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Abstract—We study the problem of sending a binary source
over a two-receiver erasure broadcast channel with source-
channel bandwidth mismatch, under a Hamming distortion
measure. Given the distortion constraints of both users, our
main focus is to derive a lower bound for the minimum latency
required before both users will be able to reconstruct the
source subject to their distortion constraints. Our derivation
involves adapting an outer bound given by Reznic et al. (2006)
for the related quadratic Gaussian source broadcast problem.
This outer bound involves the introduction of an auxiliary
random variable and the entropy power inequality, which
is replaced with analogous inequalities in the problem we
consider. We numerically evaluate our lower bound and find
that it can be tighter than the one given by the source-channel
separation theorem.

I. INTRODUCTION

We consider the minimum latency that must be incurred
before two users are able to reconstruct a binary source that
is sent to them over an erasure broadcast channel. In this
problem, the source is equiprobable and the two users wish
to individually reconstruct it only to within some degree
of prespecified Hamming distortion. The goal then, is to
determine a lower bound for the latency required before both
users will be able to do so. The latency is measured in terms
of the number of channel symbols per source symbol that
must be sent over the broadcast channel before both users
can reconstruct the source. It also represents the source-
channel bandwidth mismatch.

Our problem is motivated by the single-server streaming
model that has been introduced in [1]. Here, a server
wishes to communicate a source sequence to a group of
heterogeneous users over a broadcast channel. The under-
lying channels are modelled as erasure channels and each
user’s channel has a certain loss probability. Furthermore
each user is only interested in retrieving a certain fraction
of source packets. The transmitter continuously broadcasts
coded packets and each receiver waits until it is able to
retrieve sufficiently many packets of the underlying source.

The focus in [1] is to optimize the degree distribution of
a rateless codes for this application. In this correspondence,
we take a complementary view that formulates this problem
in terms of the joint source-channel coding of a binary
source that is to be sent over a binary erasure broadcast
channel subject to distortion constraints. In particular, we
will be interested in studying the additional latency experi-
enced by a user due to the presence of an additional user in
the network, who the transmitter must simultaneously serve.

In the absence of this additional user, the source-channel
separation theorem gives an achievable lower bound for the
latency incurred by a user, given his distortion constraint and
channel noise. When applied to a broadcast network, despite
the fact that this bound does not consider the tensions
involved in the addition of another user, it was nevertheless
shown in [2] that this lower bound could still be simulta-
neously achieved by both users over a range of distortion
values in the related quadratic Gaussian source broadcast
problem. In effect, both users operate as if the other one
is not present and we say that both users simultaneously
achieve their individual point-to-point optimal latencies.

On the other hand, if we only consider the overall or
maximum network latency, it was shown in [3] that in
general, there is a conflict between the needs of both users.
Indeed, it may be necessary for the overall latency to be
strictly larger than the point-to-point optimal latencies of
either of the two users given their collective distortion
constraints. We now show a similar result for our current
problem involving binary source broadcasting.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. We consider a bi-
nary memoryless stationary source {S(i)}i=1,2,... producing
equiprobable symbols in the alphabet S = {0, 1}, which we
wish to communicate to two users over an erasure broadcast
channel. Let Sk be the set of all k-vectors with components
in S, and denote the vector (S(1), S(2), . . . , S(k)) as Sk.

The source is communicated by a block encoding func-
tion that maps the length k source sequence Sk, to a length
n channel input sequence Xn = (X(1), X(2), . . . , X(n))
where X(l) denotes the lth channel input taken from the
alphabet X = {−1,+1}.

Let Yi(l) be the channel output observed by user i on
the lth channel use for i ∈ {1, 2} and l = 1, 2, . . . , n. The
channel model is given by

Yi(l) = X(l) ·Ni(l), (1)

where Ni(l) is a Bern(1− εi) random variable representing
the noise at user i’s lth channel output. The channel is
memoryless in the sense that Ni(l) is drawn i.i.d. from a
Bern(1−εi) distribution. Specifically, the statistics of Ni(l)
are such that

Ni(l) =

{
0 with probability εi,
1 with probability 1− εi.

(2)
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Fig. 1. Broadcasting an equiprobable binary source over an erasure broadcast channel with bandwidth mismatch. The output Uk , of the test channel
of Section IV, is also shown.

Thus, Yi(l) takes on values in the alphabet Y =
{−1, 0,+1}. If we define ‘0’ as the erasure symbol, we
can interpret Yi(l) as the output of an erasure channel, with
erasure probability εi, when X(l) is the channel input. We
will assume that ε1 < ε2 so that user 1 is in some sense,
the “stronger” user.

Having observed the channel output, user i then uses it
to reconstruct the source as Ŝki , a length k sequence with
components in Ŝ = {0, 1}. On a symbol-by-symbol basis,
we measure the reconstruction’s fidelity with the Hamming
distortion d : S × Ŝ → {0, 1} given by

d(s, ŝ) = s⊕ ŝ. (3)

The per-letter distortion of a vector is then defined as

d(sk, ŝk) =
1

k

k∑
i=1

d(si, ŝi). (4)

We now define the components of our problem.

Definition 1. A (k, n,D1, D2) source-channel code for
source S on the erasure broadcast channel consists of

1) An encoding function fk : Sk → Xn such that Xn =
fk(S

k)

2) Two decoding functions gi : Yn → Ŝk such that
Ed(Sk, gi(Xn ·Nn

i )) ≤ Di holds for i ∈ {1, 2}.
where E(·) is the expectation operation.

A point is now made about the modelling of latencies in
our problem. We define the latency or bandwidth expansion
factor b ∈ [0,∞), as the number of channel uses per
source symbol that are delivered over the broadcast channel,
i.e., b , n/k. This is to say that b · k channel uses are
required before both users can reconstruct Sk subject to
their distortion constraints. Our problem is now defined as
characterizing the achievable latency region under a given
pair of distortion constraints as per the next definition.

Definition 2. A latency b, is said to be (D1, D2)-achievable
over the erasure broadcast channel if for every δ > 0,
there exists for sufficiently large k, a (k, b·k, d1, d2) source-
channel code such that

Di + δ ≥ di, i ∈ {1, 2}. (5)

The achievable latency region is the set of all achievable
latencies under the prescribed distortion pair.

III. MAIN RESULT

In this section, we present our main result, which is
an outer bound for the achievable latency region. Before
presenting the outer bound however, we will first derive a
simple one based on the source-channel separation theorem.
Consider an equiprobable binary source being sent over
an erasure channel, with erasure probability ε. We wish to
reconstruct the source subject to a Hamming distortion of D.
From the source-channel separation theorem it is not hard
to see that the value b∗ is an outer bound for the latency
where

b∗ =
1−H(D)

1− ε
. (6)

In a broadcast setting, where there are two users that
have to simultaneously satisfy the distortion constraints D1

and D2, over an erasure broadcast channel with erasure
probabilities ε1 and ε2, it should therefore be clear that a
lower bound for the latency in our problem is the value B∗

where

B∗ = max

(
1−H(D1)

1− ε1
,
1−H(D2)

1− ε2

)
. (7)

We now present our new outer bound, which can be
tigther than the one given above. The derivation will be
presented in the following section.

Theorem 1. Define the function f0(κ, θ) so that

f0(κ, θ) ,
1−H(κ ∗D2)

1− ε2
(8)

+
θ − 1 +H

(
H−1 (1− θ) ∗ κ

)
1− ε1

,

Let (κ∗, θ∗) be the solution to the optimization problem
given by

max
κ

min
θ

f0(κ, θ)

subject to 0 ≤ κ ≤ 1/2

1−H(D1) ≤ θ ≤ 1.

(9)

If the latency b, is (D1, D2)-achievable over the erasure
broadcast channel, then

b ≥ f0(κ∗, θ∗). (10)

We numerically evaluate the optimization problem in
Theorem 1 and illustrate the outer bound in Figure 2. In this
plot, the channel erasure probabilities are set at ε1 = 0.1,
ε2 = 0.5. We fix a value of D1 = 1/32 and vary D2 in



0 0.1 0.2 0.3 0.4 0.5
0.8

1

1.2

1.4

1.6

Weak User’s Distortion D2

L
at

en
cy
b

Latency Outer Bound

Point-to-point Bound (Equation (7))
Theorem 1

Fig. 2. A numerical plot of the latency outer bound of Theorem 1. We fix
ε1 = 0.1, ε2 = 0.5 and D1 = 1/32 and vary D2 in the range [1/32, 1/2]
on the x-axis while plotting the outer bound for b on the y-axis. The point-
to-point outer bound from the source-channel separation theorem is also
shown.

the range [1/32, 1/2] on the x-axis while plotting the outer
bound for b on the y-axis. As can be seen, the outer bound
of Theorem 1 can be tighter than the trivial point-to-point
outer bound of Equation (7).

IV. DERIVATION

We will now derive the outer bound for the achievable
latency region of Theorem 1 by adapting an outer bound for
the quadratic Gaussian source broadcast problem given by
Reznic et al [3]. The outer bound involves the introduction
of an auxiliary random variable and the entropy power
inequality, which is replaced with analogous inequalities in
the problem we consider.

Let N be the collection of both users’
noise processes. That is, we define N =
(N1(1), N1(2), . . . , N1(n), N2(1), N2(2), . . . , N2(n)),
where we again remind the reader that Ni(l)

i.i.d.∼
Bern(1− εi). Let us first consider an achievable distortion
D1, that user 1 achieves. From rate-distortion theory, we
can begin by writing

kR(D1) ≤ I(Sk; Ŝk1 ) (11)
(a)

≤ I(Xn;Y n1 ) (12)
≤ I(Xn;Y n1 , N) (13)
(b)
= I(Xn;Y n1 |N) (14)

where
(a) follows from the Markov chain Sk −Xn − Y n1 − Ŝk1 ,

and the data processing inequality
(b) follows from the fact that the noise processes are

independent of the channel input.
To capture the tension between the simultaneously

achievable distortions, our goal is to now upper bound the
right hand side of Equation (14) with a function of user 2’s
distortion in order to give a bound on user 1’s distortion,
which appears on the left hand side of Equation (14).
To do this, we follow the procedure of Reznic, Feder

and Zamir [3], and first introduce an auxiliary random
variable Uk = (U(1), U(2), . . . , U(k)), whose lth element
is obtained by passing S(l) through a memoryless binary
symmetric channel with crossover probability κ (see Fig. 1).

In other words, we first define the random vector W k =
(W (1),W (2), . . . ,W (k)), whose entries are sampled i.i.d.
from a Bernoulli distribution such that

W (l) =

{
0 with probability 1− κ,
1 with probability κ

(15)

for l = 1, 2, . . . , k and some κ ∈ [0, 12 ]. We then define the
vector Uk such that it’s lth element is given as

U(l) = S(l)⊕W (l), (16)

where ⊕ is the XOR operation.
We now incorporate the auxiliary random variable by

continuing from Equation (14) and expanding the right hand
side of it as

I(Xn;Y n1 |N) = I(Uk, Xn;Y n1 |N)− I(Uk;Y n1 |Xn, N)
(17)

(a)
= I(Uk, Xn;Y n1 |N) (18)

= I(Uk;Y n1 |N) + I(Xn;Y n1 |Uk, N) (19)
(b)
= H(Uk)−H(Uk|Y n1 , N) (20)

+ I(Xn;Y n1 |Uk, N)

(c)
= k −H(Uk|Y n1 , N) (21)

+ I(Xn;Y n1 |Uk, N)

(d)
= k −H(Uk|Y n1 , N) +H(Y n1 |Uk, N)

(22)

where
(a) follows from the fact that Y n1 is a function of Xn and

N
(b) follows from the fact that Uk is independent of N .
(c) follows from the fact that Uk is memoryless and S(l)

in Equation (16) is equiprobable
(d) follows from the fact that Y n1 is a function of Xn and

N .
The next two subsections are dedicated to individually

bounding the last two terms on the right hand side of
Equation (22). We then combine all the bounds to formulate
the outer bound as an optimization problem in Section IV-C.

A. H(Y n1 |Uk, N) Upper Bound

We begin this subsection by first restating a Lemma that
relates the entropies of two random vectors that are each
a separately erased version of a common random vector.
The lemma first appeared in a related form in a work by
Zhu and Guo while studying the layered erasure one-sided
interference channel [4]. We refer the interested reader to
the appendix of [5] for a detailed proof of the following
lemma.

Lemma 1. If T̂ is a collection of arbitrary random variables
independent of N, then

1

1− ε1
H(Y n1 |T̂ , N) ≤ 1

1− ε2
H(Y n2 |T̂ , N). (23)



We use Lemma 1 to write

H(Y n1 |Uk, N) ≤ 1− ε1
1− ε2

H(Y n2 |Uk, N)

=
1− ε1
1− ε2

(
H(Y n2 |N)− I(Uk;Y n2 |N)

)
(a)

≤ 1− ε1
1− ε2

(
n(1− ε2)− I(Uk;Y n2 |N)

)
(b)
=

1− ε1
1− ε2

(
n(1− ε2)− I(Uk;Y n2 , N)

)
≤ 1− ε1

1− ε2
(
n(1− ε2)− I(Uk;Y n2 )

)
(c)

≤ 1− ε1
1− ε2

(
n(1− ε2)− I(Uk; Ŝk2 )

)
(24)

where
(a) follows from the fact that the entropy of a memoryless

erasure channel output is maximized when the input is
i.i.d. and equiprobable

(b) follows from the fact that Uk is independent of N
(c) follows from the Markov chain Uk − Y n2 − Ŝk2 and the

data processing inequality.
We are now in a position to incorporate D2, user 2’s

distortion, into the outer bound. We do this by first com-
puting the expected distortion between the auxiliary random
vector Uk and user 2’s reconstruction Ŝk2 , under a Hamming
distortion measure. Before doing this, for i = 1, 2, . . . , k, it
will be convenient to define the indicator variable Ei such
that

Ei =

{
0 if Ŝ2(i) = S(i),

1 if Ŝ2(i) 6= S(i).
(25)

It is worth noting that Ei is a random variable with an
expected value EEi satisfying

1

k

k∑
i=1

EEi = D2. (26)

We now calculate

EdH(Uk, Ŝk2 ) = E

(
1

k

k∑
i=1

dH(U(i), Ŝ2(i))

)

= E

(
1

k

k∑
i=1

U(i)⊕ Ŝ2(i)

)
(a)
= E

(
1

k

k∑
i=1

{S(i)⊕W (i)} ⊕ {S(i)⊕ Ei}

)

=
1

k

k∑
i=1

E (W (i)⊕ Ei)

(b)
=

1

k

k∑
i=1

κ ∗ EEi

(c)
= κ ∗D2 (27)

where
(a) follows from Equations (16) and (25)
(b) follows from the fact that Ei is independent of W (i)

and the fact that the indicator variable takes on the value
‘1’ with a probability equal to its expected value

(c) follows from Equation (26).
Continuing from Equation (24), we have that

H(Y n1 |Uk, N) ≤ 1− ε1
1− ε2

(
n(1− ε2)− I(Uk; Ŝk2 )

)
(a)

≤ 1− ε1
1− ε2

(n(1− ε2)

−kRH(EdH(Uk, Ŝk2 ))
)

(b)
=

1− ε1
1− ε2

(n(1− ε2)− kRH(κ ∗D2))

(c)
=

1− ε1
1− ε2

(n(1− ε2)

− k(1−H(κ ∗D2))) (28)

where
(a) follows from the rate-distortion theorem
(b) follows from Equation (27)
(c) follows from the rate distortion function for an

equiprobable source with a Hamming distortion mea-
sure.

B. H(Uk|Y n1 , N) Lower Bound

In the last subsection, we used Lemma 1 in a way that
was analogous to the entropy power inequality, to relate the
entropies of two random vectors that were each an erased
version of a common random vector. In this subsection we
will use Mrs. Gerber’s Lemma to bound the entropies of two
binary random vectors where one is the result of passing the
other through a memoryless binary symmetric channel. We
first restate the Lemma [6].

Lemma 2 (Mrs. Gerber’s Lemma). Let H−1 : [0, 1] →
[0, 1/2] be the inverse of the binary entropy function, i.e.,
H(H−1(v)) = v. Let Sk be a binary-valued random vector
and T be an arbitrary random variable. If W k is a vector
of independent and identically distributed Bern(κ) random
variables independent of (Sk, T ) and Uk = Sk⊕W k, then

H(Uk|T )
k

≥ H
(
H−1

(
H(Sk|T )

k

)
∗ κ
)

(29)

where ∗ is the convolution operator such that a∗ b = a(1−
b) + b(1− a).

If we apply Mrs. Gerber’s Lemma to our current situation,
we have that

H(Uk|Y n1 , N) ≥ kH

(
H−1

(
H(Sk|Y n1 , N)

k

)
∗ κ
)

= kH

(
H−1

(
H(Sk|N)− I(Sk;Y n1 |N)

k

)
∗ κ
)

(a)
= kH

(
H−1

(
k − I(Sk;Y n1 |N)

k

)
∗ κ
)

(b)

≥ kH

(
H−1

(
k − I(Sk, Xn;Y n1 |N)

k

)
∗ κ
)

(c)
= kH

(
H−1

(
k − I(Xn;Y n1 |N)

k

)
∗ κ
)

(30)

where
(a) follows from the fact that the source is memoryless,

equiprobable and independent of the noise processes



(b) follows from the fact that the function H−1(·) is mono-
tonically increasing and the function H(·) is mono-
tonically increasing when κ ∈ [0, 1/2], i.e., H(·) is
monotonically increasing when its domain is restricted
to be in [0, 1/2]

(c) follows from the fact that Y n1 is a function of Xn and
N

C. An Outer Bound as an Optimization Problem

We now combine the upper and lower bounds of the
previous two subsections to give an outer bound in the form
of an optimization problem. Combining Equations (14),
(22), (28) and (30), we can derive the inequality given in
Equation (31).

Define θ such that

θ ,
I(Xn;Y n1 |N)

k
. (33)

We can rearrange right hand inequality in Equation (31) and
isolate b to get that b ≥ f0(κ, θ), where f0(κ, θ) is given
by Equation (10) and we express f0 as a function of only
κ and θ, under the assumption that ε1, ε2, D1 and D2 are
fixed.

We now look to maximize f0(κ, θ) in order to give the
largest lower bound. We note that any code that achieves
the distortion pair (D1, D2), induces a value of θ, which
must satisfy the necessary conditions given in Equation (31).
In particular, in seeking the largest lower bound for b, the
least favorable θ must satisfy this for any choice of κ,
which determines the test channel. Thus, we may formulate
the outer bound as the optimization problem given in
Equation (9).
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1−H(D1) ≤
I(Xn;Y n1 |N)

k
≤ 1+

1− ε1
1− ε2

(b(1− ε2)− (1−H(κ ∗D2)))−H
(
H−1

(
k − I(Xn;Y n1 |N)

k

)
∗ κ
)

(31)


