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Abstract—We study forward error correction codes for low-
delay, real-time streaming communication over packet erasure
channels. Our encoder operates on a stream of source packets
in a sequential fashion, and the decoder must output each
packet in the source stream within a fixed delay. We consider a
class of practical channel models with correlated erasures and
introduce new “streaming codes” for efficient error correction
over these channels. For our analysis, we propose a simplified
class of erasure channels that introduce both burst and isolated
erasures within the same decoding window. We demonstrate that
the previously proposed streaming codes can lead to significant
number of packet losses over such channels. Our proposed
constructions involve a layered coding approach, where a burst-
erasure code is first constructed, and additional layers of parity-
checks are concatenated to recover from the isolated erasure
patterns. We also introduce another construction that requires a
significantly smaller field-size, but incurs some performance loss.
Numerical simulations over the Gilbert-Elliott and Fritchman
channel models indicate that by addressing patterns involving
both burst and isolated erasures within the same window, our
proposed codes achieve significant gains over previously proposed
streaming codes.

Index Terms—Low-Delay Codes, Real-Time Streaming Com-
munication, Burst and Isolated Errors, Gilbert-Elliott Channels,
Application Layer Error Correction

I. INTRODUCTION

AN increasing number of multimedia applications require
low-delay and real-time communication of information.

For example, the end-to-end latency in interactive video con-
ferencing must be less than 200 ms. Extensive analysis of
video conferencing systems such as Skype (see e.g., [1], [2]
and references therein) has revealed a number of interesting
paradigms. For example it is observed that the forward error
correction (FEC) redundancy ratio of Skype is about 4.5 times
of the actual loss rate. Such a significant overhead is most
likely driven by the stringent delays constraints. Thus the study
of low-delay FEC is a fertile area of research.

Fundamental limits of communication under delay and real-
time constraints can be very different from the classical Shan-
non capacity. It is well known for example that the Shannon
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capacity of an erasure channel only depends on the fraction
of packets lost over the channel. When delay constraints are
imposed, the pattern of packet losses becomes significant. In
practical systems, packet losses are often temporally correlated
due to effects such as fading, congestion or buffer overflow.
Such losses are often modelled using Markov models [3] such
as the Gilbert-Elliott channel. When the channel is in the
“good” state, it behaves as an i.i.d. erasure channel, whereas
in the “bad” state, it behaves as a burst erasure channel. In
this paper, we carefully examine the local dynamics of such
channels and propose a new class of error correction codes
that significantly improve the packet loss rate over earlier
approaches.

In [4], [5] the authors introduce a class of streaming codes
for the burst erasure channel model. These codes operate on
a stream of source packets in a sequential manner, and the
decoder also reconstructs the source packets sequentially. The
codes in [4], [5] are optimal for the proposed channel model.
However, when erasures can happen at arbitrary positions
instead of a burst, which we refer to as isolated erasure
patterns, these codes incur significant packet losses. More
recently in [6], we proposed a class of streaming codes that
can correct from certain types of burst and isolated erasure
patterns. These codes were shown to simultaneously attain a
large column distance and column span, which are required
for the isolated-erasure and burst-erasure recovery respectively.
However, these codes were not designed to handle burst and
isolated erasures occurring within the same decoding window.
We show in the present paper that such error events can be
significant over the Gilbert-Elliott channels, particularly when
the decoding delay is moderately large. We propose a new
class of codes that guarantee partial recovery for such patterns
and observe significant performance gains in the simulations.

Streaming codes for channels that can introduce multiple
erasure bursts, with a certain minimum guard interval sepa-
rating them, have been independently developed in [7], [8].
However, to our knowledge these works do not aim for a
robust extension involving both burst and isolated erasures as
considered in this paper. As mentioned before, the most closely
related work to the present paper is our earlier work in [6]. In
the sequel, we explain why these constructions are not suitable
when the decoding window introduces both burst and isolated
erasures. Our proposed codes involves suitable modifications
of the constructions in [6] based on a layered code design.
However, the construction and analysis are considerably more
challenging due to the complexity of the erasure patterns
considered here. In the broader literature, real-time streaming
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over i.i.d. erasure channels has been studied in [9] where it is
established that the playback delay increases logarithmically
with the time elapsed since the start of transmission with or
without feedback. Hybrid approaches with FEC and feedback
are studied in [10], [11], while tree codes for streaming over
i.i.d. erasure channels are studied in [12].

In the rest of this paper, we review some previously pro-
posed streaming codes in Section II and then introduce the
class of Partial Recovery Codes in Section III. We propose
an alternate construction that requires a smaller field size
in Section IV. Simulation results of the Gilbert-Elliott and
Fritchman channel models are presented in Section V while
Conclusion appear in Section VI.

II. BACKGROUND

We review two different classes of streaming codes, m-
MDS and MiDAS codes from earlier works. These codes
will constitute an important building block in our proposed
constructions. We discuss their erasure correction properties
in the streaming setup and motivate our new construction.

A. Problem Setup

At each time instant i ≥ 0, a source packet s[i] ∈ Fk
q

consisting of k symbols over a field Fq , arrives at the encoder,
and a channel packet x[i] ∈ Fn

q consisting of n symbols is
transmitted, i.e.,

x[i] = fi(s[0], . . . , s[i]), (1)
where fi(·) denotes the encoding function at time i. The
rate of the code is R = k/n. The channel is a packet
erasure channel. At time i either the entire packet is received
perfectly by the receiver i.e., y[i] = x[i], or it is completely
erased i.e., y[i] = ?. In practice, packet losses occur due to a
variety of impairments such as channel fading, buffer overflow,
congestion etc. Such packet losses are often modelled (see
e.g., [3] and references therein) using statistical models such
as the Gilbert-Elliott [13], [14] or the Fritchman [15] model.
However, the direct analysis of such models appears rather
involved. In the sequel, we will introduce a class of sliding
window erasure channels. Such models provide useful approx-
imations to the erasure patterns in the underlying statistical
models and are simpler to analyze.

The receiver must reconstruct each source packet with a
delay of T packets, i.e.,

ŝ[i] = γi(y[0],y[1], . . . ,y[i+ T ]), (2)
where γi is the decoding function at time i. We assume
that ŝ[i] ∈ Fk

q ∪ {?}, where the symbol ? denotes a failure
in decoding the packet by its deadline. A code consisting of a
causal encoder (1) and delay-constrained decoder (2) will be
referred to as a streaming code. In this work, we will examine
the average loss probability achieved by various streaming
codes under different channel models.

B. m-MDS Codes

The m-MDS codes [16]–[18] are a class of (n, k,m)
systematic linear convolutional codes that map each source
packet s[i] ∈ Fk

q to a channel packet x[i] ∈ Fn
q . Since the code

is assumed to be systematic, we can express x[i] = (s[i],p[i]),
where p[i] ∈ Fn−k

q , the parity-check packet at time i, is a
linear combination of the source packets

p[i] =

(
m∑
l=0

s†[i− l] ·Hl

)†
. (3)

Here m denotes the memory of the code1, while the matrices
Hl ∈ Fk×(n−k)

q .
The m-MDS codes, correspond to a specific choice of

matrices Hl such that the code has a maximum column
distance [16]. Intuitively, such a property guarantees that each
symbol of a parity-check packet contributes an independent
linear equation within the window of length m+ 1. Thus the
decoder can recover the erased source packets, once it has
received sufficiently many parity-check packets. While such
a property is satisfied with high probability if the matrices
Hl are selected at random, the m-MDS codes provide deter-
ministic constructions with these properties. In our setup, we
can express the error correction properties of these codes via
the following Lemma, which will be useful in our subsequent
analysis.

Lemma 1. Consider a systematic (n, k,m) m-MDS code of
rate R = k

n that maps each source packet s[i] ∈ Fk
q into a

channel packet x[i] ∈ Fn
q that is transmitted over the channel

at time i. For each j ∈ {0, 1, . . . ,m}, the following is satisfied:

P1. Suppose that in the window [0, j], the channel introduces
no more than N = b(1−R)(j + 1)c erasures in arbi-
trary locations, then s[0] is recovered by time t = j.

P2. Suppose an erasure burst of length B spans the inter-
val [0, B − 1]. All the packets s[0], . . . , s[B − 1] are
simultaneously recovered by time t = j provided that
B ≤ b(1−R)(j + 1)c.

P3. Suppose that there are two erasure bursts spanning the
intervals [0, B1− 1] and [r, r+B2− 1]. All the B1 +B2

packets s[0], . . . , s[B1 − 1], s[r], . . . , s[r + B2 − 1] are
recovered by time t = j provided that

r ≤ B1

1−R
and B1 +B2 ≤ b(1−R)(j + 1)c. (4)

Proof: We refer the reader to [6] for the proof of
properties P1 and P2. The proof of property P3 is presented
in Appendix A.

Even though Properties P1–P3 of Lemma 1 pertain to
the erasures in the interval [0, j], they can be immediately
translated to different types of sliding window erasure channel
models. In property P1, the channel can introduce up to
N erasures in arbitrary locations in any sliding window of
length W = j + 1. We will denote this channel by CI(N,W ).
Property P1 essentially guarantees that the m-MDS code
recovers every source packet with a delay of T = j, provided
that N ≤ b(1−R)(j + 1)c.

In property P2, the channel is only allowed to introduce
one erasure burst of length no greater than B in any sliding
window of length W = j+ 1. Such a channel will be denoted

1We use † instead of the conventional T to denote the vector/matrix
transpose operation since T is used to denote the delay constraint. Throughout
the paper, we will treat s[i] and x[i] as column vectors. For convenience, we
will not use the † notation when the dimensions are clear.
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by CII(B,W ). Property P2 guarantees that using an m-MDS
code, the entire burst of length B ≤ b(1−R)(j + 1)c is
recovered simultaneously.

Similarly in property P3, the channel can introduce two such
erasure bursts.

The performance of m-MDS can be further improved over
channels that introduce a mixture of burst and isolated erasures
as discussed next.

C. MiDAS Codes
In [6], [19], a class of sliding window erasure channels that

introduce both burst and isolated erasures was studied. The
channel CIII(N,B,W ) can only introduce up to N erasures in
arbitrary locations or no more than B erasures in a single burst
in any window consisting of W consecutive symbols. Note that
upon setting N = 1, the model reduces to the burst erasure
channel CII(B,W ) and upon setting B = N , the channel
reduces to CI(N,W ). More generally N ≤ B must hold since
the burst erasure is a specific type of erasure pattern. A new
family of codes that achieve a near optimal rate was proposed
for this class of channels.

Theorem 1 (Badr et al. [6], [19]). For the CIII(N,B,W )
channel, the maximum achievable rate R with a delay of T
packets, such that W ≥ T + 1 and T ≥ B, satisfies:

T −N
T −N +B

≤ R ≤ T −N + 1

T −N +B + 1
. (5)

We will review the associated code, Maximum Distance
And Span (MiDAS) code, in Theorem 1 next. The basic idea
behind this construction is to first construct a burst erasure
code for the CII(B,W ) channel with a delay of T . Thereafter,
we append a separate layer of parity-checks to make the code
robust to N isolated erasures. We present the details of the
encoder and decoder, as such a layering approach will also be
used in our subsequent constructions.

Encoder:
1) Split each source packet s[i] ∈ Fk

q into two groups of
sub-packets, u[i] ∈ Fku

q and v[i] ∈ Fkv

q as follows,
s[i] = (u0[i], . . . , uku−1[i]︸ ︷︷ ︸

=u[i]

, v0[i], . . . , vkv−1[i]︸ ︷︷ ︸
=v[i]

), (6)

where ku + kv = k.
2) Apply a (kv + ku, kv, T ) m-MDS code to the v[·] sub-

packets of rate Rv = kv

kv+ku generating the ku parity-
check symbols pv[i] = (pv0[i], . . . , pvku−1[i]).

3) Combine a shifted version of the u[·] packets with the
pv[·] parities, i.e., q[i] = pv[i] + u[i− T ].

4) Apply a (ku + ks, ku, T ) m-MDS code to the u[·] sub-
packets of rate Ru = ku

ku+ks generating the ks parity-
check symbols pu[i] = (pu0 [i], . . . , puks−1[i]).

5) Concatenate the parity-check packets and the source
packet to generate the overall channel packets,

x[i] = (u[i],v[i],pv[i] + u[i− T ],pu[i]).

Note that at each time the construction takes ku+kv source
symbols in packet s[i] and maps them to a channel packet x[i]
consisting of 2ku + kv + ks symbols. It follows that the rate
of the code is R = ku+kv

2ku+kv+ks . We select

ku = MB, kv = M(T −B), ks =
MNB

T −N + 1
,

where M is selected such that ks is also an integer. It can
be readily verified that these choice of parameters satisfies the
lower bound in Theorem 1. Furthermore the rate Rv of the
(kv + ku, kv, T ) constituent m-MDS in step (2), and the rate
Ru in step (4) are given by:

Rv =
T −B
T

, Ru =
T −N + 1

T + 1
, (7)

which satisfy (1−Rv)T = B and (1−Ru)(T + 1) = N .
Decoder: In the analysis of the decoder, we consider the

interval [0, T ] and show that the decoder can recover s[0]
by time t = T if there is either an erasure burst of length
B or smaller, or up to N isolated erasures in this interval.
Once s[0] has been recovered, its effect can be subtracted
from all future packets, and then the interval [1, T + 1] can
be similarly considered to recover s[1]. Thus by exploiting
the time-invariance of the code, every source packet can be
recovered.

For the case of burst erasures, we suppose that an erasure
burst of length B spans the interval [0, B − 1]. We are then
guaranteed that there are no additional erasures in the interval
[B, T ] since W ≥ T + 1 is assumed. The decoder proceeds in
two steps. For each j ∈ {B, . . . , T − 1}, the decoder recovers
the parity-check packets pv[j], by subtracting the unerased
u[j−T ] from the associated q[j] = pv[j] +u[j−T ] packets.
Then property P2 in Lemma 1 can be used to recover the
B erased sub-packets v[0], . . . ,v[B − 1] at time T − 1 since
(1 − Rv)T = B (cf. (7)). In the second step, the decoder
computes the parity-check packets pv[T ] and subtracts it from
q[T ] = pv[T ] + u[0] to recover the underlying u[0] by its
deadline. Hence, s[0] = (u[0],v[0]) is decoded at time T .

In the case of N isolated erasures in the interval [0, T ],
the decoder first recovers v[0] at time t = T − 1 using the
parity-checks q[·], and u[0] at time t = T using the parity-
checks pu[·] constructed in step 4. The recovery of v[0] by
time T −1 follows in a fashion similar to that in the case of a
burst erasure. However, we use P1 in Lemma 1 instead which
shows that the number of isolated erasures under which the
recovery of v[0] is possible is given by Nv = (1−Rv)T = B.
Since N ≤ B holds, the recovery of v[0] by time t = T − 1
is guaranteed. For recovering u[0], note that the associated
code (u[i],pu[i]) is a m-MDS code with rate Ru (cf. (7))
that satisfies (1−Ru)(T +1) = N . The recovery of u[0], and
in turn s[0], follows from property P1 in Lemma 1.

D. Example - MiDAS Codes

Table I illustrates an example of a MiDAS code for
CIII(N = 2, B = 3,W = 8) and a delay T = 7. Such a code
recovers a burst of maximum length B = 3, or N = 2 isolated
erasures in any window of length W = 8. Suppose that an
erasure burst spans the interval [0, 2]. First v[0],v[1], and
v[2] are recovered at time t = 6, using the parity-check
packets pv[3], . . . ,pv[6], which are recovered by cancelling
the unerased sub-packets u[−4], . . . ,u[−1] from the parity-
check packets q[3], . . . ,q[6]. Thereafter, u[0] can be recovered
at time t = 7 by cancelling pv[7] etc. In contrast, if there are
up to N = 2 isolated erasures in the interval [0, 7] then the
parity-checks pv[t] in the interval t ∈ [0, 6] can be used to
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[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
ku = 15 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7] u[8] u[9]
kv = 20 v[0] v[1] v[2] v[3] v[4] v[5] v[6] v[7] v[8] v[9]

ku = 15
pv[0] pv[1] pv[2] pv[3] pv[4] pv[5] pv[6] pv[7] pv[8] pv[9]

+u[−7] +u[−6] +u[−5] +u[−4] +u[−3] +u[−2] +u[−1] +u[0] +u[1] +u[2]
ks = 6 pu

2 [0] pu
2 [1] pu

2 [2] pu
2 [3] pu

2 [4] pu
2 [5] pu

2 [6] pu
2 [7] pu

2 [8] pu
2 [9]

TABLE I: A MiDAS code desinged for C(K = 0, N = 2, B = 3,W = 8) and a delay of T = 7. The rate of the code is
R = 35

56 = 5
8 which matches the lower-bound in Theorem 1.

recover v[0] while the parity-checks in the last layer, pu[t]
and in the interval t ∈ [0, 7] can be used to recover u[0].

In practice, the values of N and B are dictated by the num-
ber of isolated erasures (associated with the good state), and
the burst-length (associated with the bad state) of the Gilbert-
Elliott channel that must be corrected by a streaming code.
However, these are not the only patterns that must be corrected.
It turns out that erasure patterns consisting of an erasure burst
followed or preceded by an isolated erasure can also cause
significant error events. Such patterns arise for example when
the channel in the bad state transitions into a good state,
where it introduces an isolated erasure. The MiDAS codes can
lead to significant losses over these erasure patterns. Consider
for example the code in Table I and suppose the channel
introduces erasures at times t = 0, 1, 6. i.e., a burst of length
B′ = 2 is followed by an isolated erasure. Such a pattern is
not included in the channel CIII(N = 2, B = 3,W = 8). It
can be seen that the isolated erasure at time t = 6 will interfere
with the recovery of u[0] and u[1] at time t = 7 and t = 8
respectively as the parity-check symbols pv[t] will involve
v[6] which is erased. Thus we need new code constructions
that deal with such erasure patterns.

III. PARTIAL RECOVERY CODES

We introduce a class of streaming codes that can handle
erasure patterns consisting of a burst erasure accompanied by
an isolated erasure. We first formally define such a channel
model and then discuss the code construction.

A. System Model and Main Results

Definition 1 (Channel C(K,N,B,W )). In any sliding window
of length W , the channel C(K,N,B,W ) can introduce only
one of the following patterns:
• A single erasure burst of maximum length B plus no more

than K isolated erasures where B +K < W or,
• A maximum of N ≤ B +K erasures in arbitrary loca-

tions.

Remark 1. Note that if B +K ≥W the capacity is trivially
zero, and so the constraint B +K < W in Definition 1 must
be imposed. Also, the condition N ≤ B +K follows since a
burst plus isolated erasures is included in the isolated erasures
pattern.

When K = 0, the model reduces to the CIII(N,B,W )
used in the MiDAS code construction. In this section, we
will focus on the case of K = 1 which appears to be of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·

Fig. 1: An example of channel C(1, 2, 3, 5) in Definition 1: In
any sliding window of length W = 5 there is either a single
erasure burst of length up to B = 3 and possibly one isolated
erasure, or N = 2 isolated erasures.

· · ·

T B T − 1

2T +B

Fig. 2: An isolated erasure associated with a burst in channel
CII(N,B,W = 2T +B)

most practical interest. We will initially consider the case
when N = 1 i.e., the C(K = 1, N = 1, B,W ). Such a channel
allows us to focus on the burst-erasure patterns. We will
subsequently show in Section III-D how our construction can
be extended to handle the case where N > 1, by adding an
extra layer of parity-checks. We further focus on the case when
W ≥ 2T +B, where T is the decoding delay. This allows us
to consider an isolated erasure happening either T packets
before or after an erasure burst.

Definition 2 (Associated Isolated Erasure). An isolated era-
sure is defined to be associated with the erasure burst, if it
occurs within the T packets before or after this burst.

Note that every erasure burst has at most one associated
isolated erasure (cf. Fig. 2). Conversely every isolated erasure
can be associated with no more than one erasure burst. Instead
of attempting to recover every source packet for such erasure
patterns we introduce a class of partial recovery codes as
discussed below. The advantage of this approach is that the
overhead required is smaller, which is desirable in practice.

Definition 3 (Partial Recovery Code (PRC)). A Partial Re-
covery Code (PRC) for C(K = 1, N = 1, B,W ≥ 2T + B)
recovers all but one source packet with a delay of T in
each pattern consisting of an erasure burst and its associated
isolated erasure.

Our main result is the following achievable rate for partial
recovery codes.

Theorem 2 (Partial Recovery Codes (PRC)). There exists a
partial recovery code satisfying Definition 3, for the C(K =
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1, N = 1, B,W ≥ 2T +B) channel of rate

R = max
B<∆≤T

∆(T −∆) + (B + 1)

∆(T −∆) + (B + 1)(T −∆ + 2)
. (8)

�

The coding scheme associated with Theorem 2 is presented
next. The decoding analysis is presented in Appendix B.

B. Partial Recovery Codes - Code Construction

Let ku, kv , kr and ∆ be integers that will be specified in
the sequel. We outline the main steps in the code construction
below.

1) Source Splitting: Split each source packet s[i] ∈ Fk
q into

two groups of sub-packets, u[i] ∈ Fku

q and v[i] ∈ Fkv

q as
in (6).

2) Construction of C12: We apply a (kv + ku + kr, kv, T )
m-MDS code, C12 : (v[i],p[i]), of rate R12 = kv

kv+ku+kr

to the v[·] sub-packets to generate parity-check packets
p[·] ∈ Fku+kr

q ,

p[i] =

(
T∑
l=0

v†[i− l] ·Hl

)†
, (9)

where Hl ∈ Fkv×(ku+kr)
q for l = 0, . . . , T are the

matrices associated with the m-MDS code (3).
3) Parity-Check Splitting: We split each p[i] into two

groups of sub-packets, p1[i] ∈ Fku

q and p2[i] ∈ Fkr

q by
assigning the first ku symbols in p[i] to p1[i] and the
remaining kr symbols of p[i] to p2[i]. We can express:

pk[i] =

(
T∑
l=0

v†[i− l] ·Hk
l

)†
, k = 1, 2 (10)

where the matrices Hk
l are defined as Hl = [H1

l | H2
l ]

for l = 0, . . . , T . It can be shown that both H1
l and

H2
l satisfy the m-MDS property [18, Theorem 2.4] and

therefore the codes C1 : (v[i],p1[i]) and C2 : (v[i],p2[i])
are both m-MDS codes2.

4) Repetition Code: We combine a shifted copy of u[·] with
the p1[·] parity-checks to generate q[i] = p1[i]+u[i−∆].
Here ∆ ∈ {B+1, . . . , T} denotes the shift applied to the
u[·] stream before embedding it onto the p1[·] stream.

5) Channel Packet: We concatenate the parity-check pack-
ets to the source packet to construct the channel packet,

x[i] = (s[i],q[i],p2[i]). (11)
The rate of the code in (11) is clearly R = ku+kv

2ku+kv+kr . We
further select the codes C12 and C2 to have the following rates:

R12 ,
kv

kv + ku + kr
=

∆−B − 1

∆
, (12)

R2 ,
kv

kv + kr
=
T −∆ + 1

T −∆ + 2
. (13)

The rate R12 is chosen such that the corresponding code C12

is capable of correcting a burst of length B+1 within a delay
of ∆−1 symbols. Hence, (12) satisfies (1−R12)(∆) = B+1.
Similarly, the rate R2 is chosen such that the C2 code is capable
of recovering a single erasure within a delay of T − ∆ + 1.
Thus, (13) satisfies (1−R2)(T−∆+2) = 1. It will be justified

2The proof of this property uses the fact that a subset of linearly independent
columns is linearly independent and is rather straightforward and is thus
omitted.

[0] [1] [2] [3] [4] [5] [6] [7] [8]
ku = 6 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7] u[8]
kv = 4 v[0] v[1] v[2] v[3] v[4] v[5] v[6] v[7] v[8]

ku = 6
p1[0] p1[1] p1[2] p1[3] p1[4] p1[5] p1[6] p1[7] p1[8]

+u[−6] +u[−5] +u[−4] +u[−3] +u[−2] +u[−1] +u[0] +u[1] +u[2]
kr = 2 p2[0] p2[1] p2[2] p2[3] p2[4] p2[5] p2[6] p2[7] p2[8]

TABLE II: A Partial Recovery Code with B = 3 achieving a
rate of 5

9 for a delay of T = 7.

that these two properties are sufficient for partial recovery on
channel C(1, 1, B,W ≥ 2T +B).

We further use the following values of ku, kv and kr that
satisfy (12) and (13),

ku = (B + 1)(T −∆ + 1)− (∆−B − 1)

kv = (T −∆ + 1)(∆−B − 1)

kr = ∆−B − 1, (14)
and the corresponding rate of the PRC code is

R = max
B<∆≤T

∆(T −∆) + (B + 1)

∆(T −∆) + (B + 1)(T −∆ + 2)
, (15)

which meets the rate given in Theorem 2. This completes
the details of the code construction. The decoding steps are
described in detail in Appendix B.

Remark 2. In our construction, the parameter ∆ ∈ {B +
1, . . . , T} is a free parameter that can be optimized. Selecting
∆ to be small, will reduce the effective delay of the burst-
erasure code, and require the size of parity-checks p1[·] to
be large. However, the duration for recovering the isolated
erasure is longer and hence the size of p2[·] can be smaller.
Conversely selecting a larger value of ∆ will require the size
of p2[·] to be large while the size of p1[·] can be smaller. The
optimization in (15) reflects such a tradeoff.

Remark 3. If we assume that the source alphabet is suffi-
ciently large such that the integer constraints can be ignored
then the optimal shift is given by

∆? = arg max
∆

R(∆) = T + 1−
√
T −B, (16)

and the corresponding rate is given by

R? =
(T + 2)

√
T −B − 2(T −B)

(T +B + 3)
√
T −B − 2(T −B)

, (17)

which is achieved using
ku = ku? = (B + 2)

√
T −B − (T −B)

kv = kv? = (T −B)(
√
T −B − 1)

kr = kr? = (T −B)−
√
T −B.

In particular, when T � 1 and B � 1 holds the rate
expression (17) reduces to

R? ≈ T − 2
√
T −B

T +B − 2
√
T −B

. (18)

Comparing (18) to the capacity of the burst erasure channel
C = T

T+B (see [4]), we see effect of an additional isolated
erasure reduces the rate by no more than 2

√
T−B

T+B .

C. Example - PRC

We illustrate a PRC construction in Table II for the channel
with parameters N = 1, K = 1, B = 3, W = 17 and with
delay T = 7. The values of the code parameters are ku = 6,
kv = 4, kr = 2 and ∆ = 6 and the rate is 5/9.
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Encoder

1) Each source packet s[i] ∈ F10
q consisting of ten symbols

is split it into u[i] and v[i], consisting of ku = 6 and
kv = 4 symbols respectively.

2) Let kr = 2 and apply a (ku + kv + kr, kv) = (12, 4) m-
MDS code C12 to the v[i] sub-packets to generate parity-
checks p[i] ∈ F8

q . Note that the rate of C12 equals R12 =
1
3 .

3) We split each p[i] into p1[i] and p2[i] consisting of
ku = 6 and kr = 2 symbols as shown in Table II. Note
that the codes C1 : (v[i],p1[i]) and C2 : (v[i],p2[i]) are
both m-MDS codes of rates R1 = 2/5 and R2 = 2/3
respectively.

4) We generate q[i] = p1[i] + u[i − ∆] and let the trans-
mitted packet be x[i] =

(
u[i],v[i],q[i],p2[i]

)
, which

corresponds to one column in Table II.
The overall rate equals R = 5/9.

Decoder

We start by considering the case when the burst erasure pre-
cedes the isolated erasure. Without loss of generality suppose
that the burst erasure spans the interval [0, 2] and the isolated
erasure occurs at time t > 2.
• t ∈ [3, 4] : We use code C12 in the interval

[0,∆ − 1] = [0, 5] to recover the erased sub-packets
v[0],v[1],v[2],v[t] simultaneously at time τ = 5. To-
wards this end we use the parity-checks p1[·] obtained
by cancelling the u[·] sub-packet in this interval as well
as the parity-checks p2[·]. Our erasure pattern consists of
a burst erasure of length B1 = 3 spanning the interval
[0, 2] and an isolated erasure at time either t = 3 or t = 4.
Note that (1 − R12)(τ + 1) = 4 and that the conditions
associated with property P3 in Lemma 1 are satisfied, and
thus the recovery of the v[·] follows.
For the recovery of u[0],u[1],u[2] and u[t], we need
to subtract associated the p1[·] parity-check packet from
q[6],q[7],q[8] and q[t + ∆]. This follows since all the
v[·] sub-packets are recovered already by time t = 5.

• t ≥ 5 : We use code C12 in the interval [0, 4] to recover
the erased sub-packets v[0],v[1],v[2] at time τ = 4. This
follows by applying property P2 in Lemma 1 since (1−
R12)(τ + 1) ≥ 3.
Once the erasure burst has been recovered, the erased
sub-packet v[t] can be recovered at time τ =
t+ T −∆ + 1 = t + 2 using the parity-checks p2[·]
associated with C2 in the interval [t, t + 2]. This again
follows from Lemma 1 since

(1−R2)(T −∆ + 2) =

(
1− 2

3

)
3 = 1 (19)

which suffices to recover the missing v[t].
For the recovery of u[0],u[1],u[2], we need to use
q[6],q[7],q[8] respectively. If t = 5 then we recover v[5]
at time τ = 7 and then compute p1[6], . . . ,p1[8] and in
turn recover all the missing u[·] sub-packets. If t ∈ [6, 8],
then we will not be able to recover the associated u[t−6]
but the remaining two sub-packets can be recovered. Thus
we will have one non-recovered packet in this case. If

t > 8 then clearly all the three u[·] sub-packets are
recovered and complete recovery is achieved.

For the case when the isolated erasure occurs at time 0 and
the burst follows it spanning the interval [t, t+2], the decoder
proceeds as follows.
• t = 1 : We use code C12 in the interval [0, 5] to recover

v[0], . . . ,v[3] at time τ = 5. The decoder computes
p1[t+1] in the interval [6, 9] and subtracts them to recover
u[0], . . . ,u[3]. All the erased packets are recovered for
this erasure pattern.

• t ≥ 2 : We recover v[0] at time 1 using the code C12

before the start of the erasure burst. In particular, taking
τ = 1 note that

(1−R12)(τ + 1) =

(
1− 1

3

)
2 > 1, (20)

which by Lemma 1 suffices to recover v[0] at time τ = 1
We next show how v[t],v[t+1],v[t+2] can be recovered
using the code C12 in the window [t, t+ 5]. If t ∈ {2, 3}
then in addition to v[t],v[t+ 1],v[t+ 2] we should also
account for the erasure at time 6 due to the repetition of
u[0]. Thus there are a total of 4 erasures in the window
[t, t+5] with one burst of length three. The recovery from
such a pattern follows by invoking P3 in Lemma 1. For
t ∈ [4, 6], the erasure burst overlaps with the repetition
of u[0] and thus there are only three erasures and the
recovery follows by the application of Lemma 1. For t >
6, the sub-packet u[0] is recovered at time 6 and then the
erasure burst in [t, t+ 2] can be recovered separately.

For general values of B and T , similar decoding steps are
used and provided in Appendix B.

D. Robust Partial Recovery Codes

While the PRC constructed in Section III-B is for the
special case of N = 1, we now extend such construction
to be able to deal with N > 1 isolated erasures, i.e., the
C(K = 1, N,B,W ≥ 2T + B) channel. Our development
parallels the layered code design approach for MiDAS in
Section II-C, where a burst erasure code is first constructed,
and then an additional layer of parity-checks is appended to
correct isolated erasures. We will refer to this construction as
robust PRC. As will be apparent, these codes ensure partial
recovery (cf. Definition 3) when the pattern consists of a burst
and one isolated erasures but perfect recovery when the pattern
consists of N isolated erasures.

We start with the PRC code for burst plus one isolated
erasure constructed in Section III-B. The associated rate is
R = ku+kv

2ku+kv+kr where we select ku, kv and kr according
to (14). We then add an additional layer of parity-checks
to protect the u[·] sub-packets. In particular, we apply a
(ku + ks, ku, T ) m-MDS code to the u[·] sub-packets gen-
erating ks parity-check symbols w[i] = (w0[i], . . . , wks−1[i]).
We then concatenate the generated parity-checks to the channel
packet in (11), i.e., the channel packet of the robust version is
given by,

x[i] = (s[i],q[i],p2[i],w[i]). (21)
It remains to specify the value of ks in the above con-

struction such that s[0] = (u[0],v[0]) is recovered by time
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T . As in the case of MiDAS codes, u[0] and v[0] will
be recovered separately. For v[0], we consider the interval
[0,∆ − 1]. We note that the interfering u[·] sub-packets in
this interval are not erased and can be cancelled out from q[·]
to recover the underlying parity-checks p1[·]. Hence, we use
property P1 in Lemma 1 to recover v[0] by time ∆− 1 since,
(1−R12)∆ = B+ 1 ≥ N . For u[0] to be recovered using the
(u[i],w[i]) m-MDS code of rate ku

ku+ks in the interval [0, T ],
the following needs to be satisfied,(

1− ku

ku + ks

)
(T + 1) ≥ N ⇒ ks ≥ Nku

T −N + 1
. (22)

Thus by selecting ks as above we complete our construction
for any N > 1.

IV. PARTIAL RECOVERY CODES USING MDS CODES

In this section, we propose an alternative construction,
which replaces m-MDS codes in the PRC construction with
a diagonally interleaved MDS block code. While such codes
incur some performance loss, they require a significantly lower
field size and might be more suitable in certain applications.
We will refer to these codes as PRC-MDS codes to differen-
tiate them with the construction in Section III-B.

Theorem 3 (PRC using MDS codes). There exists a partial
recovery code for C(K = 1, N = 1, B,W ≥ 2T +B) of rate,

R = max
B<∆≤T

(T −∆ + 1)∆

(T −∆ + 1)(∆ +B + 1) + (∆−B − 1)
,

(23)
that satisfy Definition 3 and with a field-size that increases as
O(T 3). �

We assume that each source packet s[i] consists of (T−∆+
1)∆ symbols, s[i] = (s0[i], . . . , s(T−∆+1)∆−1[i]) and generate
a total of (B+1)(T−∆+1)+∆−B−1 parity-check symbols,
as discussed below.

We divide s[i] into two groups, s[i] = (u[i],v[i]), where
u[i] = (u0[i], . . . , u(T−∆+1)(B+1)−1[i])

= (s0[i], . . . , s(T−∆+1)(B+1)−1[i]) (24)
v[i] = (v0[i], . . . , v(T−∆+1)(∆−B−1)−1[i])

= (s(T−∆+1)(B+1)[i], . . . , s(T−∆+1)∆−1[i]). (25)
We then apply a systematic (∆,∆ − B − 1) MDS code

to the v[·] sub-packets with interleaving factor of T − ∆ +
1, generating (T − ∆ + 1)(B + 1) parity-check packets,
p1[·] = (p1

0[i], . . . , p1
(T−∆+1)(B+1)−1[i]). The resulting code-

words starting at vj [i] are expressed as:

c1
j [i] =



vj [i]
vj+(T−∆+1)[i+ 1]
vj+2(T−∆+1)[i+ 2]

...
vj+(T−∆+1)(∆−B−2)[i+ ∆−B − 2]

p1
j [i+ ∆−B − 1]

p1
j+(T−∆+1)[i+ ∆−B]

...
p1
j+(T−∆+1)B [i+ ∆− 1]


, (26)

for j = {0, 1, . . . , T −∆}. We combine the u[·] sub-packets
with the parity-check packets p1[·] after applying a shift of ∆
to the earlier, i.e., q[i] = p1[i] + u[i−∆].

Next we generate a second set of parity-check packets p2[·]
by applying a (T −∆ + 2, T −∆ + 1) MDS code to the v[·]
sub-packets with interleaving factor of ∆−B − 1. Thus

c2
j [i] =



vj [i]
vj+(∆−B−1)[i+ 1]
vj+2(∆−B−1)[i+ 2]

...
vj+(∆−B−1)(T−∆)[i+ T −∆]

p2
j [i+ T −∆ + 1]


, (27)

for j = {0, 1, . . . ,∆−B − 2} are the codewords.
We finally concatenate the parity-check packets, p2[·], to the

previously generated parity-check packets q[·]. The channel
packet is given by,

x[i] =
(
s[i],q[i],p2[i]

)
. (28)

One can see that the rate of the constructed code in (28) is:

R =
(T −∆ + 1)∆

(T −∆ + 1)(∆ +B + 1) + (∆−B − 1)
, (29)

which matches that in Theorem 3.
The decoding analysis is analogous to PRC in Appendix B.

We refer the reader to [20] for the details, but omit it in the
paper due to page constraints.

We next discuss the field size required for the PRC-MDS
codes. Note that in the construction, the source vector must
consist of q1 = (T−∆+1)∆ symbols. Secondly we construct
block MDS codes with parameters (∆,∆−B − 1) and (T −
∆ + 2, T −∆ + 1). For these codes to simultaneously exist,
each symbol must belong to a field of size greater than q2 =
max(∆, T − ∆ + 2), see, e.g., [21]. Thus, for a given pair
B and a delay T , a field size of q = q1 · q2, i.e., O(T 3), is
sufficient to construct the corresponding PRC-MDS code, as
stated in Theorem 3. In contrast, the field size for the m-MDS
codes used in III-B can increase exponentially in T as noted
in [18].

The PRC-MDS construction exhibits some loss in the
achievable rate (23), when compared to (8). This happens
because the PRC construction in III-B is able to use the code
C12, which consists of (v[i],p1[i],p2[i]) to recover the erased
symbols v[i] from the erasure burst. However, the PRC-MDS
code with diagonally interleaved block codes only uses the
code C1, which consists of (v[i],p1[i]) for recovering v[i]
from the burst. Thus the overhead associated with p1[i] is
higher for the PRC-MDS construction. Nevertheless, as we
will see in numerical evaluations, the rate loss compared is
small, since the contribution of the p2[i] in C12 is generally
small.

A. Numerical Comparisons

Fig. 3 compares the rates achieved by different codes as
a function of the delay when the erasure burst length B =
20 is fixed. The uppermost curve is the capacity of the burst
erasure channel when there are no isolated erasures, but the
burst length B′ = 21. The lowermost black curve shows the
rate achieved by the m-MDS code. We note that this rate is
significantly smaller than the PRC codes The rate of the PRC-
MDS construction only exhibits a negligible loss compared to
the PRC codes.
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Fig. 3: Achievable rate for PRC and PRC-MDS construction
for B = 20. We also illustrate the capacity of the burst erasure
channel and the rate of the baseline m-MDS code.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

ku = 8

u0[0] u0[1] u0[2] u0[3] u0[4] u0[5] u0[6] u0[7] u0[8]
u1[0] u1[1] u1[2] u1[3] u1[4] u1[5] u1[6] u1[7] u1[8]
u2[0] u2[1] u2[2] u2[3] u2[4] u2[5] u2[6] u2[7] u2[8]
u3[0] u3[1] u3[2] u3[3] u3[4] u3[5] u3[6] u3[7] u3[8]
u4[0] u4[1] u4[2] u4[3] u4[4] u4[5] u4[6] u4[7] u4[8]
u5[0] u5[1] u5[2] u5[3] u5[4] u5[5] u5[6] u5[7] u5[8]
u6[0] u6[1] u6[2] u6[3] u6[4] u6[5] u6[6] u6[7] u6[8]
u7[0] u7[1] u7[2] u7[3] u7[4] u7[5] u7[6] u7[7] u7[8]

kv = 4

v0[0] v0[1] v0[2] v0[3] v0[4] v0[5] v0[6] v0[7] v0[8]

v1[0] v1[1] v1[2] v1[3] v1[4] v1[5] v1[6] v1[7] v1[8]

v2[0] v2[1] v2[2] v2[3] v2[4] v2[5] v2[6] v2[7] v2[8]

v3[0] v3[1] v3[2] v3[3] v3[4] v3[5] v3[6] v3[7] v3[8]

ku = 8

p1
0[0] p1

0[1] p1
0[2] p1

0[3] p1
0[4] p1

0[5] p1
0[6] p1

0[7] p1
0[8]

p1
1[0] p1

1[1] p1
1[2] p1

1[3] p1
1[4] p1

1[5] p1
1[6] p1

1[7] p1
1[8]

p1
2[0] p1

2[1] p1
2[2] p1

2[3] p1
2[4] p1

2[5] p1
2[6] p1

2[7] p1
2[8]

p1
3[0] p1

3[1] p1
3[2] p1

3[3] p1
3[4] p1

3[5] p1
3[6] p1

3[7] p1
3[8]

p1
4[0] p1

4[1] p1
4[2] p1

4[3] p1
4[4] p1

4[5] p1
4[6] p1

4[7] p1
4[8]

p1
5[0] p1

5[1] p1
5[2] p1

5[3] p1
5[4] p1

5[5] p1
5[6] p1

5[7] p1
5[8]

p1
6[0] p1

6[1] p1
6[2] p1

6[3] p1
6[4] p1

6[5] p1
6[6] p1

6[7] p1
6[8]

p1
7[0] p1

7[1] p1
7[2] p1

7[3] p1
7[4] p1

7[5] p1
7[6] p1

7[7] p1
7[8]

ks = 2
p2

0[0] p2
0[1] p2

0[2] p2
0[3] p2

0[4] p2
0[5] p2

0[6] p2
0[7] p2

0[8]

p2
1[0] p2

1[1] p2
1[2] p2

1[3] p2
1[4] p2

1[5] p2
1[6] p2

1[7] p2
1[8]

TABLE III: A PRC-MDS code construction with B = 3
achieving a rate of R = 12

22 for a delay of T = 7. The double
and single boxes denote the symbols of the codewords c10[0]
and c21[6] respectively while shaded columns denote erased
channel packets. We note that each of the parity-check symbols
p1
j [t] is combined with uj [t− 6] for j = {0, 1, . . . , 7} but are

omitted for simplicity.

However, we will see in simulations that the packet loss rate
for PRC-MDS codes, as well as other codes that use block-
MDS codes as constituent codes, is noticeably higher. Thus
the smaller field size ultimately comes with a performance
penalty.

B. Example - PRC-MDS

We discuss an example of a PRC-MDS code construction
designed for C(K,N,B,W ) with parameters, K = 1, N = 1,
B = 3, W = 17 and a delay constraint of T = 7 symbols. We
note that these parameters are the same as that in Section III-C.
However, the rate achieved using a PRC-MDS code is R = 12

22
which is slightly smaller.

In our construction, we again select ∆ = 6. Also note that
the number of source symbols is (T −∆ + 1)∆ = 12. Thus

Good Bad
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Fig. 4: The Gilbert-Elliott Channel Model

we split s[i] ∈ F12
q into two groups:

s[i] = (u0[i], . . . , u7[i]︸ ︷︷ ︸
=u[i]

, v0[i], . . . , v3[i]︸ ︷︷ ︸
=v[i]

). (30)

We apply systematic (∆,∆ − B − 1) = (6, 2) MDS block
codes with an interleaving factor of T − ∆ + 1 = 2 to the
v[·] sub-packets to generate the parity-check packets p1[·] =
(p1

0[·], . . . , p1
7[·]). The codewords of the two MDS block codes

are:
c10[i] = (v0[i], v2[i+ 1], p1

0[i+ 2], p1
2[i+ 3], p1

4[i+ 4], p1
6[i+ 5])

c11[i] = (v1[i], v3[i+ 1], p1
1[i+ 2], p1

3[i+ 3], p1
5[i+ 4], p1

7[i+ 5])

We then combine a shifted version of the u[·] sub-packets
with the p1[·] parity-checks, i.e., q[t] = p1[t] + u[t−∆]. We
additionally apply (T − ∆ + 2, T − ∆ + 1) = (3, 2) MDS
block codes with an interleaving factor of ∆ − B − 1 = 2
to the v[·] sub-packets to generate another set of parity-check
packets, p2[·] = (p2

0[·], p2
1[·]). The codewords of the two codes

is given by,
c20[i] = (v0[i], v2[i+ 1], p2

0[i+ 2]) (31)

c21[i] = (v1[i], v3[i+ 1], p2
1[i+ 2]) (32)

We finally concatenate the two parity-check packets with the
source packet to generate the channel packet, i.e., x[t] =
(s[t],q[t],p2[t]). The construction is shown in Table III.

We discuss the decoding steps, for the case when a burst
length B = 3 spans the interval [i, i + 2] and an isolated
erasure happens at time ti = i + ∆ = i + 6. Without loss
of generality we assume i = 0. The decoder first recovers
the parity-check packets p1[t] in the interval t ∈ [3, 5] by
subtracting the combined u[t − 6] since they are not erased.
The diagonal codewords c10[t] and c11[t] that span the interval
t ∈ [0, 2] are sufficient to recover erased v[·] sub-packets by
time t = 5. It can be verified by inspection that all the erased
v[t] for t ∈ [0, 2] are recovered by t = 5. In a similar fashion,
by using the codewords c20[t] and c21[t] for t ∈ {5, 6} it is
possible to recover the erased v[6] by time t = 8. By time
t = 8 all the erased v[·] sub-packets have been recovered.
Hence, the decoder can go back and compute all the parity-
check packets p1[·] and subtract them to recover the combined
u[1], u[2] and u[6] sub-packets at time 8, 9 and 13 respectively.
The analysis of other erasure patterns can be done in a similar
fashion, but will be omitted due to space constraints.
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(a) All codes are evaluated using a decoding delay of T = 50 symbols and a
rate of R = 50/99 ≈ 0.51 and use m-MDS as the constituent codes.

(b) All codes are evaluated using a decoding delay of T = 50 symbols and
a rate of R = 50/99 ≈ 0.51 and use block MDS codes as the constituent
codes

(c) Burst Histogram at β = 0.1 which approximates a geometric distribution
(shown dotted) with the same success probability.

Fig. 5: Simulation Experiments for Gilbert-Elliott Channel
Model with (α, β) = (10−5, 0.1).

V. SIMULATION RESULTS

We compare different codes over the Gilbert-Elliott (GE)
and Fritchman channels models. As shown in Fig. 4, the
GE channel model has two states, bad-state and good-state.
The probability that the packet is erased in the bad-state is 1
while that in the good-state is ε. In other words, the channel
introduces bursts in the bad-state and i.i.d. erasures in the
good-state. The transition probability from the good-state to
the bad-state is α whereas the transition probability from the
bad state to the good state equals β. A Fritchman channel
model [15] is similar to a GE channel, but it consists of
N + 1 states, one good-state and N bad-states. The burst
length follows a hyper-geometric distribution in the Fritchman

(a) All codes are evaluated using a decoding delay of T = 40 symbols and a
rate of R = 40/67 ≈ 0.6 and use m-MDS as the constituent codes.

(b) All codes are evaluated using a decoding delay of T = 40 symbols and a
rate of R = 40/67 ≈ 0.6 and use block MDS codes as the constituent codes.

(c) Burst Histogram at β = 0.5 in a N + 1 = 9-States Fritchman Channel.
The distribution follows a negative binomial distribution (shown dotted) of
N = 8 failures and a success probability of 0.5.

Fig. 6: Simulation Experiments for Fritchman Channel Model
with (N + 1, α, β) = (9, 2× 10−5, 0.5).

model, but follows a geometric distribution in a GE model.
The inter-burst gap distribution in both models is a geometric
distribution. Such channels are used to model packet losses in
many practical systems (see e.g. [3] and references therein).

The channel and code parameters used in these experiments
are given in Table. IV. We also indicate the achievable values
of N and B for the different codes considered in the simula-
tions. Note that the delays in the two simulations are taken to
be 40 and 50 packets respectively. These choices are motivated
by some realistic delay bounds in practical video streaming
systems. For example, a delay of 40 packets corresponds to
200 ms in a 2 Mbps video consisting of 1250 Byte packets.
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Fig. 5 Fig. 6
(α, β) (5× 10−5, 0.1) (5× 10−4, 0.5)
Channel Length 108 108

Rate R 50/99 ≈ 0.51 40/67 ≈ 0.6
Delay T 50 40

N B N B
m-MDS 25 25 16 16
MS 1 49 1 27
MiDAS 6 43 4 24
PRC 5 39 4 20

TABLE IV: Channel & Code Parameters used in Simulations.

In Fig. 5a, 5b, 6a and 6b, we plot the residual packet loss
rate for different codes vs the erasure probability ε in the
good state whereas Fig. 5c and 6c indicate the burst length
histograms for the two channels. Fig. 5a and 6a use codes
with m-MDS as constituent codes, whereas Fig. 5b and 6b
use block-MDS codes, as discussed in Section IV. The range
of ε considered is [10−3, 10−2].

The plots indicated by the black line and marked with
’+’ correspond to the m-MDS codes in Section II-B. These
codes are optimal for the CI(N,W ) channel and achieve the
largest value of N among all codes in Table IV. We note that
the performance of these codes is relatively constant as ε is
increased. This is because the value of N is sufficiently large
that these codes can correct all isolated erasures in the good
state. The bottleneck for these codes are long erasure bursts.
In particular, note that in Table IV these codes achieve a much
smaller value of B and hence incur significant packet losses
due to long bursts.

The plots marked with circles, and coloured red, correspond
to maximally short (MS) codes proposed in [4], [5]. These
codes are optimal for the CII(B,W ) channel and achieve the
largest value of B among all codes in Table IV. However,
they only achieve N = 1 and hence the performance is very
sensitive to isolated losses in the good state. In particular, note
that as we increase ε the performance in Fig. 5a, 5b, 6a and 6b
quickly deteriorates.

The plots marked with squares, and coloured dark blue,
correspond to the MiDAS codes in Section II-C. These codes
achieve near optimal performance over the CIII(N,B,W )
channel and are able to correct both isolated erasures in the
good state and longer burst losses in the bad state. However,
we notice that in Fig. 5a, 5b, 6a and 6b the performance
deteriorates noticeably as ε is increased. This is due to the
fact that these codes are sensitive to error events consisting of
a burst erasure followed (or preceded) by an isolated erasure as
discussed in Section II-D. When the channel transitions from a
bad state to a good state, and incurs an isolated erasure in the
good state, the entire erasure burst can be lost. For the delays
of interest, we see through simulations that such events are
significant and must be accounted for.

The plots marked with triangles and coloured green are the
PRC codes. While they achieve a slightly smaller value of
N and/or B than the MiDAS codes in Table IV, they can
correct erasure patterns involving a burst erasure followed (or

preceded) by an isolated erasure. We see that the performance
of these codes is relatively constant as ε is increased and is
significantly better than MiDAS codes, particularly over the
Fritchman channel in Fig. 6a and 6b. As a final point we note
that while the codes based on block-MDS codes in Fig. 5b
and 6b show similar trend as the codes based on m-MDS in
Fig. 5a and 6a, there is a noticeable increase in packet loss
rate in the former. Thus the reduction in the field size comes
at a penalty in performance loss.

VI. CONCLUSION

In this paper, we study streaming codes that can recover
from patterns involving both burst and isolated erasures within
the same decoding window. Such patterns arise during state
transitions in models such as Gilbert-Elliott or Fritchman
channels. Instead of directly analyzing such statistical models,
we propose a sliding window erasure channel model to capture
such error patterns. We observe that previously proposed
streaming codes can lead to significant losses over such
channels. We propose a class of Partial Recovery Codes (PRC)
which can recover all but one source packet from any pattern
of burst plus isolated erasure. Our construction is based on a
layering approach where a code for the burst-erasure channel is
extended by adding additional layer of parity-checks to correct
from isolated erasures. The construction and analysis are non-
trivial due to the complexity of the burst plus isolated erasure
pattern. We also propose an alternative construction which uses
block MDS codes as constituent codes and requires a much
reduced field-size. Simulation results over the Gilbert-Elliott
and Fritchman channels indicate that the ability to correct burst
and isolated losses within the same window leads to significant
performance improvements over previously proposed code
constructions. We also observe that constructions based on
block-MDS codes incur a higher loss rate than the codes
based on m-MDS and hence the reduction in the field-size
in the former comes with a performance penalty. As part of
our future work we are investigating the optimality of these
codes by establishing new upper bounds on the capacity of
the C(K,N,B,W ) channel.

APPENDIX A
PROOF OF LEMMA 1

Link: · · ·

W0
WB1−1

B1 B2

Period = j + 1

Fig. 7: The periodic erasure channel used in proving P3 in
Lemma 1, and indicating the first and last windows of interest,
W0 and WB−1, respectively. Grey and white squares denote
erased and unerased symbols respectively.

As mentioned before the proof of Property P1 and P2 is
already provided in [6]. We present the proof of property P3.
Consider a periodic erasure channel of period length j + 1
as shown in Fig. 7. In each period, the channel introduces an
erasure burst of length B1 packets followed by another burst
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of length B2 packets starting r packets from the start of the
first burst and the rest of the period is not erased. In the first
period starting at time t = 0, the two bursts of length B1 and
B2 span the intervals [0, B1−1] and [r, r+B2−1] respectively,
where r < B1

1−R .
We consider the intervals Wi = [i, i + j − 1] for i =

{0, 1, . . . , B1 − 1}. In each such interval, the total number
of erasures is no more than B1 + B2 ≤ b(1−R)(j + 1)c.
Thus using property P1 in Lemma 1, we can recover
s[0], s[1], . . . , s[B1 − 1] by time j, since x[j + 1],x[j +
2], . . . ,x[j +B1 − 1] are erased.

For the second burst, we consider the interval [r, j] of length
j− r+ 1. At this point all the source packets in the first burst
have been recovered and only a total of B2 erasures remain.
The property P2 in Lemma 1 can be used for recovering
s[r], . . . , s[r +B2 − 1] by time j since,
B2 ≤ (1−R)(j + 1)−B1

≤ (1−R)(j + 1)− (1−R)r = (1−R)(j − r + 1). (33)
where the second step uses (4). At this point all the erased
packets in the first period have been recovered by time j and
the claim follows.

APPENDIX B
DECODING ANALYSIS OF PARTIAL RECOVERY CODES

To establish Theorem 2 we divide the erasure patterns into
two main categories. In the first case, the erasure burst is
followed by an isolated erasure whereas in the second case
an isolated erasure precedes the erasure burst.

A. Erasure Burst followed by an Isolated Erasure

Without loss of generality assume that the channel intro-
duces an erasure burst in the interval [0, B − 1] and that the
isolated erasure occurs at time t ≥ B. Since the associated
isolated erasure follows the erasure burst from Def. 2 it must
occur in the interval [B, T + B − 1]. This implies that the
interval [−T,−1] is free of any erasure so that there is only
one burst and isolated erasure in the interval [−T, T +B−1],
which is of length 2T + B. Since the memory of the code
equals T , any erased packets before t < −T will not affect
the decoder. Thus we assume that there are no erasures before
t = 0.

We further consider two cases as stated below.
1) Burst and Isolated Erasures Recovered Simultaneously:

In this case, the burst and the isolated erasures are close
enough such that all the v[·] sub-packets are recovered si-
multaneously. This case is illustrated in Table Va. The isolated
erasure happens at time t where B ≤ t < B

B+1∆. The recovery
of the erased packets proceeds as follows:

1) Recover {v[0], . . . ,v[B − 1],v[t]} at time τ = ∆ − 1
using the (kv + ku + kr, kv) m-MDS code C12 in the
interval [0,∆− 1].

2) Recover {u[0], . . . ,u[B − 1],u[t]} at time τ =
∆, . . . ,∆ + B − 1 and τ = t + ∆ respectively from
the associated parity-checks q[·].

To justify the recovery of v[0], . . . ,v[B − 1],v[t] in the
first step we consider the available parity-checks of C12 in
the interval [0,∆ − 1]. We first note that the interfering sub-
packets u[·] in this interval are not erased and can be cancelled
out from q[·] to recover the parity-checks p1[·]. We apply P3
in Lemma 1 with B1 = B, B2 = 1, r = t and R = R12

and j = ∆ − 1. Note that t < B
B+1∆ also satisfies t <

B1

1−R12
since R12 = ∆−B−1

∆ from (12). Thus the first condition
in (4) in P3 in Lemma 1 is satisfied. Furthermore note that
(1−R12)(j+1) = B+1 and thus the second condition in (4)
in P3 in Lemma 1 is also satisfied. Thus P3 in Lemma 1
applies and the recovery of v[0], . . . ,v[B − 1],v[t] at time
∆− 1 follows.

To justify the recovery of {u[0], . . . ,u[B − 1],u[t]}, recall
that q[i] = u[i−∆]+p1[i]. Since all the v[·] sub-packets have
been recovered in step (1), the associated parity-checks p1[i]
can be computed and cancelled by the decoder to recover the
u[·] sub-packets as claimed.

As a final remark we note that all the erased packets are
recovered for the above erasure pattern.

2) Burst and Isolated Erasures Recovered Separately: In
this case, there is a sufficiently large gap between the burst
and the isolated erasures so that the v[·] sub-packets of the
erasure burst are recovered before the isolated erasure takes
place. This case is illustrated in Table Vb. The isolated erasure
happens at time t ≥ B ∆

B+1 . The recovery of the erased packets
proceeds as follows:

1) Recover {v[0], . . . ,v[B− 1]} by time τ =
⌈
B ∆

B+1

⌉
− 1

using the (kv + ku + kr, kv) m-MDS code C12 in the
interval [0, τ ].

2) Recover {u[0], . . . ,u[t−∆−1]} from q[∆], . . . ,q[t−1]
respectively by cancelling the interfering p1[·] packets.

3) Recover v[t] by time τ = t+T −∆ + 1 using the (kv +
kr, kv) m-MDS code C2 in the interval [t, t+T −∆+1].

4) Recover {u[t − ∆ + 1], . . . ,u[B − 1],u[t]} from q[t +
1], . . . ,q[B+∆−1],q[t+∆] by cancelling the interfering
p1[·] packets.

To justify the recovery of {v[0], . . . ,v[B − 1]} in the first
step above, we consider the available parity-checks of C12 in
the interval [0, τ ]. Note that the interfering u[·] sub-packets in
this interval are not erased and can be cancelled out from q[·]
to recover the underlying parity-checks p1[·]. Furthermore,

(1−R12)(τ + 1) ≥ (1−R12)

(
B

B + 1
∆

)
= B (34)

where we substituted (12) for R12. Thus using property P2
in Lemma 1 we recover the v[0], . . . ,v[B − 1] by time τ as
stated. To justify step (2) above note that q[i] = u[i−∆]+p1[i]
and the interfering p1[i] are only functions of v[·] sub-packets
that have either been recovered in step (1) or are not erased.
To justify (3) we consider the interval [t, t+ T −∆ + 1] and
consider the parity-checks of C2 in this interval. Note that
using (13) we have:

(1−R2)(T −∆ + 2) ≥ 1 (35)
holds and hence using property P2 in Lemma 1 we recover
v[t] by time t + T − ∆ + 1. To justify step (4), note that
once v[t] is recovered in step (3), the parity-checks p1[t +
1], . . . ,p1[B + ∆],p1[t+ ∆] can be computed and cancelled
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[0] . . . [B − 1] [B] . . . [t] [t+ 1] . . . [∆− 1] [∆] . . . [∆ +B − 1]
u u[0] . . . u[B − 1] u[B] . . . u[t] u[t+ 1] . . . u[∆− 1] u[∆] . . . u[∆ +B − 1]
v v[0] . . . v[B − 1] v[B] . . . v[t] v[t+ 1] . . . v[∆− 1] v[∆] . . . v[∆ +B − 1]

u p1[0]+ . . . p1[B − 1]+ p1[B]+ . . . p1[t]+ p1[t+ 1]+ . . . p1[∆− 1] p1[∆] . . . p1[∆ +B− 1]
u[−∆] . . . u[B −∆− 1] u[B −∆] . . . u[t−∆] u[t−∆ + 1] . . . +u[−1] +u[0] . . . +u[B − 1]

s p2[0] . . . p2[B − 1] p2[B] . . . p2[t] p2[t+ 1] . . . p2[∆− 1] p2[∆] . . . p2[∆ +B− 1]︸ ︷︷ ︸ ︸ ︷︷ ︸ ⇓ ⇓ ⇓
Burst Erasure Recover v[0], . . . ,v[B − 1],v[t] u[0] . . . u[B − 1]

(a) Burst followed by Isolated Erasure: Burst and Isolated Erasures Recovered Simultaneously.

[0] . . . [B − 1] . . . [τ ] . . . [∆] . . . [t] . . . [t+ T −∆− 1] . . . [∆ +B − 1]
u u[0] . . . u[B − 1] . . . u[τ ] . . . u[∆] . . . u[t] . . . u[t+ T −∆− 1] . . . u[∆ +B − 1]
v v[0] . . . v[B − 1] . . . v[τ ] . . . v[∆] . . . v[t] . . . v[t+ T −∆− 1] . . . v[∆ +B − 1]

u p1[0]+ . . . p1[B − 1]+ . . . p1[τ ]+ . . . p1[∆] . . . p1[t]+ . . . p1[t+ T −∆− 1] . . . p1[∆ +B− 1]
u[−∆] . . . u[B −∆− 1] . . . u[τ −∆] . . . +u[0] . . . u[t−∆] . . . +u[t+T −2∆−1] . . . +u[B − 1]

s p2[0] . . . p2[B − 1] . . . p2[τ ] . . . p2[∆] . . . p2[t] . . . p2[t+ T −∆− 1] . . . p2[∆ +B− 1]︸ ︷︷ ︸ ︸ ︷︷ ︸ ⇓ ⇓ ︸ ︷︷ ︸
Burst Erasure v[0], . . . ,v[B − 1] u[0] . . . Recover v[t]

⇓ ⇓ ⇓ ⇓
. . . u[t+ T − 2∆ + 1] . . . u[B − 1]

(b) Burst followed by Isolated Erasure: Burst and Isolated Erasures Recovered Separately. τ =
⌈
B ∆

B+1

⌉
− 1.

[0] . . . [t] . . . [t+B − 1] [t+B] . . . [∆− 1] [∆] . . . [t+ ∆] . . . [t+ ∆ +B − 1]
u u[0] . . . u[t] . . . u[t+B − 1] u[t+B] . . . u[∆− 1] u[∆] . . . u[t+ ∆] . . . u[t+ ∆ +B − 1]
v v[0] . . . v[t] . . . v[t+B − 1] v[t+B] . . . v[∆− 1] v[∆] . . . v[t+ ∆] . . . v[t+ ∆ +B − 1]

u p1[0]+ . . . p1[t]+ . . . p1[t+B − 1]+ p1[t+B]+ . . . p1[∆− 1] p1[∆] . . . p1[t+ ∆] . . . p1[t+ ∆ +B − 1]
u[−∆] . . . u[t−∆] . . . u[t−∆ +B− 1] u[t−∆ +B] . . . +u[−1] +u[0] . . . +u[t] . . . +u[t+B − 1]

s p2[0] . . . p2[t] . . . p2[t+B − 1] p2[t+B] . . . p2[∆− 1] p2[∆] . . . p2[t+ ∆] . . . p2[t+ ∆ +B − 1]︸ ︷︷ ︸ ⇓ ⇓ ⇓ ⇓
Recover v[0],v[t], . . . ,v[t+B − 1] u[0] u[t] . . . u[t+B − 1]

(c) Isolated Erasure followed by Burst: Isolated and Burst Erasures Recovered Simultaneously.

[0] . . . [τ ] . . . [t] . . . [t+B − 1] . . . [∆] . . . [t+ ∆] . . . [t+ ∆ +B − 1]
u u[0] . . . u[τ ] . . . u[t] . . . u[t+B − 1] . . . u[∆] . . . u[t+ ∆] . . . u[t+ ∆ +B − 1]
v v[0] . . . v[τ ] . . . v[t] . . . v[t+B − 1] . . . v[∆] . . . v[t+ ∆] . . . v[t+ ∆ +B − 1]

u p1[0]+ . . . p1[τ ]+ . . . p1[t]+ . . . p1[t+B − 1]+ . . . p1[∆] . . . p1[t+ ∆] . . . p1[t+ ∆ +B − 1]
u[−∆] . . . u[τ −∆] . . . u[t−∆] . . . u[t−∆ +B− 1] . . . +u[0] . . . +u[t] . . . +u[t+B − 1]

s p2[0] . . . p2[τ ] . . . p2[t] . . . p2[t+B − 1] . . . p2[∆] . . . p2[t+ ∆] . . . p2[t+ ∆ +B − 1]︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ⇓ ⇓ ⇓
Recover v[0] Burst Erasure Recover v[t], . . . ,v[t+B − 1] u[t] . . . u[t+B − 1]

(d) Isolated Erasure followed by Burst: Isolated and Burst Erasures Recovered Separately. τ =
⌈

∆
B+1

⌉
− 1.

TABLE V: The decoding analysis of PRC codes for various erasure patterns in Channel C(K = 1, N = 1, B,W ≥ 2T +B).
The erasures are shaded grey boxes whereas the parity check symbols used to recover the v[·] symbols are marked using bold
borders. The u[·] symbols are recovered by subtracting the combined p1[·] parity checks. For simplicity we let u = ku, v = kv

and s = kr.

from the associated q[·] packets, and the claim follows.
As a final remark, we note that when t ∈ [∆,∆+B−1], the

sub-packet u[t−∆] which is erased in the first burst, cannot
be recovered as its repeated copy at time t is also erased. This
is the only packet that cannot be recovered.

B. Isolated Erasure followed by an Erasure Burst

We assume without loss of generality that the isolated
erasure happens at time zero and that the burst erasure happens
at time t > 0. Since the isolated erasure precedes the erasure
burst, it follows that the erasure burst must begin in the
interval t ∈ [1, T ] from Def. 2. This implies that there cannot
be any erasure in the interval [−T,−1] since the interval
[−T, T +B− 1] must have only one isolated erasure and one
erasure burst. Since the memory of the code equals T , any
erased packet before time t = −T will not affect the decoder.
Thus in what follows we assume that there are no erasures
before time 0.

This class of patterns is sub-divided into two cases discussed
below.

1) Isolated and Burst Erasures Recovered Simultaneously:
In this case the burst erasure and the isolated erasure are close
enough so that all the v[·] sub-packets are simultaneously
recovered. This case is illustrated in Table Vc. The burst
erasure begins at time t < ∆

B+1 . The recovery of the erased
packets proceeds as follows:

1) Recover {v[0],v[t], . . . ,v[t + B − 1]} using the (kv +
ku + kr, kv) m-MDS code C12 in the interval [0,∆− 1].

2) Recover {u[0],u[t], . . . ,u[t+B−1]} at time τ = ∆, t+
∆, . . . , t + B + ∆ − 1 respectively from the associated
parity-checks q[·].

To justify step (1) we note that the interfering u[·] sub-
packets in q[·] in the interval [0,∆ − 1] are not erased and
can be cancelled to recover p1[·]. We apply P3 in Lemma 1
to code C12 in the interval [0,∆− 1] using B1 = 1, B2 = B
and r = t. Note that by assumption on t and from (12) we
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have that
r <

∆

B + 1
=

1

1−R12
(36)

and thus the first condition in (4) holds. Furthermore from (12)
we also have that (1 − R12)∆ = B + 1 and thus the second
condition in (4) also holds. Thus P3 in Lemma 1 guarantees the
recovery of {v[0],v[t], . . . ,v[t+B− 1]} by time τ = ∆− 1.

To justify step (2), note that there are no further erasures
in the interval [∆,∆ + t + B − 1]. Since all the erased v[·]
sub-packets are recovered in step (1), the decoder can compute
p1[∆],p1[i+∆], . . . ,p1[i+B+∆−1] and subtract them from
the corresponding q[·] packets to recover u[0],u[i], . . . ,u[i+
B − 1], respectively with a delay of ∆ ≤ T .

As a final remark we note that all the erased packets are
fully recovered in this erasure pattern.

2) Isolated and Burst Erasures Recovered Separately: In
this case, the gap between the isolated erasure and the burst
erasure is sufficiently large so that v[0] is recovered before the
burst erasure begins. This case is illustrated in Table Vd. In
this case, we have that t ≥ ∆

B+1 . The recovery of the erased
packets proceeds as follows:

1) Recover the sub-packet v[0] by time τ =
⌈

∆
B+1

⌉
− 1

using the (kv + ku + kr, kv) m-MDS code C12 in the
interval [0, τ ].

2) Recover the sub-packets v[t], . . . ,v[t + B − 1] by time
t+ ∆−1 using the (kv +ku +kr, kv) m-MDS code C12

in the interval [t, t+ ∆− 1].
3) Recover u[t], . . . ,u[t+B − 1] from q[t+ ∆], . . . ,q[t+

B+∆−1] respectively by cancelling the associated p1[·]
packets.

To justify the above steps note the interfering u[·] sub-packets
in q[·] for t ∈ [0,∆−1] are not erased and can be cancelled out
to recover p1[·]. In step (1), it suffices to use P1 in Lemma 1
and show that v[0] is recovered by time τ =

⌈
∆

B+1

⌉
−1. Note

that
(1−R12)(τ + 1) ≥ (1−R12)

∆

B + 1
= 1 (37)

where we substitute (12) for R12 above. Since by assumption
on t, v[0] is the only sub-packet erased in the interval [0, τ ]
it follows that v[0] is recovered by this time.

To justify step (2), consider the interval [t, t + ∆ − 1] and
recall that the erasure burst spans [t, t+B − 1]. Furthermore
even though v[0] has been recovered in step (1) and its effect
can be cancelled out, the sub-packet u[0] appears in q[∆] and
may contribute to one additional erasure when t ≤ ∆. In this
case, we assume that a total of B + 1 erasures occur in the
above stated interval. We use P3 in Lemma 1 applied to the
code C12 with B1 = B and B2 = 1, in order to show the
recovery of v[t], . . . ,v[t+B−1]. Note that the first condition
in (4) is satisfied since

∆− t ≤ ∆
B

B + 1
=

B

1−R12
(38)

is satisfied and the second condition is satisfied as well since
(1 − R12)∆ = B + 1. By time t + ∆ − 1, the decoder has
recovered all the erased v[·] sub-packets. If instead we had
t > ∆ then u[0] can be recovered at time t = ∆ and there
remain only B erasures in the interval [t, t + ∆ − 1], so the
recovery of v[t], . . . ,v[t+B − 1] again follows.

Finally to recover the u[·] sub-packets in the interval
[t, t + ∆ − 1], we compute the parity-check packets p1[·] in
the interval [t + ∆, t + B + ∆ − 1], subtract them from the
corresponding q[·] packets, and recover u[t], . . . ,u[t+B− 1]
respectively as stated in step (4).

As a final remark we note that the sub-packet u[0] my not
be recovered if its repeated copy at time ∆ is erased as part of
the erasure burst. Thus we may have one unrecovered packet
for the above erasure pattern.

This completes the proof of the decoder in Theorem 2.
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