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Abstract—In this paper, we consider the Gaussian diamond-
wiretap channel that consists of an orthogonal broadcast channel
from a source to two relays and a Gaussian fast-fading multiple
access-wiretap channel from the two relays to a legitimate
destination and an eavesdropper. For the multiple access part, we
consider both the case with full channel state information (CSI)
and the case with no eavesdropper’s CSI, at the relays and the
legitimate destination. For both the cases, we establish the exact
secure degrees of freedom and generalize the results for multiple
relays.

Our results show (i) how to strike a balance between sending
message symbols and common noise symbols from the source to
the relays in the broadcast component and (ii) how to combine
artificial noise-beamforming and noise-alignment techniques at
the relays in the multiple access component. In the case with
full CSI, we propose a scheme where the relays simultaneously
beamform common noise signals in the null space of the legitimate
destination’s channel, and align them with the message signals
at the eavesdropper. In the case with no eavesdropper’s CSI, we
present a scheme that efficiently utilizes the broadcast links by
incorporating computation between the message and common
noise symbols at the source. Finally, most of our achievability
and converse techniques can also be adapted to the Gaussian
(non-fading) channel model.

Index Terms—Physical layer security, secure degrees of free-
dom, diamond-wiretap channel, artificial noise-beamforming,
artificial noise-alignment

I. INTRODUCTION

A model of wiretap channel was first studied by Wyner [2],
where a source wishes to send its message to a legitimate
destination while keeping it secret from an eavesdropper.
Wyner established the secrecy capacity for the degraded case
where the eavesdropper receives a physically degraded version
of the channel output at the legitimate destination. Csiszár
and Körner generalized his work to general, not necessarily
degraded, discrete memoryless wiretap channel [3]. This line
of work has been subsequently extended to various multi-user
scenarios, see e.g., [4]–[16], however, the characterization of
the secrecy capacity remains a challenging open problem in
general. In fact, even for the seemingly simple case of the
Gaussian multiple access-wiretap channel, the secrecy capacity
is only known for the degraded case [9].

Recently, as an alternative but insightful measure, the secure
degrees of freedom (d.o.f.) has been actively studied [17]–[20]
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for various multi-user wiretap networks. For the Gaussian mul-
tiple access-wiretap channel, the sum secure d.o.f. was shown
to be 2

3 for almost all channel gains [18]. For achievability, a
cooperative jamming scheme was proposed that incorporates
real interference alignment [21] at the legitimate destination
and the eavesdropper. In many practical scenarios, however, it
is hard for the source and the legitimate destination to know
the eavesdropper’s channel state information (CSI). In [20], the
secure d.o.f. with no eavesdropper’s CSI was characterized for
some interesting one-hop wiretap channels. For the Gaussian
multiple access-wiretap channel, the sum secure d.o.f. was
shown in [20] to reduce to 1

2 with no eavesdropper’s CSIT,
which is achieved by a blind cooperative jamming scheme.
We note that the prior work has focused on one-hop wiretap
networks, and to the best of our knowledge, there has been no
prior work on the secure d.o.f. for multi-hop wiretap networks.

In this paper, we consider the Gaussian diamond-wiretap
channel illustrated in Fig. 1 that consists of an orthogonal
broadcast channel from a source to two relays and a Gaussian
multiple access-wiretap channel from the two relays to a legit-
imate destination and an eavesdropper. We consider both the
case where the relays and the legitimate destination know the
legitimate CSI and the eavesdropper’s CSI and the case where
they know only the legitimate CSI, which we call the case with
full CSI and the case with no eavesdropper’s CSI, respectively.
As a pessimistic scenario, we assume that the source does not
know any of the legitimate CSI and the eavesdropper’s CSI
and the eavesdropper knows both the CSI’s.1 The proposed
setting is a two-hop communication network and involves
several new elements not present in the single-hop networks
studied previously. Our model introduces a new possibility
of utilizing common message and/or common noise for the
Gaussian multiple access-wiretap channel. This brings in an
interesting tension in the use of the broadcast links regarding
whether we send independent messages, common message,
common noise, or a function of those across the broadcast part.
At one extreme, when the capacities of the orthogonal links in
the broadcast part are sufficiently small, the optimal strategy
turns out to send independent partial message to each relay
and incorporate jamming schemes [18], [20] for the multiple
access part. At the other extreme, when the broadcast part
has sufficiently high capacity to transmit common message

1The source may not know the legitimate CSI when it is apart from
the legitimate destination. However, we note that both our converse and
achievability results hold when the source knows the legitimate CSI. We also
note that the secrecy under the assumption of global CSI at the eavesdropper
guarantees secrecy when the eavesdropper has limited knowledge of CSI. Such
an assumption of global CSI at the eavesdropper is widely used for wiretap
fading channels, e.g., [20], [22].
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Figure 1. The Gaussian diamond-wiretap channel.

or common noise symbols to the relays, without incurring
bottleneck, it follows that the secure d.o.f. equals 1 using the
results [23]–[25] for the multiple-input single-output (MISO)
wiretap channel. When the link capacities of the broadcast
part are moderate, however, the optimal scheme is not imme-
diate. Furthermore, due to the possibility of sending common
information across the broadcast part, we cannot assume in
proving converse that the channel inputs and outputs at the
relays are independent, whereas channel inputs at transmitters
are inherently independent in most one-hop wiretap networks.

In the absence of secrecy constraint, our model falls back
to the diamond channel introduced by Schein [26], whose
capacity is not known in general. For a range of moderate
link capacities at the broadcast part, [27]–[30] characterized
the capacity of the diamond channel, which is strictly tighter
than the cutset bound. For achievability, a coding scheme
incorporating multicoding at the source was proposed in [27],
[28]. This scheme was generalized in [29], [30] by considering
common message sent to the relays. For converse, [28], [29]
used a technique from [31] to take into account the correlation
between the two relay signals. The converse proof technique
used in [28], [29] was refined and tightened in [30] and
was generalized in [32] for the scenario where there are two
destinations. In the presence of a secrecy constraint, such
converse proof techniques need to be adopted carefully by tak-
ing into account the stochastic encoding functions introduced
to confuse the eavesdropper. Those works [27], [28] were
generalized in [33] for the degraded Gaussian diamond-wiretap
channel, in which the secrecy capacity was characterized for
several ranges of channel parameters. For non-degraded case,
however, the coding scheme used in [33] achieves zero secure
d.o.f. and structured codes such as interference alignment
and beamforming schemes need to be involved to achieve a
positive secure d.o.f.

For the Gaussian diamond-wiretap channel in Fig. 1, we
establish the exact secure d.o.f. in terms of the link d.o.f.’s at
the broadcast part, both for the case with full CSI and for the
case with no eavesdropper’s CSI. In the converse proof for
the case with full CSI, we assume a deterministic model as in
[20, Section 4.2.1] and then apply similar steps to the secrecy
penalty lemma [18, Lemma 1]. As a result, we encounter a
term corresponding to the amount of independent randomness
that is injected at each relay to confuse the eavesdropper. Such
randomness cannot be too large due to the reliability constraint

at the legitimate receiver. To capture the trade-off between the
message rate and the amount of such randomness, we adapt
the proof steps of the role of a helper lemma [18, Lemma 2]
for our model. For the case with no eavesdropper’s CSI, we
use one more known result from [20], [34] that the entropy
of the channel output sequence at a receiver whose CSI is not
available at the transmitters is at least as large as that at a
receiver whose CSI is available.

Our achievability part is based on five key constituent
schemes. In particular, we propose two new schemes that
utilize common noise, in a way that the common noise
signals are beam-formed in the null space of the legitimate
destination’s channel. One of these two schemes is for the
case with full CSI and is called a simultaneous alignment and
beamforming (S-AB) scheme, which incorporates alignment of
the message and the common noise signals at the eavesdropper.
The proposed S-AB scheme also extends easily to the case
with more than two relays and yields the best achievable secure
d.o.f. The other scheme is for the case with no eavesdropper’s
CSI and is called a computation for jamming (CoJ) scheme,
which efficiently utilizes the broadcast links by incorporating
computation between the message and the common noise
symbols at the source. The remaining three schemes are
straightforward extensions of the previously known schemes,
i.e., the cooperative jamming scheme [18] and blind cooper-
ative jamming scheme [20] for the Gaussian multiple access-
wiretap channel and the message-beamforming scheme [23],
[24] for the Gaussian MISO wiretap channel.

As a natural extension, we also consider a generalized
Gaussian diamond-wiretap channel with more than two relays.
For the brevity of the results, we consider the symmetric case
where the link d.o.f.’s of the broadcast part are the same.
By generalizing the proof techniques used in the two-relay
case, we establish the exact secure d.o.f. for the case with no
eavesdropper’s CSI and present upper and lower bounds on
the secure d.o.f. for the case with full CSI.

The remaining of this paper is organized as follows. In
Section II, we formally present the model of the Gaussian
diamond-wiretap channel. Our main results on the secure d.o.f.
are given in Section III. In Sections IV and V, we prove the
converse and the achievability parts, respectively. We extend
the results for the case with multiple relays in Section VI. We
conclude this paper in Section VII.

II. SYSTEM MODEL

Consider the Gaussian diamond-wiretap channel illustrated
in Fig. 1 that consists of a broadcast channel from a source
to two relays and a Gaussian multiple access-wiretap chan-
nel from the two relays to a legitimate destination and an
eavesdropper. For the broadcast part, the source is connected
to the two relays through orthogonal links of capacities C1

and C2. For the multiple access part, the channel outputs
Y1(t) and Y2(t) at time t at the legitimate destination and
the eavesdropper, respectively, are given as

Y1(t) = h1(t)X1(t) + h2(t)X2(t) +N1(t) (1)
Y2(t) = g1(t)X1(t) + g2(t)X2(t) +N2(t), (2)
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where X1(t) and X2(t) are the channel inputs from relays
1 and 2, respectively, hk(t) and gk(t) for k = 1, 2 are
the channel fading coefficients to the legitimate destination
and the eavesdropper, respectively, and N1(t) and N2(t) are
independent Gaussian noise with zero mean and unit variance
at the legitimate destination and the eavesdropper, respectively,
at time t. The transmit power constraint at relay k = 1, 2 is
given as 1

n

∑n
t=1X

2
k(t) ≤ P , where n denotes the number of

channel uses.
We assume a fast fading scenario where h1(t), h2(t), g1(t),

and g2(t) are drawn in an i.i.d. fashion over time according to
an arbitrary real-valued joint density function f(h1, h2, g1, g2),
whose all joint and conditional density functions are bounded
and whose support set does not include zero and infinity, i.e.,
there exists a positive finite L such that

1

L
≤ |hk(t)|, |gk(t)| ≤ L. (3)

We note that (3) is a mild technical condition because by
choosing L large enough, the omitted support set can be
reduced to a negligible probability that has a vanishing
impact on the degrees of freedom. For notational conve-
nience, let ht = [h1(1) h2(1) · · · h1(t) h2(t)] and gt =
[g1(1) g2(1) · · · g1(t) g2(t)] denote the legitimate channel
state information (CSI) and the eavesdropper’s CSI up to time
t, respectively.

We assume that the source does not know any of the legit-
imate CSI and the eavesdropper’s CSI and the eavesdropper
knows both the CSI’s. Two cases are considered regarding the
availability of CSI at the relays and the legitimate destination.
First, we consider a case where both the legitimate CSI and
the eavesdropper’s CSI are available at the two relays and the
legitimate destination, which we call the case with full CSI.
We also consider another case where only the legitimate CSI
is available at the two relays and the legitimate destination,
which we call a case with no eavesdropper’s CSI. We note
that our achievability and converse techniques for the case with
full CSI and our achievability technique for the case with no
eavesdropper’s CSI can be adapted for the scenario with fixed
channel gains over time and for the scenario with complex
channel fading coefficients, as remarked at the end of Section
III.

A (2nR, n) secrecy code consists of a message W ∼
Unif[1 : 2nR],2 a stochastic encoder at the source that
(randomly) maps W ∈ [1 : 2nR] to (J1, J2) ∈ [1 : 2nC1 ]× [1 :
2nC2 ], a stochastic encoder at time t = 1, . . . , n at relay
k = 1, 2 that (randomly) maps (Jk,h

t,gt) and (Jk,h
t) for

the case with full CSI and for the case with no eavesdropper’s
CSI, respectively, to Xk(t) ∈ Xk, and a decoding function
at the legitimate destination that maps (Y n1 ,h

n,gn) and
(Y n1 ,h

n) for the case with full CSI and for the case with
no eavesdropper’s CSI, respectively, to Ŵ ∈ [1 : 2nR]. The
probability of error is given as P

(n)
e = P (Ŵ 6= W ). A

secrecy rate of R is said to be achievable if there exists a
sequence of (2nR, n) codes such that limn→∞ P

(n)
e = 0 and

2[i : j] for two integers i and j denotes the set {i, i+1, · · · , j} and Unif[S]
for a set S denotes the uniform distribution over S. When S = [i : j], we
use Unif[i : j] instead of Unif[[i : j]].

limn→∞
1
nI(W ;Y n2 |hn,gn) = 0.3 The secrecy capacity is the

supremum of all achievable secrecy rates.
In this paper, we are interested in asymptotic behavior

of the secrecy capacity when P tends to infinity. We say
a d.o.f. tuple (α1, α2, ds) is achievable if a rate R with
ds = limP→∞

R
1
2 logP

is achievable when C1 and C2 satisfy

α1 = lim
P→∞

C1
1
2 logP

, α2 = lim
P→∞

C2
1
2 logP

.

A secure d.o.f. ds(α1, α2) is the maximum ds such that
(α1, α2, ds) is achievable. For brevity, ds denotes ds(α1, α2)
according to the context. Without loss of generality, let us
assume C1 ≥ C2, which implies α1 ≥ α2.

III. MAIN RESULTS

In this section, we state our main results of this paper.
The following two theorems present the secure d.o.f. of the
Gaussian diamond-wiretap channel for the case with full CSI
and for the case with no eavesdropper’s CSI, respectively,
whose proofs are in Section IV for the converse parts and
in Section V for the achievability parts.

Theorem 1. The secure d.o.f. of the Gaussian diamond-
wiretap channel with full CSI at the relays and the legitimate
destination is equal to

ds = min

{
α1 + α2,

α2 + 1

2
, 1

}
. (4)

Theorem 2. The secure d.o.f. of the Gaussian diamond-
wiretap channel with no eavesdropper’s CSI at the relays and
the legitimate destination is equal to

ds = min

{
α1 + α2,

α1 + α2 + 1

3
,
α2 + 1

2
, 1

}
. (5)

We note that the secure d.o.f. of the classical Gaussian
wiretap channel is zero. Theorems 1 and 2 show that the
secure d.o.f. can be greatly improved by deploying relays.
First, note that even if α2 = 0, the secure d.o.f. of 1

2 is
achievable as long as α1 ≥ 1

2 , both for the case with full CSI
and for the case with no eavesdropper’s CSI. This is because
relay 2 can act as a helper [20] that enables to produce a
jamming signal in cooperation with relay 1. We also note that
when each of α1 and α2 is higher than or equal to 1, one
secure d.o.f. is achievable for both the cases. For the case
with full CSI, this is natural from the known results [23], [24]
for the Gaussian multiple-input single-output (MISO) wiretap
channel, where the source has two antennas and each of the
legitimate destination and the eavesdropper has one antenna.
In this Gaussian MISO wiretap channel, one secure d.o.f. is
achievable by beamforming the message signal in the null
space of the eavesdropper’s channel. Similarly, if the source
can send the message with d.o.f. 1 to both the relays for our
diamond-wiretap channel, the relays are able to beam-form
the message signals in the null space of the eavesdropper’s
channel. However, with no eavesdropper’s CSI, this is not
immediate from the known results for the Gaussian MISO

3Note that there is no secrecy constraint at the relays.
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wiretap channel. The secure d.o.f. of the Gaussian MISO
wiretap channel is still 1 with no eavesdropper’s CSI [25], but
it is achieved by sending an artificial noise signal in the null
space of the legitimate destination in addition to the message
signal. To translate this scheme to our diamond-wiretap chan-
nel, the source needs to send to the relays common artificial
noise as well as (partial) messages, which requires α1 ≥ 1,
α2 ≥ 1, and α1 +α2 ≥ 3. To achieve (α1, α2, ds) = (1, 1, 1),
we propose a novel scheme that incorporates computation
of the message and artificial noise symbols at the source.
This scheme involves transmitting a judicious function of the
message and noise symbols from the source such that we only
require (α1, α2) = (1, 1), yet accomplish noise-beamforming
as discussed above.

For the special case of symmetric link capacities, i.e., α1 =
α2 = α, the secure d.o.f.’s are given as

min

{
2α,

α+ 1

2
, 1

}
,min

{
2α,

2α+ 1

3
, 1

}
for the case with full CSI and for the case with no eaves-
dropper’s CSI, respectively. Note that the secure d.o.f. is 2α
up to α = 1

3 and α = 1
4 for the case with full CSI and

for the case with no eavesdropper’s CSI, respectively. In this
range, the broadcast part is the bottleneck and hence it is
optimal to send independent partial messages to the relays
and to incorporate the cooperative jamming [18] and the blind
cooperative jamming [20] for the case with full CSI and for
the case with no eavesdropper’s CSI, respectively. After this
threshold value of α, the source needs to send some common
information (same message or common artificial noise) to
achieve a higher secure d.o.f. and this causes the reduction
of the gain in secure d.o.f. with respect to α. In Section VI,
we investigate the effect of the absence of the eavesdropper’s
CSI on the secure d.o.f. for a generalized model with multiple
relays.

Remark 1. For the scenario where the channel fading coef-
ficients are fixed during the whole communication, the lower
and upper bounds on the secure d.o.f. for the case with full
CSI in Theorem 1 and the lower bound on the secure d.o.f. for
the case with no eavesdropper’s CSI in Theorem 2 continue to
hold for almost all channel gains. For an upper bound with no
eavesdropper’s CSI, a key result from [34] used for the upper
bound in Theorem 2, i.e., the entropy of the channel output at
the eavesdropper is at least as large as that at the legitimate
destination, does not seem to be immediately generalized to
the scenario with fixed channel gains.

Remark 2. We note that our achievability results can be
generalized for complex channel fading coefficients by apply-
ing [35, Lemma 7] in our analysis of interference alignment.
Also, our converse result for the case with full CSI can
be generalized for complex channel fading coefficients in a
straightforward manner.

IV. CONVERSE

For the Gaussian multiple access-wiretap channel, it is
shown in [20, Section 4.2.1] that there is no loss of secure
d.o.f. if we consider the following deterministic model with

integer-input and integer-output, instead of the model (1)-(2)
in Section II:

Y1(t) =

2∑
k=1

bhk(t)Xk(t)c, Y2(t) =

2∑
k=1

bgk(t)Xk(t)c (6)

with the constraint

Xk ∈ {0, 1, . . . , b
√
P c}, k = 1, 2 (7)

where b·c denotes the floor function.
Likewise, it can be shown that there is no loss of secure

d.o.f. in considering the deterministic model (6) and (7) for
the multiple access part in our Gaussian diamond-wiretap
channel.4 Hence, in this section, let us assume that the multiple
access part is given as (6) and (7). In this section, ci’s for
i = 1, 2, 3, . . . are used to denote positive constants that do
not depend on n and P . We note that hn,gn are known to the
legitimate destination and the eavesdropper for the case with
full CSI. For the case with no eavesdropper’s CSI, we assume
gn in addition to hn is available at the legitimate destination,
which only possibly increases the secure d.o.f. Hence, hn,gn

are conditioned in every entropy and mutual information terms
in this section, but are omitted for notational convenience.

A. Proof for the converse part of Theorem 1

From the cut-set bound, we can easily obtain

ds ≤ min{α1 + α2, 1}. (8)

Hence, it remains to show ds ≤ α2+1
2 . By applying similar

steps used for the secrecy penalty lemma [18, Lemma 1], we
have

nR
(a)

≤ I(W ;Y n1 ) + nc2
(b)

≤ I(W ;Y n1 )− I(W ;Y n2 ) + nc3

≤ I(W ;Y n1 , Y
n
2 )− I(W ;Y n2 ) + nc3

= I(W ;Y n1 |Y n2 ) + nc3

≤ H(Y n1 |Y n2 ) + nc3

= H(Y n1 , Y
n
2 )−H(Y n2 ) + nc3

≤ H(Xn
1 , X

n
2 , Y

n
1 , Y

n
2 )−H(Y n2 ) + nc3

≤ H(Xn
1 , X

n
2 ) +H(Y n1 , Y

n
2 |Xn

1 , X
n
2 )−H(Y n2 ) + nc3

(c)
= H(Xn

1 , X
n
2 )−H(Y n2 ) + nc3, (9)

where (a) is from the Fano’s inequality, (b) is from the secrecy
constraint, and (c) is because a deterministic model in (6) is
assumed in this section. To bound H(Y n2 ) in (9), it follows
that

H(Y n2 )

= H
({ 2∑

i=1

bgi(t)Xi(t)c
}n
t=1

)
≥ H

({ 2∑
i=1

bgi(t)Xi(t)c
}n
t=1

∣∣Xn
2

)
4We omit a formal proof as it is identical to that in [20, Section 4.2.1].
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= H
({
bg1(t)X1(t)c

}n
t=1

∣∣Xn
2

)
= H(Xn

1 ,
{
bg1(t)X1(t)c

}n
t=1
|Xn

2 )

−H(Xn
1 |
{
bg1(t)X1(t)c

}n
t=1

, Xn
2 )

= H(Xn
1 |Xn

2 )−H(Xn
1 |
{
bg1(t)X1(t)c

}n
t=1

, Xn
2 )

≥ H(Xn
1 |Xn

2 )−
n∑
t=1

H(X1(t)|bg1(t)X1(t)c)

(a)

≥ H(Xn
1 |Xn

2 )− nc4, (10)

where (a) is from [20, Lemma 2].5

Now continuing (9) with (10) substituted, we have

nR ≤ H(Xn
2 ) + nc5

≤ H(Xn
2 , J2) + nc5

= H(J2) +H(Xn
2 |J2) + nc5. (11)

Note that the term H(Xn
2 |J2) signifies the amount of

independent randomness injected at relay 2 to confuse the
eavesdropper. Such randomness cannot be too large because of
the reliability constraint at the receiver. To capture the trade-
off between the rate R and H(Xn

2 |J2), we apply similar steps
to the role of a helper lemma [18, Lemma 2]. We start from
the Fano’s inequality to get

nR ≤ I(W ;Y n1 ) + nc2

≤ I(J1, J2;Y
n
1 ) + nc2

= H(Y n1 )−H(Y n1 |J1, J2) + nc2. (12)

For the term H(Y n1 |J1, J2), we have

H(Y n1 |J1, J2)

= H
({ 2∑

i=1

bhi(t)Xi(t)c
}n
t=1
|J1, J2

)
≥ H

({ 2∑
i=1

bhi(t)Xi(t)c
}n
t=1
|J1, J2, X

n
1

)
= H

({
bh2(t)X2(t)c

}n
t=1
|J1, J2, X

n
1

)
= H(Xn

2 ,
{
bh2(t)X2(t)c

}n
t=1
|J1, J2, X

n
1 )

−H(Xn
2 |
{
bh2(t)X2(t)c

}n
t=1

, J1, J2, X
n
1 )

= H(Xn
2 |J1, J2, X

n
1 )

−H(Xn
2 |
{
bh2(t)X2(t)c

}n
t=1

, J1, J2, X
n
1 )

≥ H(Xn
2 |J1, J2, X

n
1 )−

n∑
t=1

H(X2(t)|bh2(t)X2(t)c)

(a)

≥ H(Xn
2 |J1, J2, X

n
1 )− nc6

(b)
= H(Xn

2 |J2)− nc6, (13)

where (a) is from Lemma 2 in [20] and (b) is due to the
Markov chain Xn

2 −J2− (Xn
1 , J1). Therefore, by substituting

(13) in (12), we obtain

nR ≤ H(Y n1 )−H(Xn
2 |J2) + nc7. (14)

5We note that the constraint in [20, Lemma 2] is satisfied under our channel
model.

Combining (11) and (14), we have

2nR ≤ H(J2) +H(Y n1 ) + nc8.

Hence, we have

R ≤ 1

2

(
1

2
logP + C2

)
+ c9,

and, in turn,

ds ≤
1

2
(1 + α2).

Combining with (8), we finish the proof for the converse part
of Theorem 1.

B. Proof for the converse part of Theorem 2

Note that (9) continue to hold for the case with no eaves-
dropper’s CSI. Continuing with (9), it follows that

nR ≤ H(Xn
1 , X

n
2 )−H(Y n2 ) + nc10

≤ H(Xn
1 , X

n
2 , J1, J2)−H(Y n2 ) + nc10

= H(J1, J2) +H(Xn
1 , X

n
2 |J1, J2)−H(Y n2 ) + nc10

≤ H(J1) +H(J2) +H(Xn
1 |J1)

+H(Xn
2 |J2)−H(Y n2 ) + nc10. (15)

By applying similar steps as those to derive (14), we can obtain

nR ≤ H(Y n1 )−H(Xn
k |Jk) + nc11, k = 1, 2. (16)

Continuing with (15) substituted by (16) for k = 1, 2, we
have

3nR ≤ H(J1) +H(J2) + 2H(Y n1 )−H(Y n2 ) + nc12

For the case with no eavesdropper’s CSI, it is shown in [34,
Section 5] that the difference H(Y n1 ) − H(Y n2 ) can not be
larger than n · o(logP ).6 Therefore, we have

3nR ≤ H(J1) +H(J2) +H(Y n1 ) + nc12 + n · o(logP )

which derives that

ds ≤
α1 + α2 + 1

3
.

Since the bound on ds for the case with full CSI continues to
hold for the case with no eavesdropper’s CSI, we finish the
proof for the converse part of Theorem 2.

V. ACHIEVABILITY

The direct parts of Theorems 1 and 2 are proved by first
identifying a few key constituent schemes and then time-
sharing among them appropriately. Let us first provide a high-
level description of those schemes and then give a detailed one.
First, the following three schemes require the eavesdropper’s
CSI at the relays and the legitimate destination and their
operations are illustrated in Fig. 2.
• [Scheme 1 achieving (α1, α2, ds) = ( 1

3 ,
1
3 ,

2
3 ). Incorpo-

ration of cooperative jamming [18]]:
The message with d.o.f. 2

3 is split into two independent
partial messages each with d.o.f. 1

3 . The source sends a

6The channel assumption in [34] is satisfied under our channel model.
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partial message to each relay in a way that each relay has
a different partial message, which requires α1 = α2 = 1

3 .
Then, the relays operate according to the cooperative
jamming scheme [18] for the Gaussian multiple access-
wiretap channel, which is briefly explained in the follow-
ing. Each relay sends independent partial message (d.o.f.
1
3 ) together with its own noise (d.o.f. 1

3 ) in a way that the
noise signals are aligned at the legitimate destination and
a partial message signal sent from a relay is aligned with
and is perfectly masked by the noise signal sent from the
other relay at the eavesdropper.

• [Scheme 2 achieving (α1, α2, ds) = (1, 1, 1). Incorpora-
tion of message-beamforming [23], [24]]:
The source sends the message with d.o.f. 1 to both
the relays, which requires α1 = α2 = 1. Both the
relays send the message cooperatively in a way that the
message signals are beam-formed in the null space of the
eavesdropper’s channel.

• [Scheme 3 achieving (α1, α2, ds) = (1, 1, 1). Simultane-
ous alignment and beamforming (S-AB)]:
The message with d.o.f. 1 is split into two independent
partial messages each with d.o.f. 1

2 . The source sends a
partial message together with a common noise with d.o.f.
1
2 to each relay, which requires α1 = α2 = 1. Then,
each relay sends independent partial message (d.o.f. 1

2 )
and common noise (d.o.f. 1

2 ) in a way that the common
noise signals are beam-formed in the null space of the
legitimate destination’s channel and the partial message
signals are aligned with and are perfectly masked by the
common noise signal at the eavesdropper. Although this
scheme achieves the same d.o.f. tuple as for Scheme 2,
it outperforms Scheme 2 for more than two relays as
remarked in Section VI.

Next, the following two schemes operate with no eavesdrop-
per’s CSI at the relays and the legitimate destination, which
are illustrated in Fig. 3.

• [Scheme 4 achieving (α1, α2, ds) = (1
2 , 0,

1
2 ). Incorpora-

tion of blind cooperative jamming [20]]:
The source sends the message with d.o.f. 1

2 only to relay
1, which requires α1 = 1

2 . Then, the relays operate
according to the blind cooperative jamming scheme [20]
for the wiretap channel with helpers. Relay 1 sends the
message (d.o.f. 1

2 ) together with its own noise (d.o.f. 1
2 )

and relay 2 sends its own noise (d.o.f. 1
2 ) in a way that

the noise signals are aligned at the legitimate destination.
Since the noise signals occupy the entire space at the
eavesdropper, the messages can be shown to be secure.

• [Scheme 5 achieving (α1, α2, ds) = (1, 1, 1). Computa-
tion for jamming (CoJ)]:
The source adds a noise sequence with d.o.f. 1 to the
message codeword with d.o.f. 1 and sends the resultant
sequence, which also has d.o.f. 1, to relay 1. To relay
2, the source sends the noise sequence used for the
addition. This requires α1 = α2 = 1. Then, relays 1
and 2 send what they have received in a way that the
common noise signals are canceled out at the legitimate
destination. Because the common noise signals occupy
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Figure 2. Schemes for the case with full CSI: (a) Incorporation of cooperative
jamming, (b) Incorporation of message-beamforming, and (c) Simultaneous
alignment and beamforming. Diamond shapes and rectangular shapes illustrate
(partial) messages and noises, respectively, and the number above or below
each shape represents its corresponding d.o.f. Same shapes with same patterns
mean the same information. Otherwise, different shapes and/or different
patterns represent independent informations.
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Figure 3. Schemes for the case with no eavesdropper’s CSI: (a) Incorporation
of blind cooperative jamming and (b) Computation for jamming. Similarly
as in Fig. 2, diamond shapes and rectangular shapes represent (partial)
messages and noises, respectively, with the number above or below each shape
corresponding to its d.o.f. Same shapes with same patterns represent the same
information, and otherwise independent informations.

the entire space at the eavesdropper, the message can be
shown to be secure.

To show the achievability part of Theorem 1, we perform
time-sharing among Scheme 1, Scheme 4, and any of Schemes
2, 3, and 5. For the achievability part of Theorem 2, we time-
share between Schemes 4 and 5. Because Schemes 1, 2, and
4 are straightforward extensions of the previously proposed
schemes in [18], [20], [23], [24], we give a detailed description
only for Schemes 3 and 5. To that end, we first present
some achievability results for the Gaussian multiple access-
wiretap channel, which corresponds to the multiple access part
of our model where each relay acts as a source having its
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own message. In particular, to take into account the possible
transmission of common noise from the source to the relays
in our model, we assume that a common noise sequence
is available at the sources of the Gaussian multiple-access
wiretap channel. In such a Gaussian multiple access-wiretap
channel, source k = 1, 2 wishes to send message Wk of rate
Rk to the legitimate destination while keeping it secret from
the eavesdropper. A secrecy rate tuple (R1, R2) is said to
be achievable if there exists a sequence of codes with block
length n such that limn→∞ P (Ŵ1 6= W1 or Ŵ2 6= W2) = 0
and limn→∞

1
nI(W1,W2;Y

n
2 |hn,gn) = 0. The following

two theorems give achievable secrecy rate regions for the
Gaussian multiple access-wiretap channel for the case with
full CSI at the sources and the legitimate destination and for
the case with no eavesdropper’s CSI at the sources and the
legitimate destination, respectively. Since these theorems are
direct consequences of the achievablility result in [10], their
proofs are omitted in this paper.

Theorem 3. For the Gaussian multiple access-wiretap channel
with full CSI at the sources and the legitimate destination and
with common i.i.d. noise U ∼ p(u) available at the sources,
a secrecy rate tuple (R1, R2) is achievable if∑

k∈S

Rk ≤ I(VS ;Y1|VSc ,h,g)− I(VS ;Y2|h,g)

for all S ⊆ [1 : 2] for some
∏
k∈[1:2] p(vk)p(xk|u, vk,h,g)

such that E[X2
k ] ≤ P for k = 1, 2.7

Theorem 4. For the Gaussian multiple access-wiretap channel
with no eavesdropper’s CSI at the sources and the legitimate
destination and with common i.i.d. noise U ∼ p(u) available
at the sources, a secrecy rate tuple (R1, R2) is achievable if∑

k∈S

Rk ≤ I(VS ;Y1|VSc ,h)− I(VS ;Y2|h,g)

for all S ⊆ [1 : 2] for some
∏
k∈[1:2] p(vk)p(xk|u, vk,h) such

that E[X2
k ] ≤ P for k = 1, 2.

Remark 3. Theorems 3 and 4 can be obtained from [10]
by applying the technique of adding prefix channels intro-
duced in [3]. We add prefix channel p(u, xk|vk,h,g) =
p(u)p(xk|u, vk,h,g) for the case with full CSI and add prefix
channel p(u, xk|vk,h) = p(u)p(xk|u, vk,h) for the case with
no eavesdropper’s CSI.

Now, let us describe Schemes 3 and 5.
Scheme 3 achieving (α1, α2, ds) = (1, 1, 1). Simultaneous

alignment and beamforming scheme: The message W of rate
R is split into W1 and W2 each of which having rate R/2.
Then, the source sends Wk to relay k together with a common
noise sequence Un generated in an i.i.d. manner according to
Unif[C(a,Q)], where

C(a,Q) = a{−Q,−Q+ 1, · · · , 0, · · · , Q− 1, Q}

for some positive real number a and positive integer Q which
will be specified later. This transmission from the source to

7In Theorems 3 and 4, h = (h1, h2) and g = (g1, g2) denote the random
channel fading coefficients generated by f(h1, h2, g1, g2).

the relays imposes the following constraints:

R

2
+ log(2Q+ 1) ≤ C1 (17)

R

2
+ log(2Q+ 1) ≤ C2. (18)

Now, we apply Theorem 3 for the multiple ac-
cess part with the following choices of R1, R2, and
p(v1)p(v2)p(x1|u, v1,h,g)p(x2|u, v2,h,g):

R1 = R/2, R2 = R/2

V1 ∼ Unif[C(a,Q)], V2 ∼ Unif[C(a,Q)]

X1 =

(
h2 −

g2

g1
h1

)
V1 + h2U

X2 =

(
g1

g2
h2 − h1

)
V2 − h1U.

Then, the channel outputs at the legitimate destination and the
eavesdropper are given as

Y1 =

(
h1h2 −

g2

g1
h2

1

)
V1 +

(
g1

g2
h2

2 − h1h2

)
V2 +N1

Y2 = (g1h2 − g2h1)(V1 + V2 + U) +N2,

respectively. According to Theorem 3, the secrecy rate of R
is achievable if

R ≤ I(V1, V2;Y1|h,g)− I(V1, V2;Y2|h,g) (19)
R

2
≤ I(V1;Y1|V2,h,g)− I(V1;Y2|h,g) (20)

R

2
≤ I(V2;Y1|V1,h,g)− I(V2;Y2|h,g) (21)

are satisfied.
Let us bound the first term in the RHS of (19). The

constellation at the legitimate destination consists of (2Q+1)2

points and the minimum distance dmin of which can be
bounded using the Khintchine-Groshev theorem of Diophan-
tine approximation [21] as follows: for any δ > 0, there exists
a constant kδ such that

dmin ≥
akδ
Q1+δ

(22)

for almost all channel fading coefficients except a set of
Lebesque measure zero. Since the probability that a realization
of channel fading coefficients does not satisfy (22) is negligi-
ble, for the sake of brevity, let us assume that channel fading
coefficients satisfy (22) in the subsequent analysis.

Let (V̂1, V̂2) denote the estimate of (V1, V2) which is chosen
as the closest point to Y1 in the constellation. Then, we have

P ((V̂1, V̂2) 6= (V1, V2)) ≤ exp

(
−d

2
min

8

)
≤ exp

(
− a2k2

δ

8Q2(1+δ)

)
.

By choosing Q = P
1−δ

2(2+δ) and a = γP 1/2

Q for some γ > 0,
we have

P ((V̂1, V̂2) 6= (V1, V2)) ≤ exp

(
−γ

2k2
δP

δ

8

)
.
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To meet the power constraints, we choose γ as follows:

γ =
1√
5L3

≤ min

 1√
(h2 − g2

g1
h1)2 + h2

2

,
1√

( g1g2h2 − h1)2 + h2
1

 .

According to the Fano’s inequality, it follows that

H(V1, V2|Y1,h,g)

≤ H(V1, V2|V̂1, V̂2)

≤ 1 + P ((V̂1, V̂2) 6= (V1, V2)) log(|(V1, V2)| − 1)

≤ 1 + exp

(
−k

2
δP

δ

40L6

)
log (2Q+ 1)2

= o(logP ).

Therefore, the first term in the RHS of (19) can be bounded
as

I(V1, V2;Y1|h,g)
= H(V1, V2|h,g)−H(V1, V2|Y1,h,g)

≥ log (2Q+ 1)2 − o(logP )

=
1− δ
2 + δ

logP − o(logP ). (23)

For the second term in the RHS of (19), it follows that

I(V1, V2;Y2|h,g)
(a)

≤ I(V1, V2; (g1h2 − g2h1)(V1 + V2 + U)|h,g)
(b)
= I(V1, V2;V1 + V2 + U)

= H(V1 + V2 + U)−H(U)

≤ log(6Q+ 1)− log(2Q+ 1)

= log

(
6Q+ 1

2Q+ 1

)
= o(logP ), (24)

where (a) is due to the Markov chain (V1, V2) − ((g1h2 −
g2h1)(V1 + V2 +U),h,g)− Y2 and (b) is because P (g1h2 −
g2h1 = 0) = 0 for our channel model.

Next, for the first term in the RHS of (20), we have

I(V1;Y1|V2,h,g)

= I(V1;Y
′
1 |h,g)

= H(V1)−H(V1|Y ′1 ,h,g)
(a)
= H(V1)− h(N1|Y ′1 ,h,g)
≥ H(V1)− h(N1)

= log(2Q+ 1)− 1

2
log 2πe

≥ 1− δ
2(2 + δ)

logP − o(logP ) (25)

for Y ′1 , heffV1 + N1 and heff , h1h2 − g2
g1
h2

1, where (a)
is because P (heff = 0) = 0 for our channel model and for
given Y ′1 ,h,g with heff 6= 0, V and N1 have a one-to-one
relationship. For the second term in the RHS of (20), we have

I(V1;Y2|h,g) ≤ I(V1, V2;Y2|h,g)

(a)

≤ o(logP ), (26)

where (a) is from (24).
Similarly, for the terms in the RHS of (21), we can show

I(V2;Y1|V1,h,g) ≥
1− δ

2(2 + δ)
logP − o(logP ) (27)

I(V2;Y2|h,g) ≤ o(logP ). (28)

By substituting (19)-(21) with (23)-(28) and then choosing
δ sufficiently small, we have

R ≤ 1

2
logP − o(logP ) (29)

for the multiple access part. From (17), (18), and (29), we
conclude that (α1, α2, ds) = (1, 1, 1) is achievable.

Scheme 5 achieving (α1, α2, ds) = (1, 1, 1). Computation
for jamming scheme: In this scheme, we wish to apply Theo-
rem 4 for the multiple access part with the following choices
of R1, R2, and p(v1)p(v2)p(x1|u, v1,h)p(x2|u, v2,h):

R1 = R, R2 = 0

V1 ∼ Unif[C(a,Q)], V2 = ∅

X1 =
1

h1
(V1 + U), X2 = − 1

h2
U,

where U ∼ Unif[C(a,Q)], C(a,Q) = a{−Q,−Q +

1, · · · , 0, · · · , Q − 1, Q}, Q = P
1−δ
2 , and a = 1√

2L
P
δ
2 for

δ > 0. Note that the power constraints at the relays are satisfied
since 1√

2L
≤ min

{
|h1|√

2
, |h2|

}
.

To that end, one naive approach is to let the source send
the message W to relay 1 and send a common noise sequence
Un to both relays 1 and 2, which requires

R+ log(2Q+ 1) ≤ C1

log(2Q+ 1) ≤ C2.

However, there is a cleverer way to enable the aforementioned
relay operations, in which the source computes V n1 (W ) +Un

and sends the sum to relay 1. To relay 2, the source sends Un.
This transmission from the source to the relays is possible if
the following constraints are satisfied:

log(4Q+ 1) ≤ C1 (30)
log(2Q+ 1) ≤ C2. (31)

Now, the channel outputs at the legitimate destination and
the eavesdropper are given as

Y1 = V1 +N1

Y2 =
g1

h1
V1 +

(
g1

h1
− g2

h2

)
U +N2,

respectively. According to Theorem 4, the following secrecy
rate can be achieved.

R ≤ I(V1;Y1|h)− I(V1;Y2|h,g). (32)

Let us bound the first term in the RHS of (32). We have

I(V1;Y1|h) = I(V1;V1 +N1)

= H(V1)−H(V1|V1 +N1)

= H(V1)− h(N1|V1 +N1)
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≥ H(V1)− h(N1)

= log(2Q+ 1)− 1

2
log(2πe)

≥ 1− δ
2

logP − o(logP ). (33)

For the second term in the RHS of (32), it follows that

I(V1;Y2|h,g)
= I(V1, U ;Y2|h,g)− I(U ;Y2|V1,h,g)

(a)

≤ I(V1, U ;Y2|h,g)−
1− δ
2

logP + o(logP )

= h(Y2|h,g)− h(Y2|V1, U,h,g)−
1− δ
2

logP + o(logP )

= h(Y2|h,g)− h(N2)−
1− δ
2

logP + o(logP )

(b)

≤ 1

2
logP − 1

2
log 2πe− 1− δ

2
logP + o(logP )

=
δ

2
logP + o(logP ), (34)

where (a) is by applying similar steps as those used for ob-
taining (25) and (b) is because all channel fading coefficients
are assumed to be bounded away from zero and infinity.

By substituting (32) with (33) and (34) and by choosing δ
sufficiently small, we have

R ≤ 1

2
logP + o(logP ) (35)

for the multiple access part. From (30), (31), and (35), we
conclude that (α1, α2, ds) = (1, 1, 1) is achievable.

Now, we are ready to prove the achievability parts of
Theorems 1 and 2.

A. Proof for the achievability part of Theorem 1

Note that α1 ≥ α2 without loss of generality in our model.
First, consider the case where the minimum of (4) is equal
to α1 + α2, which implies 2α1 + α2 ≤ 1. We use time-
sharing technique as follows: use Scheme 1 for 3α2 fraction
of time, use Scheme 4 for 2(α1 − α2) fraction of time, and
keep silent for the remaining fraction.8 Then, it can be easily
shown ds = α1 + α2 is achievable. Next, consider the case
where the minimum of (4) is given as 1

2 (1+α2). If α2 ≤ 1
3 , by

using Scheme 1 for 3α2 fraction of time and using Scheme
4 for 1 − 3α2 fraction of time, 1

2 (1 + α2) is achievable. If
1
3 < α2 ≤ 1, by using Scheme 1 for 3

2 (1 − α2) fraction of
time and using any of Schemes 2, 3, and 5 for the remaining
fraction of time, 1

2 (1+α2) is achievable. Finally, consider the
case where the minimum of (4) is 1, which implies α1 ≥ 1
and α2 ≥ 1. By using any of Schemes 2, 3, and 5, ds = 1 is
trivially achievable.

B. Proof for the achievability part of Theorem 2

We note that a variant of Scheme 4 where the roles of relays
1 and 2 are swapped can achieve (α1, α2, ds) = (0, 1

2 ,
1
2 ), and

let us call this scheme as Scheme 4∗. First, consider the case
where the minimum of (5) is equal to α1 +α2, which implies

8Note that 3α2 + 2(α1 − α2) = 2α1 + α2 ≤ 1.

2α1 + 2α2 ≤ 1. By using Scheme 4 for 2α1 fraction of time
and Scheme 4∗ for 2α2 fraction of time and keeping silent
for the remaining fraction, ds = α1 + α2 can be shown to
be achievable. Next, consider the case where the minimum
of (5) is given as 1

3 (1 + α1 + α2). By using Scheme 4 for
2(α1−2α2+1)

3 fraction, Scheme 4∗ for 2(α2−2α1+1)
3 fraction,

and Scheme 5 for the remaining fraction of time, it can be
shown that ds = 1

3 (1+α1 +α2) is achievable. Now, consider
the case where the minimum of (5) is given as 1

2 (1+α2). We
use Scheme 4 for (1 − α2) fraction of time and use Scheme
5 for α2 fraction of time, which achieves ds = 1

2 (1 + α2).
Finally, consider the case where the minimum of (5) is 1,
which implies α1 ≥ 1 and α2 ≥ 1. By using Scheme 5,
ds = 1 is trivially achievable.

VI. GENERALIZATION TO M RELAYS

In this section, we consider a generalized Gaussian
diamond-wiretap channel where there are arbitrary number of
relays. Assume that there are M ≥ 2 relays with transmit
power constraint of P . For the broadcast part, the source
is connected to M relays through orthogonal links, where
the link capacity to relay k = 1, . . . ,M is Ck such that
limP→∞

Ck
1
2 logP

= αk. For the multiple access part, the
channel outputs Y1(t) and Y2(t) at time t at the legitimate
destination and the eavesdropper, respectively, are given as

Y1(t) =

M∑
k=1

hk(t)Xk(t) +N1(t) (36)

Y2(t) =

M∑
k=1

gk(t)Xk(t) +N2(t), (37)

in which Xk(t) is the channel input at relay k, hk(t)’s
and gk(t)’s are channel fading coefficients to the legitimate
destination and the eavesdropper, respectively, and N1(t) and
N2(t) are independent Gaussian noise with zero mean and unit
variance at the legitimate destination and the eavesdropper,
respectively, at time t. Similarly as in Section II, we assume
fast fading9, no CSI at the source, and full CSI at the eaves-
dropper, and consider the two cases regarding the availability
of CSI at the relays and the legitimate destination, i.e., the
case with full CSI and the case with no eavesdropper’s CSI.
A secrecy code, secrecy capacity, and secure d.o.f. are defined
by a straightforward generalization from Section II. For the
brevity of the results, we focus on the symmetric case with
C1 = · · · = CM = C, which implies α1 = · · · = αM = α.

The following two theorems present our results on the
secure d.o.f. for the case with full CSI and for the case with
no eavesdropper’s CSI, respectively.

Theorem 5. For the generalized Gaussian diamond-wiretap
channel with M ≥ 2 relays with full CSI at the relays and the
legitimate destination, the secure d.o.f. satisfies

ds,− ≤ ds ≤ ds,+,

9Similarly as for the two-relay case in Section II, we assume that the
channel fading coefficients are generated from a real-valued joint density
function whose all joint and conditional density functions are bounded and
whose support set does not contain zero and infinity.
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Figure 4. Secure d.o.f. of the generalized Gaussian diamond-wiretap channel
with M relays

where

ds,+ = min

{
Mα,

M − 1

M
(1 + α), 1

}
,

ds,− = min

{
Mα,

2M(M − 1) +M2α

2M2 −M + 2
, 1

}
.

Theorem 6. For the generalized Gaussian diamond-wiretap
channel with M ≥ 2 relays with no eavesdropper’s CSI at the
relays and the legitimate destination, the secure d.o.f. is equal
to

ds = min

{
Mα,

Mα+M − 1

M + 1
, 1

}
.

In Fig. 4, the results in Theorems 5 and 6 are illustrated
for M = 2, 3, 5. For the case with full CSI with M > 2,
there exists a gap between the lower and upper bounds on
the secure d.o.f., which decreases as M increases. We note
that up to the threshold value M−1

M(M−1)+1) (resp., M−1
M2 ) of

α for the case with full CSI (resp., for the case with no
eavesdropper’s CSI), the secure d.o.f. is linear in M and α.
In this regime, the broadcast part becomes the bottleneck and
hence it is optimal to send independent partial messages to
the relays and to incorporate the cooperative jamming scheme
[18] (resp., the blind cooperative jamming scheme [20]) for
the multiple access part. After this threshold value of α, the
source needs to send some common information to the relays
to achieve a higher secure d.o.f. and hence the slope of secure
d.o.f. in α becomes lower. If α is 1

M + 2
M2 for the case with

full CSI (resp., 2
M for the case with no eavesdropper’s CSI),

one secure d.o.f. can be achieved by generalizing the S-AB
scheme (resp., the CoJ scheme) in Section V. We note that
there is a gap between the secure d.o.f.’s with and without
eavesdropper’s CSI for α ∈

(
M−1
M2 ,

2
M

)
, and there is no loss

in secure d.o.f. for other ranges of α.
Theorems 5 and 6 can be proved by generalizing the proof

techniques in Sections IV and V. In the following, we provide
brief proofs for these theorems.

A. Converse

Similarly as in Section IV, there is no loss of secure d.o.f.
in considering the following deterministic model with integer-
input and integer-output for the multiple access part, instead

of the original channel (36) and (37):

Y1(t) =

M∑
k=1

bhk(t)Xk(t)c, Y2(t) =

M∑
k=1

bgk(t)Xk(t)c (38)

with the constraint

Xk ∈ {0, 1, . . . , b
√
P c}, k = 1, . . . ,M. (39)

Hence, in this subsection, let us assume that the multiple
access part is given as (38) and (39). In addition, the channel
fading coefficients are conditioned in every entropy and mutual
information terms in this subsection due to the same reason
as in Section IV, but are omitted for notational convenience.
c′i’s for i = 1, 2, 3, . . . are used to denote positive constants
that do not depend on n and P .

1) Proof for the converse part of Theorem 5: We generalize
the converse proof technique in Section IV-A for multiple
relays. We can obtain the following inequality by applying
similar techniques used to obtain (11):

nR ≤
M∑
k=2

H(Jk) +

M∑
k=2

H(Xn
k |Jk) + nc′1. (40)

On the other hand, we can generalize (14) for multiple relays
as follows:

nR ≤ H(Y n1 )−H(Xn
k |Jk) + nc′2, k = 2, · · · ,M. (41)

By combining (40) and (41), we have

MnR ≤
M∑
k=2

H(Jk) + (M − 1)H(Y n1 ) + nc′3

≤ (M − 1)nC + (M − 1)H(Y n1 ) + nc′3.

It follows that

R ≤ M − 1

M

(
1

2
logP + C

)
+ c′4

or

ds ≤
M − 1

M
(1 + α).

Together with the following bound from the cutset bound, this
completes the proof,

ds ≤ min{Mα, 1}. (42)

2) Proof for the converse part of Theorem 6: We extend the
converse proof technique in Section IV-B for multiple relays.
First, we can generalize (15) for multiple relays as follows:

nR ≤
M∑
k=1

H(Jk) +

M∑
k=1

H(Xn
k |Jk)−H(Y n2 ) + nc′5. (43)

Next, the following inequality can be obtained by applying
similar techniques used in deriving (16):

nR ≤ H(Y n1 )−H(Xn
k |Jk) + nc′6, k = 1, . . . ,M (44)

Combining (43) and (44), we have

(M + 1)nR
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≤
M∑
k=1

H(Jk) +MH(Y n1 )−H(Y n2 ) + nc′7

≤MnC + (M − 1)H(Y n1 ) +H(Y n1 )−H(Y n2 ) + nc′7
(a)

≤ MnC + (M − 1)H(Y n1 ) + n · o(logP ) + nc′7,

where (a) is because the difference H(Y n1 )−H(Y n2 ) can not
be larger than n ·o(logP ) for the case with no eavesdropper’s
CSI from [34, Section 6].10 In terms of d.o.f., equivalently, we
have

ds ≤
Mα+M − 1

M + 1
.

Combining with the bound (42) from the cutset bound, we
finish the proof.

B. Achievability

1) Proof for the achievability part of Theorem 5: Note
that it is sufficient to show that the following two corner
points are achievable: (α, ds) =

(
M−1

M(M−1)+1 ,
M(M−1)
M(M−1)+1

)
and (α, ds) =

(
1
M + 2

M2 , 1
)
. For the first corner point, the

message with d.o.f. M(M−1)
M(M−1)+1 is split into M independent

partial messages each with d.o.f. M−1
M(M−1)+1 . The source sends

each partial message to each different relay, which requires
α = M−1

M(M−1)+1 . Then, the relays operate according to the
cooperative jamming scheme in [18] for the Gaussian multiple
access-wiretap channel.

To show (α, ds) =
(

1
M + 2

M2 , 1
)

is achievable, we propose
M(M−1)

2 sub-schemes, where the (i, j)-th sub-scheme for
i ∈ [1 : M ] and j ∈ [1 : M ] such that j > i achieves
αi = αj =

2
M , αk = 1

M for k /∈ {i, j}, and ds = 1. By time-
sharing among these sub-schemes uniformly, we can prove
that (α, ds) =

(
1
M + 2

M2 , 1
)

is achievable. Each sub-scheme
is generalized from the S-AB scheme proposed in Section V.
In Fig. 5-(b), the (1,2)-th subscheme is illustrated for M = 4.
The message with d.o.f. 1 is split into M independent partial
messages each with d.o.f. 1

M . In the (i, j)-th sub-scheme, the
source sends each partial message to each different relay and
sends a common noise with d.o.f. 1

M to relays i and j in
addition to the partial messages, which requires αi = αj =

2
M

and αk = 1
M for k /∈ {i, j}. Then, each relay transmits what

it has received in a way that the common noise signals are
beam-formed in the null space of the legitimate destination’s
channel and the partial message signals are aligned with and
are perfectly masked by the common noise signal at the
eavesdropper.

2) Proof for the achievability part of Theorem 6: Note that
it is sufficient to show that the following two corner points
are achievable: (α, ds) = (M−1

M2 ,
M−1
M ) and (α, ds) = ( 2

M , 1).
First, (α, ds) = (M−1

M2 ,
M−1
M ) can be shown to be achievable

by uniformly time-sharing M sub-schemes, where the k-th
sub-scheme for k ∈ [1 : M ] achieves αk = M−1

M , αj = 0 for
j 6= k, and ds = M−1

M . Each sub-scheme is a direct extension
of the blind cooperative jamming scheme [20] for the wiretap
channel with helpers, i.e., for the k-th sub-scheme, the source

10The channel assumption in [34] is satisfied under our channel model.
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MAC-WT
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1
4

1
4

1
4

(b)

Figure 5. Comparison between (a) the message-beamforming scheme and
(b) the S-AB scheme for M = 4. Similarly as in Fig. 2 and Fig. 3, dia-
mond shapes and rectangular shapes represent (partial) messages and noises,
respectively, with the number above or below each shape corresponding to its
d.o.f. Same shapes with same patterns represent the same information, and
otherwise independent informations.

sends the message with d.o.f. M−1
M to relay k and the relays

operate according to the blind cooperative jamming scheme
[20] as if relay k is the source and the other relays are the
helpers.

Next, (α, ds) = ( 2
M , 1) can be shown to be achievable

by uniformly time-sharing M(M−1)
2 sub-schemes, where the

(i, j)-th sub-scheme for i ∈ [1 : M ] and j ∈ [1 : M ] such
that j > i achieves αi = αj = 1, αk = 0 for k /∈ {i, j},
and ds = 1. Each sub-scheme is the same as the CoJ scheme
proposed in Section V, i.e., in the (i, j)-th scheme, we use the
CoJ scheme as if there are only two relays i and j.

Remark 4. We note that a generalization of the message-
beamforming scheme in Section V for the case with M -
relays achieves (α, ds) = ( 2

M , 1). Hence, the S-AB scheme
outperforms the message-beamforming scheme for M > 2. To
see the intuition behind this, we illustrate some instances of
using these two schemes for M = 4 in Fig. 5, where both
the schemes achieve one secure d.o.f. but the S-AB scheme
uses less link d.o.f.’s at the broadcast part. For the message-
beamforming scheme, every pair of two relays has to send a
common partial message to beam-form each partial message.
For the S-AB scheme, once two relays have common noise and
independent partial messages as in the two-relay case, the
other relays can send independent partial messages without
common noise since the same common noise can be used to
mask all the partial messages simultaneously. Hence, the S-AB
scheme requires less ‘common’ information and thus is more
efficient in the use of the broadcast links.

VII. CONCLUSION

In this paper, we established the exact secure d.o.f. of the
Gaussian diamond-wiretap channel and generalized the results
for multiple relays. We considered both the case with full CSI
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and the case with no eavesdropper’s CSI, at the relays and the
legitimate destination. Our results show that the absence of the
eavesdropper’s CSI reduces the secure d.o.f. for some range
of moderate link d.o.f.’s of the broadcast part, but its effect
decreases as the number of relays increases. For the converse
part, we introduced a technique of capturing the trade-off
between the message rate and the amount of independent
randomness injected at each relay. For the achievability part,
we newly proposed a simultaneous alignment and beamform-
ing (S-AB) scheme and a computation for jamming (CoJ)
scheme for the case with full CSI and for the case with no
eavesdropper’s CSI, respectively. Both the schemes incorpo-
rate transmitting common noise from the source to the relays
and beamforming of common noise signals in the null space
of the legitimate destination’s channel. The S-AB scheme
involves aligning the message and the common noise signals
at the eavesdropper simultaneously with the beamforming of
the common noise signals. By doing so, it utilizes common
information more efficiently than the message-beamforming
scheme for more than two relays. The CoJ scheme involves
computation between the message and the common noise
symbols at the source, which requires less link d.o.f.’s at
the broadcast part than naively sending the message and the
common noise separately.

We note that our proposed schemes utilize the common
information sent from the source to the two relays. If the
relays are allowed to conference, such common information
can be shared at the relays by conferencing among them. In
the recent work [36], the exact secure d.o.f. was established
for such a conferencing scenario for the case with full CSI. For
achievability, a modified S-AB scheme was proposed where
the relays share the common noise via conferencing (instead
of the transmission from the source) and hence less link d.o.f.’s
are required. As a final remark, we note that our CoJ scheme
can be useful in keeping the message secret from the relays.
Exploiting such a feature can be an interesting further work for
the scenario where the source has common and confidential
messages to each of the relays and the legitimate destination.
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