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Abstract—In this letter, we establish the secure degrees-of-
freedom (d.o.f.) of the Gaussian diamond-wiretap channel with
rate-limited relay cooperation, where the eavesdropper not only
observes the relay transmission through another multiple access
channel but also wiretaps some of communication links among
relays. The legitimate parties do not know the location of
wiretapped relay links nor the eavesdropper’s channel state
information (CSI). As an optimal relay cooperation strategy,
a noise-forwarding scheme that does not incorporate secure
network coding is adopted. Furthermore, we briefly outline how
the scheme can be extended to incorporate the case when the
source-relay links are also wiretapped.

I. INTRODUCTION

Multi-cell processing is a promising technique to drastically
enhance the data rates for cellular networks [1], [2]. In
this technique, the base stations cooperate by rate-limited
backbone links connected to a central processor and/or among
themselves. This scenario can be modeled as the Gaussian
diamond channel with rate-limited relay cooperation where the
source is connected with finite-rate links to multiple relays
and the relays further set up cooperation through finite-rate
links among them for transmission to the destination over the
Gaussian multiple access channel.

In this letter, we consider such a model in a secrecy
setting [3], where an external eavesdropper wiretaps some of
links among relays and also the multiple access part through
another multiple access channel. We assume a practical sce-
nario where the legitimate parties do not know the location
of wiretapped links among relays nor the eavesdropper’s CSI.
To study the behavior of secrecy capacity in high signal-to-
noise ratio (SNR) regime, we investigate the secure d.o.f.
of this Gaussian diamond-wiretap channel with rate-limited
relay cooperation. For the optimistic case of full CSIT, the
secure d.o.f. was established in [4] when there are only
two relays. In the absence of eavesdropper’s CSI, however,
the optimal scheme and the involved secrecy analysis are in
general different, see e.g., [5]. On the other hand, if relay
cooperation is not allowed in our model, the secure d.o.f.
was established in [6]. Very recently, the work of [6] was
generalized in [7] to the scenario where the eavesdropper can
wiretap some of source-relay links and the legitimate parties
do not know the location. To protect information sent through
source-relay links, secure network coding [8]-like technique
was incorporated by utilizing the nature of wireless networks.
As an extension of these prior works, our setting gives rise to
the following interesting questions: (i) whether and how the
secure network coding-like technique should be incorporated
for the relay cooperation and (ii) whether it would be possible
to combine with the result of [7] to characterize the secure
d.o.f. when the eavesdropper can wiretap both the source-relay
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Figure 1. The Gaussian diamond-wiretap channel with rate-limited relay
cooperation for M = 3.

links and the relay-relay links to some extent. We address both
questions in this letter.

The following notation is used throughout the paper. For
two integers i and j, [i : j] denotes the set {i, i + 1, · · · , j}.
Unif[S] for a set S denotes the uniform distribution over S.
When S = [i : j], we use Unif[i : j] instead of Unif[[i : j]].
b·c denotes the floor function.

II. MODEL

The Gaussian diamond-wiretap channel with rate-limited
relay cooperation consists of a source, M relays, a legitimate
destination, and an eavesdropper, which is illustrated in Fig. 1
for M = 3. The source can send to M relays through
orthogonal links of capacity Ca. Each relay has a broadcast
link with capacity Cb connected to all the other relays and
the eavesdropper can wiretap up to W ∈ [0 :M ] links among
them.1 For notational convenience, let L := M − W . The
legitimate parties do not know which links are wiretapped. For
the multiple access part, the channel outputs at the legitimate
destination and the eavesdropper at time t are given as

Y1(t) =

M∑
k=1

hk(t)Xk(t) + Z1(t) (1)

Y2(t) =

M∑
k=1

gk(t)Xk(t) + Z2(t), (2)

respectively, where Xk(t) is the channel input from relay k,
hk(t)’s and gk(t)’s are the channel fading coefficients, and
Z1(t) and Z2(t) are additive Gaussian noise with zero mean
and unit variance. The average power constraint of P is
assumed at each relay. We assume a fast fading scenario where
hk(t)’s and gk(t)’s are independent and identically distributed
(i.i.d.) over time according to an arbitrary real-valued distri-
bution f(h1, · · · , hM , g1, · · · , gM ) satisfying that (i) all joint
and conditional distributions are bounded and (ii) there exists
a positive finite number J such that 1

J ≤ |hk(t)|, |gk(t)| ≤ J

1In fact, our results hold for a general relay cooperation scenario as
described in Remark 2.
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for all k ∈ [1 : M ]. For notational convenience, let h(t) =
(h1(t) · · · hM (t)) and g(t) = (g1(t) · · · gM (t)) denote
the legitimate (user’s) CSI and the eavesdropper’s CSI at
time t, respectively. We assume that the source does not know
both the legitimate CSI and the eavesdropper’s CSI and the
eavesdropper knows both the CSI’s. The relays and destination
are assumed to know only the legitimate CSI.

A (2nR, n) code consists of
• a message G ∼ Unif[1 : 2nR],
• a stochastic encoder at the source that (randomly) maps
G ∈ [1 : 2nR] to (An1 , · · · , AnM ) ∈ An1 × · · · × AnM such
that 1

nH(Ank ) ≤ Ca for k ∈ [1 :M ],
• a stochastic encoder for setting up cooperation at relay
k ∈ [1 : M ] that (randomly) maps Ank to Bnk such that
1
nH(Bnk ) ≤ Cb,

• a stochastic encoder for multiple access part at relay
k ∈ [1 : M ] at time t ∈ [1 : n] that (randomly) maps
(Ank , B

n
[1:M ], X

t−1
k ,ht) to Xk(t) ∈ Xk,

• and a decoding function at the destination that (randomly)
maps (Y n1 ,h

n) to Ĝ ∈ [1 : 2nR].

The probability of error is given as P (n)
e = P (Ĝ 6= G). A

secrecy rate of R is said to be achievable if there exists a
sequence of (2nR, n) codes such that limn→∞ P

(n)
e = 0 and

limn→∞
1
nI(G;B

n
T , Y

n
2 |hn,gn) = 0 for all T ⊆ [1 :M ] such

that |T | =W .
In this letter, we analyze the secure d.o.f. A d.o.f. tu-

ple (α, β, ds) is said to be achievable if a rate R with
limP→∞

R
1
2 logP

= ds is achievable when limP→∞
Ca

1
2 logP

=

α and limP→∞
Cb

1
2 logP

= β. A secure d.o.f. ds(α, β) is the
maximum ds such that (α, β, ds) is achievable. According to
the context, ds denotes ds(α, β).

III. MAIN RESULT

The following theorem presents the main result of this letter.

Theorem 1. For the Gaussian diamond-wiretap channel with
rate-limited relay cooperation, the secure d.o.f. is equal to

ds = min

{
Mα,

Mα+ Lβ +M − 1

M + 1
, 1

}
. (3)

Proof: The achievability and the converse parts are proved
in Sections IV and V, respectively.

Note that the second term in the minimum of (3) corre-
sponds to the penalty term due to secrecy constraint. This term
increases as Lβ, i.e., the total d.o.f. of securely communicated
information among relays, increases and becomes inactive
when Lβ = 1.

Remark 1. For channels with constant gains, one can check
by closer inspection of our scheme that the RHS of (3) is
achievable for almost all channel gains. For converse, a key
result from [9] used for the upper bound, i.e., the entropy of the
channel output at the eavesdropper is at least as large as that
at the legitimate destination, does not seem to be immediately
generalized to such a channel scenario.

Remark 2. Theorem 1 holds when each relay has an or-
thogonal link with d.o.f. β

M−1 to each other relay and the
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Figure 2. The Gaussian diamond-wiretap channel with pairwise relay
cooperation for M = 3.

eavesdropper wiretaps (M − 1)W links among them, illus-
trated in Fig. 2 for M = 3. Converse is obvious because each
relay receives less information and there is more freedom for
wiretapping. Achievability follows by observing that in our
scheme in Section IV, each relay only utilizes 1

M−1 fraction
of information broadcasted from each other relay.

More generally, by closer inspection of our achievability
and converse proof, one can show that when there are secure
communication links among relays with total d.o.f. µ,2 the
secure d.o.f. is equal to ds = min

{
Mα, Mα+µ+M−1

M+1 , 1
}

.

Remark 3. The secure d.o.f. decreases compared to the case
of full CSIT studied in [4]. In particular, for M = L = 2,
while β ≥ 1

4 is needed for the case of full CSIT to compensate
the decrease in secure d.o.f. due to secrecy constraint, β ≥ 1

2
is required for the case of no eavesdropper’s CSI.

Remark 4. A generalization to the setting where the eaves-
dropper can also wiretap some of source-relay links is briefly
discussed in Section VI.

IV. ACHIEVABILITY

We note that the works [6], [7] do not consider communica-
tion links among relays. Here we present a constituent scheme,
called noise-forwarding (NF) scheme, that utilizes the links
among relays.

Our achievability proof consists of two parts: (i) we first
present the NF scheme that achieves (α, β, ds) =

(
1
M , 1

L , 1
)

and then (ii) show that the whole d.o.f. region in Theorem 1
can be achieved by time-sharing the NF scheme with two other
previously known schemes.

Let us first describe the NF scheme at a high-level. In
Appendix A, we provide a more detailed and rigorous analysis.
The NF scheme is illustrated in Fig. 3 for the special case
of M = 3 and L = 2 (W = 1). In the NF scheme,
the source represents the message of d.o.f. 1 as a vector
(V1, · · · , VM ) of independent message symbols where Vk has
a d.o.f. 1

M . The source sends Vk to relay k, which requires
α = 1

M . Then, relay k broadcasts to the other relays a
vector (Uk,j : j ∈ [1 : M ], j 6= k) of its own independent
noise symbols where Uk,j has a d.o.f. 1

L(M−1) , which requires
β = 1

L . Relay k sends the message symbol Vk, a set of noise
symbols (Uk,j , Ui,k : j ∈ [1 : M ], i ∈ [1 : M ], j 6= k, i 6= k)
in a way that (i) each of noise symbols is beam-formed in the

2µ only counts orthogonal information that are securely communicated
among relays. Hence, in both the relay cooperation scenarios described in
Section II and in the previous paragraph, µ = Lβ.
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Figure 3. Illustration of the noise-forwarding scheme for M = 3 and L = 2.
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Figure 4. The (α, β, ds) region of Theorem 1 with three corner points a, b,
and c achieved by two schemes in [6], [7] and our NF scheme, respectively.

null space of the destination’s channel, (ii) V1, · · · , VM can
be distinguished by the destination, and (iii) any two of noise
symbols are not aligned at the eavesdropper with high proba-
bility. Note that the total d.o.f. of Uk,j’s is M

L = 1+W
L . Hence,

although the eavesdropper wiretaps a total of W (M−1) noise
symbols each of d.o.f. 1

L(M−1) , the remaining noise symbols
occupy a total of 1 d.o.f at the eavesdropper’s signal space
and thus the message can be shown to be secure. Readers are
referred to Appendix A for a more rigorous analysis.

Now, we prove that the whole d.o.f. region of Theorem 1 is
achievable by time-sharing the NF scheme with two other pre-
viously known schemes. According to [6], [7], where the relay
cooperation was not considered, (α, β, ds) =

(
M−1
M2 , 0,

M−1
M

)
and (α, β,ds) =

(
2
M , 0, 1

)
are achievable by a blind coopera-

tive jamming scheme and a computation for jamming scheme.
For brevity, let us call the schemes achieving

(
M−1
M2 , 0,

M−1
M

)
,(

2
M , 0, 1

)
, and

(
1
M , 1

L , 1
)

as Schemes a, b, and c, respectively.
Fig. 4 illustrates the (α, β, ds) region of (3) with the corner
points achieved by Schemes a, b, and c. Then, the secure d.o.f.
in Region 1 (indicated with R1 in Fig. 4) is achieved by using
Scheme a for some fraction of time. Next, the secure d.o.f. in
Region 2 (R2), Region 3 (R3), and Region 4 (R4) is achieved
by time-sharing between Schemes a and c, between Schemes
a, b, and c, and between Schemes b and c, respectively.
Finally, the secure d.o.f. in Region 5 (R5) can be achieved
by Scheme b.

V. CONVERSE

For the Gaussian multiple-access wiretap channel, it is
shown in [5, Section 4.2.1] that there is no loss of secure
d.o.f. if we consider the following deterministic model with
integer-input and integer-output, instead of (1) and (2):

Y1(t) =

M∑
k=1

bhk(t)Xk(t)c, Y2(t) =
M∑
k=1

bgk(t)Xk(t)c (4)

with the constraint
Xk(t) ∈ {0, 1, · · · , b

√
P c}, k ∈ [1 :M ]. (5)

Likewise, it can be shown that there is no loss of secure d.o.f.
in considering the deterministic model (4) and (5) for the
multiple-access part of our model.3 Hence, in this section, the
multiple-access part is assumed to be given as (4) and (5).

We assume that gn in addition to hn is available at the
destination, which only possibly increases the secure d.o.f.
Hence, hn and gn are conditioned in every entropy and mutual
information terms in this section, but are omitted for brevity.
In the following, ci’s for i = 1, 2, 3, · · · are used to denote
positive constants independent of n and P .

Fix an arbitrary T ⊆ [1 :M ] such that |T | =W . We obtain
nR

(a)

≤ I(G;Y n1 , B
n
T )− I(G;Y n2 , BnT ) + nc1 (6)

(b)
= H(Xn

[1:M ]|B
n
T )−H(Y n2 |BnT ) + nc1

≤ H(Xn
[1:M ], A

n
[1:M ], B

n
T c |BnT )−H(Y n2 |BnT ) + nc1

≤ H(An[1:M ]) +H(BnT c) +H(Xn
[1:M ]|A

n
[1:M ]B

n
[1:M ])

−H(Y n2 |BnT ) + nc1

≤ nMCa + nLCb +

M∑
i=1

H(Xn
i |Ani , Bn[1:M ])

−H(Y n2 |BnT ) + nc1, (7)
where (a) is due to the Fano’s inequality and the secrecy
constraint and (b) is by applying the similar arguments used
to obtain [7, Eq. (15)].

Next, to bound H(Xn
i |Ani , Bn[1:M ]) for i ∈ [1 :M ], we start

from (6) to obtain
nR ≤ I(G;Y n1 , BnT )− I(G;Y n2 , BnT ) + nc1

≤ I(G;Y n1 |BnT ) + nc1 (8)
(a)

≤ I(An[1:M ], B
n
T c ;Y

n
1 |BnT ) + nc1

≤ H(Y n1 |BnT )−H(Y n1 |An[1:M ], B
n
[1:M ]) + nc1

(b)

≤ H(Y n1 |BnT )−H(Xn
i |An[1:M ], B

n
[1:M ], X

n
ic) + nc2

(c)

≤ H(Y n1 |BnT )−H(Xn
i |Ani , Bn[1:M ]) + nc2, (9)

where ic := [1 : M ] \ {i}, (a) is due to the Markov chain
G−(An[1:M ], B

n
[1:M ])−Y

n
1 , (b) is from similar arguments used

to derive [7, Eq. (31)], and (c) is due to the Markov chain
(Xn

ic , A
n
ic)− (Ani , B

n
[1:M ])−X

n
i .

Now, by combining (7) and (9), we have
(M + 1)nR

≤ nMCa + nLCb

+MH(Y n1 |BnT )−H(Y n2 |BnT ) + nc3

= nMCa + nLCb + (M − 1)H(Y n1 |BnT )
+H(Y n1 |BnT )−H(Y n2 |BnT ) + nc3. (10)

Furthermore, from [9, Section 6], it follows that
H(Y n1 |BnT )−H(Y n2 |BnT ) ≤ n · o(logP ). (11)

By substituting (11) to (10), we obtain ds ≤ Mα+Lβ+M−1
M+1 .

From the cutset bound, we have ds ≤Mα. On the other hand,
from (8), we have ds ≤ 1. This completes the proof of the
converse part of Theorem 1.

3We omit the proof since it is a straightforward extension of [5, Section
4.2.1].
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VI. DISCUSSION

As a final remark, we briefly outline the generalization to
the scenario where the eavesdropper can also wiretap up to
W ′ source-relay links. Let N =M −W ′ denote the number
of secure source-relay links. In this general model, it can be
shown that the secure d.o.f. is given as

ds =

{
min{α, Lβ+M−1M , 1}, N = 1

min{Nα, Nα+Lβ+M−1M+1 , 1}, N ≥ 2.
(12)

To achieve (12), we time-share the two constituent schemes
in [7]4 with a new constituent scheme achieving (α, β, ds) =(

1
N ,

1
L , 1

)
for any N ≥ 1. This constituent scheme incor-

porates secure network coding technique used in [7] for the
source-relay communication and our noise-forwarding scheme
for the relay cooperation. We note that the secure network
coding technique is needed for the source-relay links since
message has to somehow be forwarded from the source to the
relays to be decoded at the legitimate destination. For the relay
cooperation part, however, it suffices to send noise symbols
that are independent of the message and hence secure network
coding is not required.

APPENDIX A
DETAILED ANALYSIS OF THE NF SCHEME

For the analysis of the NF scheme, we use the following
proposition, which can be proved by assuming symbol-by-
symbol operation at each relay and regarding our model as
the classical wiretap channel [10].

Proposition 1. For the Gaussian diamond-wiretap channel
with rate-limited relay cooperation, a secrecy rate R
is achievable if R ≤ I(V ;Y1|h) − I(V ;Y2, BT |h,g)
for all T ⊆ [1 : M ] such that |T | = W for some
p(v)p(a[1:M ]|v)

∏
k∈[1:M ] p(bk|ak)p(xk|ak, b[1:M ],h) such

that H(Ak) ≤ Ca, H(Bk) ≤ Cb, and E[X2
k ] ≤ P for

k ∈ [1 :M ].

Let C(δ,Q) for positive real number δ and positive integer Q
denote the PAM constellation δ{−Q,−Q+1, · · · , 0, · · · , Q−
1, Q} of (2Q+1) points with distance δ between consecutive
points. We apply Proposition 1 with the following choice of
p(v)p(a[1:M ]|v)

∏
k∈[1:M ] p(bk|ak)p(xk|ak, b[1:M ],h):

V = (V1, · · · , VM ), Ak = Vk

Bk = (Uk,j : j ∈[1 :M ], j 6= k)

Xk = Vk +
∑

j∈[1:M]
j 6=k

Uk,j −
∑

i∈[1:M]
i6=k

hi
hk
Ui,k

for k ∈ [1 : M ], where Vk’s are independently generated
according to Unif[C(δa, Qa)] and Uk,j’s are independently
generated according to Unif[C(δb, Qb)] for some positive real
numbers δa and δb and positive integers Qa and Qb to be
specified later. We note that H(Ak) ≤ Ca, H(Bk) ≤ Cb, and
E[X2

k ] ≤ P for k ∈ [1 :M ] are satisfied if
log(2Qa + 1) ≤ Ca, (M − 1) log(2Qb + 1) ≤ Cb (13)

δaQa + γbδbQb ≤
√
P , (14)

4The work [7] considers the wiretapped diamond-relay channel where there
is no cooperation among relays and the eavesdropper can wiretap up to N
source-relay links as well as the multiple access part.

where γb = (M − 1)(1 + J2).5 Then, the channel outputs are
given as Y1 =

∑M
k=1 hkVk + Z1 and Y2 =

∑M
k=1 gkVk +∑

k∈[1:M ]

∑
j∈[1:M]
j 6=k

(
gk − hkgj

hj

)
Uk,j + Z2. Note that the

noise symbols Uk,j’s are canceled at the legitimate destination
and the message symbols Vk’s are masked by the set of Uk,j’s
at the eavesdropper. From Proposition 1, the following secrecy
rate is achievable:

R ≤ I(V ;Y1|h)−max I(V ;Y2, UT |h,g), (15)
where the maximization is over all T ⊆ {(k, j) : k ∈ [1 :
M ], j ∈ [1 : M ], k 6= j} such that |T | = (M − 1)W . Let
us choose Qa = P

1−ε
2(M+ε) , δa = P 1/2

2Qa
, Qb = P

1−ε
2((M−1)L+ε) ,

and δb = P 1/2

2γbQb
for some ε > 0 that satisfies the power

constraint (14). Then, by standard real interference alignment
arguments [11], it can be shown that for any T ⊆ {(k, j) :
k ∈ [1 :M ], j ∈ [1 :M ], k 6= j} such that |T | = (M − 1)W ,

I(V ;Y1|h) ≥
(1− ε)M
2(M + ε)

logP − o(logP ) (16)

I(V ;Y2, UT |h,g) ≤
ε((M − 1)L+ 1)

2((M − 1)L+ ε)
logP + o(logP ).

(17)
By choosing ε sufficiently small, it follows from (13), (15),

(16), (17) that (α, β, ds) = ( 1
M , 1

L , 1) is achievable.
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