (xi− x̂i) diag (A∗i ; ν) = 0 implies rank (φn(xi)− φn(x̂i)) ≤ n− ν rank (A∗i ) for
i ∈ [t, t+ T ]. By summing each of the inequalities, we arrive at the following contradiction on the sum rank of this codeword
sequence:

t+T∑
i=t

rank (φn(xi)− φn(x̂i)) ≤ n(T + 1)− ν rankA∗[t,t+T ]

≤ n(T + 1)− νR(T + 1)r

≤ (n− k)(T + 1).

APPENDIX B
CONVERSE PROOF OF THEOREM 1 FOR T < G

This proof follows similarly to the one in [4]. Consider the periodic network in Fig. 9 and suppose the network is in use
for L periods. An L+1-th period provides sufficient information to recover the packets in the L-th period, and the packets in
the grace period do not need to be recovered. We use the following notation to facilitate the proof:

U1
i = (s(T+B)i, . . . , s(T+B)i+B−1)

U2
i = (s(T+B)i+B , . . . , s(T+B)(i+1)−1)

}
Ui = (U1

i , U
2
i )

V 1
i = (X(T+B)i, . . . ,X(T+B)i+B−1)

V 2
i = (X(T+B)i+B , . . . ,X(T+B)(i+1)−1)

}
Vi = (V 1

i , V
2
i )

W 1
i = (Y(T+B)i, . . . ,Y(T+B)i+B−1)

W 2
i = (Y(T+B)i+B , . . . ,Y(T+B)(i+1)−1)

}
Wi = (W 1

i ,W
2
i ).



18

Here, i ∈ {0, . . . , L− 1} denotes the period of interest. Ui, Vi, and Wi denote the source packets, transmitted macro-packets,
and received macro-packets respectively in one period of transmission. The superscript 1 refers to the packets in the period
that are affected by the burst, whereas the superscript 2 refers to the packets after the burst. We use the following inequalities:

H(W 1
i ) ≤ H(V 1

i )
r − p
r

(16a)

H(W 2
i ) = H(V 2

i ), (16b)

in order to bound the entropy of Wi. Both relationships arise from the channel transfer matrix. The packets in W 2
i and V 2

i are
related by a full rank channel matrix A and thus, the linear transformation does not change the entropy. However, the packets
in W 1

i and V 1
i are related by a rank-deficient A∗. As the received packets formed from linearly dependent combinations of the

channel packets can simply be re-written using the remaining linearly independent channel packets, they decrease the entropy
accordingly.

Before proving the converse, we assert two remaining relevant properties of a streaming code:

H(U1
i | V[0,i−1],Wi) = 0 (17a)

H(U2
i | V[0,i−1], V

1
i ,W

2
i ,Wi+1) = 0. (17b)

Both properties are due to the fact that for a feasible code, each source packet must be recovered with delay T . Now, let S
denote the alphabet of source symbols and X the alphabet of channel symbols. Then, we can show

L(B + T )H(S) = H(U[0,L−1])

≤ H(U[0,L−1],W[0,L])

= H(W[0,L]) +

L−1∑
i=0

H(Ui | U[0,i−1],W[0,L])

= H(W[0,L]) +

L−1∑
i=0

(
H(U1

i | U[0,i−1],W[0,L]) +H(U2
i | U1

i , U[0,i−1],W[0,L])

)

= H(W[0,L]) +

L−1∑
i=0

(
H(U1

i | V[0,i−1],W[0,L]) +H(U2
i | V 1

i , V[0,i−1],W[0,L])

)
(18)

= H(W[0,L]) (19)

≤ (L+ 1)(H(W 1
i ) +H(W 2

i ))

≤ (L+ 1)(B
r − p
r

+ T ) log |X |. (20)

In the above, (18) is due to the channel macro-packets being causally generated from source packets. Using (17) gives (19).
We arrive at (20) due to (16). The inequality can be re-arranged to bound the rate.

R =
k

n
≤ H(S)

log |X |
=

(
L+ 1

L

)
Tr +B(r − p)

(T +B)r

L→∞−−−−→Tr +B(r − p)
(T +B)r

Replacing Teff = T returns the capacity in (2).
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