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Capacity Bounds for a Class of Diamond Networks
with Conferencing Relays

Wanyao Zhao, David Yiwei Ding, Ashish Khisti

Abstract—Diamond channels can model modern wireless
communication infrastructure that use relays to increase
network capacity. This letter investigates the effect of
conferencing between the relays in a particular class of
diamond networks with source-to-relay and conferencing
channels modeled as noiseless bit-pipes of given capacities.
A lower bound to the capacity for this network and
an upper bound that is tighter than the cut-set bound
are presented. Such network with specific multiple access
channel (MAC) types are studied and the minimum confer-
encing link capacity needed to achieve full cooperation for
each MAC is ascertained. It is found that such minimum
conferencing link capacity for the Gaussian MAC must
be equal to the difference between the full cooperation
capacity and the backhaul capacity. However, such result
does not hold in general as the binary adder MAC
illustrates a counter-example.

Index Terms—Diamond channel, conferencing relays,
Marton’s coding, rate-splitting

I. INTRODUCTION

The rapid increase in the demand for wireless services,
supported by the growth in mobile technology, saw
the advancement of relay communication for coverage
extension and capacity improvement in network infras-
tructures of modern and emerging wireless networks
under the standard of WiMAX, LTE, 4G, and 5G. The
diamond network is first studied by [1], and since has
been used to model the communication between a source
and a destination with the help of two relays. The
diamond network is a cascade of two channels: the
broadcast channel where the source communicates with
two separate relays, and multiple access channel (MAC)
where the two relays communicate with the destination.
In [2], the authors derived a lower bound based on
Marton’s coding. A tighter upper bound than the cut-
set bound was found in [3] and [4]. In another work,
MAC with conference was first studied by Willems in
[5]. The conferencing links can allow for an increase
in correlation between the two relay messages through,
for example, exchanging each relay’s message, thereby
allowing the source to send independent messages to the
relays without compromising the cooperative potential.
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Fig. 1. Diamond network with relay conferencing.

In this letter, we combine the concepts of diamond net-
work and MAC with conferencing to study the effect of
relay conferencing on such networks. A key motivation
for this study is that such model can represent many prac-
tical systems with relays that have out-of-band commu-
nication capacities, for example, nodes connected among
each other via optical fiber or Wi-Fi. A particular subject
of interest is to evaluate the impact of communication
between the relays on the capacity bounds as compared
to the diamond network without relay conferencing. For
simplicity, it is assumed that the communication between
the relays do not interfere with the communication of the
message sent through the diamond network by treating
the conferencing channels as noiseless bit-pipes as well.
Such assumption is realistic in many practical systems
where not only are the conferencing links out-of-band,
but they are also wired (e.g. optical fiber), and therefore
they do not interfere with the transmitted message.

II. PROBLEM SETUP

We consider the diamond network in Fig. 1. The
source node wishes to transmit message W to the desti-
nation via two relays. The two relays can communicate
via two conferencing links. The backhaul capacities for
the noiseless bit-pipes connecting the source to relays 1
and 2 are C1 and C2, respectively. The capacity for both
relay conferencing links is C0.

The source encoder maps message W ∈ [1 : 2nR] onto
Sn1 and Sn2 and transmits through the noiseless bit-pipes
to relays 1 and 2, respectively, i.e.

Sn1 = f0,1(W ), Sn2 = f0,2(W ). (1)
Sn1 and Sn2 are such that H(Sn1 ) ≤ nC1 and H(Sn2 ) ≤
nC2. After receiving Sni , two relays can communicate
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through K rounds in a round-robin fashion. At round k,
relay i sends Vi,k to the other relay based on Sni and
message from the other relay in previous rounds, i.e.
V1,k = f1,2(S

n
1 , V

k−1
2 ), V2,k = f2,1(S

n
2 , V

k−1
1 ) (2)

for k = 1, 2, ...,K and Vi,0 = 1 for i = 1, 2. V K
i satisfies

the constraint H(V K
i ) ≤ nC0 for i = 1, 2. Then relay

i maps its received signal Sni from the transmitter and
V K
{1,2}\i from the other relay to Xn

i as the input to the
MAC for i = 1, 2, i.e.

Xn
1 = f1,3(S

n
1 , V

K
2 ), Xn

2 = f2,3(S
n
2 , V

K
1 ). (3)

The MAC is characterized by its input alphabet
X1, X2, output alphabet Y and transition probability
p(y|x1, x2). The receiver decodes an estimate Ŵ =
g(Y n) of W . The capacity of the diamond network
considered is defined as the maximum R such that for
any ε > 0 there exists {fi,0, fi,{1,2}\i, fi,3, g}, i = 1, 2

and n large enough such that Pr(W 6= Ŵ ) ≤ ε.

III. RESULTS ON BOUNDS

Theorem 1. An upper bound of the diamond network
with conference is

R ≤ max
p(x1,x2)

min
p(u|x1,x2,y)

β, (4)

where

β = min



C1 + C2

I(X1, X2;Y )

C1 + C0 + I(X2;Y |X1)

C2 + C0 + I(X1;Y |X2)
1
2(C1 + C2 + 2C0 + I(X1, X2;Y |U)

+I(X1;U |X2) + I(X2;U |X1)).
(5)

with |U| ≤ |X1||X2||Y|+ 2.

Proof: Starting from Fano’s inequality, we have
nR ≤ I(W ;Y n) + nε (6)

≤ I(Sn1 , Sn2 ;Y n) + nε (7)

≤ H(Sn1 ) +H(Sn2 )− I(Sn1 ;Sn2 ) + nε (8)

≤ nC1 + nC2 − I(Sn1 ;Sn2 ) + nε. (9)
Next we need to find the relation between I(Sn1 ;S

n
2 ) and

I(Xn
1 ;X

n
2 ), as follows,

I(Xn
1 ;X

n
2 ) (10)

≤ I(Sn1 , V K
2 ;Sn2 , V

K
1 ) (11)

= I(Sn1 ;S
n
2 ) + I(V K

2 ;Sn2 |Sn1 )
+ I(V K

1 ;Sn1 |Sn2 ) + I(V K
1 ;V K

2 |Sn1 , Sn2 ), (12)
where (11) is due to the Markov chain Xn

1 ↔
(Sn1 , V

K
2 )↔ (Sn2 , V

K
1 )↔ Xn

2 . For the terms in (12),
I(V K

1 ;Sn1 |Sn2 ) = H(V K
1 |Sn2 ) (13)

I(V K
2 ;Sn2 |Sn1 ) = H(V K

2 |Sn1 ) (14)

I(V K
1 ;V K

2 |Sn1 , Sn2 ) = 0, (15)

are true since V K
1 and V K

2 are both deterministic func-
tions of (Sn1 , S

n
2 ). Therefore, it follows that

I(Xn
1 ;X

n
2 ) (16)

≤I(Sn1 ;Sn2 ) +H(V K
2 |Sn1 ) +H(V K

1 |Sn2 ) (17)

≤I(Sn1 ;Sn2 ) +H(V K
2 ) +H(V K

1 ) (18)

≤I(Sn1 ;Sn2 ) + 2nC0. (19)
Combining (9) with (19) we have
nR ≤ nC1 + nC2 + 2nC0 − I(Xn

1 ;X
n
2 ) + nε. (20)

Finally, we use techniques in [4] to single-letterize the
bound in (20) to obtain that

2R ≤C1 + C2 + 2C0 + I(X1, X2;Y |U)

+ I(X1;U |X2) + I(X2;U |X1) (21)
for every auxiliary channel p(u|x1, x2, y). Combining
with the cut-set bound, we finished the proof.

Theorem 2. For diamond network with conferenc-
ing relays, rate R is achievable if for some pmf
p(u, x1, x2, y) = p(u, x1, x2)p(y|x1, x2) and U ∈ U
with |U| ≤ min{|X1||X2|+ 2, |Y|+ 4}, it satisfies that

R ≤ min



C0 + C2 + I(X1;Y |X2, U)

C0 + C1 + I(X2;Y |X1, U)

C1 + C2 − I(X1;X2|U)

I(X1, X2;Y )
1
2(C1 + C2 + 2C0 − I(X1;X2|U)

+ I(X1, X2;Y |U)).

(22)

Proof: The bound is achieved using following
scheme.

1) Codebook Generation: Generate 2n(R0+R10+R20)

sequences un(w0, w10, w20) independently, in
an i.i.d. fashion according to

∏n
i=1 pU (ui). For

each sequence un(w0, w10, w20), generate 2nR1

sequences xn1 (w0, w10, w20, w1) independently in
an i.i.d. fashion according to

∏n
i=1 pX1|U (x1i|ui)

and likewise for xn2 (w0, w10, w20, w2). For each
sequence un(w0, w10, w20), pick 2nR

′
sequence pairs

(xn1 (w0, w10, w20, w1), x
n
2 (w0, w10, w20, w2)) that are

jointly typical. Index such pairs by w′ ∈ [1 : 2nR
′
].

2) Encoding: To transmit message W =
(w0, w10, w2,0, w

′), the encoder transmits w0, w10,
and w1 through the bit-pipe to relay 1, and
w0, w20, and w2 through the bit-pipe to relay 2
(xn1 (w0, w10, w20, w1) and xn2 (w0, w10, w20, w2) are the
m′th jointly typical pair for (w0, w1,0, w2,0)), in which
w0 ∈ [1 : 2nR0 ], wi,0 ∈ [1 : 2nRi,0 ], wi ∈ [1 : 2nRi ] for
i = 1, 2. Then relay 1 transmits w10 to relay 2 through
the conferencing bit-pipe, and relay 2 transmits w20 to
relay 1 through the bit-pipe as well. Relay 1 and relay
2 send xn1 (w0, w10, w20, w1) and xn2 (w0, w10, w20, w2)
through the MAC, respectively.
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3) Decoding: Define wc = (w0, w10, w20). Upon
receiving yn, the receiver looks for (ŵc, ŵ′) for which:

(un(ŵc), x
n
1 (ŵc, ŵ1), x

n
2 (ŵc, ŵ2), y

n) ∈ T nε , (23)
where T nε denotes the jointly typical set of (U,X1, X2).

4) Error Analysis: The error analysis is an extension
to [4] with the added common message components from
the relay conferencing links, and are omitted here due
to limited space. Cardinality bounds on U are derived
using standard techniques [6, Appendix C].

IV. CASE STUDIES

A. Symmetric Gaussian Diamond Channel

In this section, we consider a special case of the
diamond network investigated, with C1 = C2 = C and
Gaussian MAC. The output of the Gaussian MAC is

Y = X1 +X2 + Z, (24)
where Z ∼ N (0, 1). Both X1 and X2 have average
power constraint 1

n

∑n
i=1E[X2

j,i] ≤ P for j = 1, 2.
Now we apply Theorem 1 to obtain an upper bound

for this setup with techniques similar to [4]. After
simplification, we obtain upper bound as:

C+ = max{max
ρ≤ρ∗

S1(ρ), max
ρ∗≤ρ≤1

S2(ρ)}. (25)

where

S1(ρ) = min



2C
1
2 log(1 + 2(1 + ρ)P )

C + C0 +
1
2 log(1 + (1− ρ2)P )

C + C0 +
1
4 log(1 + 2(1 + ρ)P )

− 1
2 log

1
1−ρ2

S2(ρ) = min


2C
1
2 log(1 + 2(1 + ρ)P )

C + C0 +
1
2 log(1 + (1− ρ2)P )

ρ∗ =
√

1 +
1

4P 2
− 1

2P
. (26)

Lower bound is evaluated from (22) by choosing
(U,X1, X2) to be jointly Gaussian, i.e. (U,X1, X2) ∼
N (0,KUX1X2

) and optimizing over KUX1X2
.

For the case P = 1, the results are shown in Fig.
2(a) and Fig. 2(b) for the upper and lower bounds,
respectively. The gap between the upper and lower
bounds can be seen more clearly from Fig. 2(c) with
C0 = 0, 0.3 and 0.6.

B. Minimium C0 Required for Full Cooperation for
Symmetric Gaussian MAC

The minimum conferencing link capacity C0 required
such that full-cooperation capacity 1

2 log(1+4P ) can be
achieved for the Gaussian symmetric diamond network
is summarized in Theorem 3. Note that the regime of

interest is 1
4 log(1 + 4P ) ≤ C < 1

2 log(1 + 4P ) since
for C < 1

4 log(1 + 4P ) the sum capacity of the source-
to-relays bit-pipe links 2C becomes the bottleneck and
for C ≥ 1

2 log(1 + 4P ), minimum C0 required is zero
because repetitive message can be sent via both links to
obtain full cooperation.

Theorem 3. Given the capacity of the source-to-relay
bit-pipe links C ∈ [14 log(1 + 4P ), 12 log(1 + 4P )], the
cut-set bound R ≤ 1

2 log(1+4P ) can be achieved if and
only if C0 ≥ 1

2 log(1 + 4P )− C.

Proof: The achievability part is obvious. For the
converse part, note that for (25), in the case of 1

4 log(1+
4P ) ≤ C < 1

2 log(1 + 4P ), the constraint 2C for both
S1(ρ) and S2(ρ) , respectively, is inactive.

Now, in this regime, observe that

max
ρ≤ρ∗

S1(ρ) ≤ max
ρ≤ρ∗

1

2
log(1 + 2(1 + ρ)P )

<
1

2
log(1 + 4P ), (27)

thus we have C+ = 1
2 log(1 + 4P ) if and only if

maxρ∗≤ρ≤1 S2(ρ) =
1
2 log(1+4P ). Since for ρ∗ < ρ < 1

we have
S2(ρ) ≤

1

2
log(1 + 2(1 + ρ)P ) <

1

2
log(1 + 4P ), (28)

maxρ∗≤ρ≤1 S2(ρ) = 1
2 log(1 + 4P ) is satisfied if and

only if S2(1) = 1
2 log(1 + 4P ), which implies

C + C0 ≥
1

2
log(1 + 4P ), (29)

which completes the converse proof.

C. Diamond Network with Binary Adder MAC

The diamond network under consideration here has
the MAC portion as a binary adder channel (BAC). The
output of BAC is Y = X1+X2, where the input alphabet
is X = {0, 1} and the output alphabet is Y = {0, 1, 2}.
We let C1 = C2 = C. For the achievability, we utilise
(22) to obtain:

R ≤min



H(X1|X2, U) + C + C0

H(X2|X1, U) + C + C0

2C − I(X1;X2|U)

H(Y )
1
2(H(Y |U) + 2C + 2C0 − I(X1;X2|U))

Figures on bounds are omitted due to limited space.

D. Minimium C0 Required for Full Cooperation for
Binary Adder MAC

The result in Theorem 3 does not hold in general.
As a counter-example, consider the diamond channel
with binary adder MAC. The minimum C0 can only be
obtained numerically here and the result shows that there



4

(a) Upper bound for the rate of Gaussian sym-
metric diamond network with conferencing
relays when P = 1.

(b) Lower bound for the rate of Gaussian
symmetric diamond network with conferenc-
ing relays when P = 1.
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C0 = 0, 0.3 and 0.6 when P = 1.

Fig. 2. Results on symmetric Gaussian diamond channel.

is a gap between the upper bound and lower bound about
the minimum C0 required to achieve cut-set bound, as
seen from Fig. 3.
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Fig. 3. Upper and lower bound for binary adder diamond channel
with conference with C = 0.79.

Fig. 3 shows that the cut-set bound 1.58 for C = 0.79
is achievable if C0 ≥ 0.174 and only if C0 ≥ 0.025. It
can be observed that unlike the Gaussian case, the mini-
mum C0 needed is much less than the difference between
the cut-set bound 1.58 and C = 0.79. To briefly explain
such phenomenon, first denote the optimal distribution
in the cut-set bound RCS = maxp(x1,x2) I(X1, X2;Y )
as p(x1, x2)

∗. For the lower bound given in (22), to
achieve this RCS for the case C = 1

2RCS as an
example, we need (i) p(u, x1, x2) = p(u)p(x1|u)p(x2|u)
(to make I(X1;X2|U) = 0), (ii)

∑
u∈U p(u, x1, x2) =

p(x1, x2)
∗ and C + C0 + I(X1;Y |X2, U) ≥ RCS ,

C + C0 + I(X2;Y |X1, U) ≥ RCS , as well as C +
C0 +

1
2I(X1, X2;Y |U) ≥ RCS , which yields different

lower bounds for C0 for different models. For the
Gaussian case, p(u, x1, x2) satisfying (i)(ii) will always
make I(X1, X2;Y |U) = 0 (hence I(X1;Y |X2, U) = 0)
because for the optimal p(x1, x2)∗, we have X1 = X2,
to form Markov chain X1 ↔ U ↔ X2, U has

to be picked as a deterministic function of X1 (or
X2). However, for the binary adder case, there exists
p(u, x1, x2) satisfying (i)(ii) such that I(X1;Y |X2, U) >
0, I(X2;Y |X1, U) > 0 and 1

2I(X1, X2;Y |U) > 0. For
example, with p(u) = [12 ,

1
2 ], p(x1|u) = p(x2|u) =

[α, 1−α;β, 1−β] with α = 1
2−
√
3
6 ,β = 1

2+
√
3
6 , we have∑

u∈U p(u, x1, x2) = [13 ,
1
6 ;

1
6 ,

1
3 ] and I(X1;Y |X2, U) =

I(X2;Y |X1, U) = 0.7440, 1
2I(X1, X2;Y |U) = 0.5774,

hence when C0 ≥ 0.2152, RCS of 1.5850 can be
achieved given C = 0.7925 = 1

2RCS .

V. CONCLUSION

In this letter, effects of relay conferencing on a class
of diamond networks are examined. A lower bound to
the capacity for this network and an upper bound that
is tighter than the cut-set bound are presented. The
bounds applied to specific MAC cases reveal a special
property of the Gaussian channel in that there is no clever
manipulation of conferencing links to achieve full MAC
cooperation with individual source-to-relay messages.
However, such is not the case in general.
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