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Non-Coherent Capacity of Secret-Key Agreement

with Public Discussion
Anurag Agrawal, Zouheir Rezki,Ashish Khisti and Mohamed-Slim Alouini,

Abstract—We study the Rayleigh fading non-coherent capacity
of secret-key agreement with public discussion, where neither the
sender nor the receivers have access to instantaneous channel
state information (CSI) of any channel. We present two results.
At high Signal-to-Noise Ratio (SNR), the secret-key capacity is
bounded in SNR, regardless of the number of antennas at each
terminal. Second, for a system with a single antenna at both
the legitimate and the eavesdropper terminals and an arbitrary
number of transmit antennas, the secret-key capacity-achieving
input distribution is discrete, with a finite number of mass points.
Numerically we observe that at low-SNR, the capacity achieving
distribution has two mass points with one of them at the origin.

Index Terms—Non-coherent capacity, secret-key agreement,
Rayleigh fading channels, information theoretic security, Karush-
Kuhn-Tucker (KKT) condition, discrete input distribution.

I. INTRODUCTION

Information theoretic secret-key agreement provides prov-

ably secure mechanisms for generating secret-keys between

two or more legitimate terminals. In such protocols, the

legitimate terminals need to have access to a source of corre-

lated randomness e.g., communication channels or correlated

sources [1], [2]. Furthermore a discussion channel of unlimited

capacity is also available for communication, but is public

to the wiretapper. The legitimate terminals distill a common

secret-key that satisfies an equivocation constraint with respect

to the eavesdropper.

The present paper studies capacity limits of secret-key

agreement when the underlying channel from the sender to

the receiver and the eavesdropper are modeled as independent

identically distributed (i.i.d.) Rayleigh fading. We further

assume the non-coherent model i.e., the instantaneous channel

state information is not known to either of the terminals. The

channel statistics are however globally known.

Note that for our proposed channel model the outputs at

the legitimate receiver and the eavesdropper are conditionally

independent given the channel input. A class of discrete

memoryless channel models with this property was studied

in [1], [2] and a single-letter capacity expression was charac-

terized. In particular a source-emulation strategy was shown

to be optimal — the sender generates a discrete memoryless

source, then transmits it over the channel to generate correlated

sources at the two terminals and then the legitimate terminals
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distill a common key as in the source model. While their result

can be extended using standard techniques to the (continuous-

valued) Rayleigh fading channels studied in this work, finding

the optimizing distribution is difficult in general. In the present

work we show the following two properties (1) Unlike the

case without secrecy constraint where the capacity scales as

log log (P ) at high-SNR, the secret-key capacity is bounded

in SNR, regardless of the number of antennas at each terminal

and (2) The capacity achieving distribution is discrete with a

finite number of mass points, for the MISO case.
In related works, [3] studies the secret-key agreement over

Rayleigh fading channels for the case of receiver CSI and

establishes that a Gaussian input distribution maximizes the

secret-key capacity. Other works, see e.g.[4], study the prob-

lem of generating shared secret keys using channel reciprocity

instead of public discussion. This approach is not considered

in the present paper.

II. THE CHANNEL MODEL

Consider a Discrete-Time Memoryless Channel (DMC) con-

sisting of a transmitter, a legitimate receiver and an eavesdrop-

per, with nT ,nR and nE antennas, respectively. The outputs at

both the legitimate destination and the eavesdropper, at time

i = 1, . . . , L, are expressed, respectively by:
{

y(i) = H(i)x(i) + v(i)

z(i) = G(i)x(i) + w(i)
(1)

where x(i) ∈ Cnt is the transmitted signal, and H(i) ∈CnR×nT , G(i) ∈ CnE×nT represent the main channel and

the eavesdropper channel gains, respectively; and v(i) ∈CnR , w(i) ∈ CnE are circularly symmetric white Gaussian

noises with covariance matrices E[v(i)v(i)†] = InR
andE[w(i)w(i)†] = InE

. We assume that H(i) and G(i) have inde-

pendent and identically-distributed Gaussian entries with zero-

mean and unit-variance. We assume that the Channel State

Information (CSI) is not available at any terminal. That is, the

transmitter, the legitimate receiver and the eavesdropper do not

have access to the instantaneous channel realizations H(i) and

G(i); but are aware of their statistic. The source is constrained

according to a short-term average power constraint:E[x(i)†x(i)] = tr(Qx) ≤ P (2)

for all i = 1, . . . , L. Since the channel defined in (1) is i.i.d.

we may drop the time index i in the sequel for convenience.

III. SECRET-KEY CAPACITY

In [1, Theorem 2], a single-letter formula of key-capacity

has been established and is given by:

C = sup
F (x)∈F

I(x; y|z), (3)
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where F is the set of all possible distribution functions F (x)
that satisfy the average power constraint. Note that in our

model of interest y and z are conditionally independent given

x and the distribution is given by [5]:

py|x(y|x)=
1

πnR(1 + ‖x‖2)nR

exp

(

−‖y‖2

1 + ‖x‖2

)

(4)

pz|x(z|x)=
1

πnE (1 + ‖x‖2)nE

exp

(

−‖z‖2

1 + ‖x‖2

)

, (5)

where ‖·‖ denotes the Euclidean norm of a vector. Noting that

py|x and pz|x depend on y, z and x only through their norms,

then by letting X = ‖x‖, Y = ‖y‖2 and Z = ‖Z‖2, I(x; y|z)
can be formulated as follows:

I(x; y|z)=I(x; y, z)− I(x; z)

=I(X ;Y, Z)− I(X ;Z) (6)

=I(X ;Y |Z)

where (6) follows from the fact that Y and Z are sufficient

statistics that preserve the mutual information and because py|x

and pz|x depend only on X . This result is summarized in the

following lemma.

Lemma 1: The non-coherent secret-key capacity of the

channel model (1) described above is given by:

C = sup
F (x)∈F

I(X ;Y |Z). (7)

Lemma 1 states that secret-key communication is conveyed

over the norms X, Y and Z. This property will be used in

the sequel. As verified in Appendix A, the capacity can be

expressed as

C = sup
F (x)∈F

y
pY |X(y|x)pZ|X(z|x) ln

[

pY |X(y|x)

pY |Z(y|z;F )

]

dydzdF (x)

(8)

provided conditional densities pY |X(y|x) and pZ|X(y|x) exist.

The later conditions is however guaranteed by the nature of

our channel model (1) and in particular from (4) and (5),

pY |X(y|x) =
y(nR−1)

Γ(nR) (1 + x2)nR

exp

(

−y

1 + x2

)

,

pZ|X(z|x) =
z(nE−1)

Γ(nE) (1 + x2)nE

exp

(

−z

1 + x2

)

.

(9)

IV. CAPACITY RESULTS AT A HIGH-SNR REGIME

In this section, we analyze the non-coherent secret key

capacity asymptotically at high-SNR. Our result is rather

negative as it establishes the non-efficiency of communication

over this channel at high-SNR. Theorem 1 below formalizes

this result.

Theorem 1: At high-SNR, the non-coherent secret-key ca-

pacity of the channel model (1) described above is given by:

C(P ) = O(1) (10)

Proof: By Lemma 1, it can be seen that the channel (1) is

equivalent, from a capacity perspective, to the multiplicative

channel:
{

Y = (1 +X2)W1

Z = (1 +X2)W2
(11)

where it follows via (9) that W1 and W2 are Gamma-

distributed random variables, mutually independent and also

independent of X , and with probability density functions

(p.d.f.):

pW1
(w1)=

wnR−1
1

Γ(nR)
exp (−w1) (12)

pW2
(w2)=

wnE−1
2

Γ(nE)
exp (−w2). (13)

Now, by letting Y1 = ln (Y ), Z1 = ln (Z), D1 = ln (1 +X2),
N1 = ln (W1) and N2 = ln (W2), and by applying the

log function on both sides of (11), the following channel is

obtained:
{

Y1 = D1 +N1

Z1 = D1 +N2

(14)

Since the log function is a one-to-one transformation that does

not entail any capacity loss, the secret-key capacity can be

bounded as follows:

I(X ;Y |Z)=I(D1;Y1|Z1)

=h(Y1|Z1)− h(Y1|Z1, D1)

=h(Y1 − Z1|Z1)− h(Y1|Z1, D1)

≤h(Y1 − Z1)− h(N1) (15)

=h(N1 −N2)− h(N1). (16)

Hence, it remains to show that the right hand side (RHS) of

(16) is bounded. In particular it suffices to show that E[N2
1 ] <

∞ and E[N2
2 ] < ∞, since a Gaussian distribution upper

bounds the differential entropy of any continuous distribution.E[N2
1

]

=E[(ln (W1))
2
]

≤E[(ln (W1))
2
|W1 ≤ 1

]

Pr(W1 ≤ 1)

+E[(ln (W1))
2
|W1 > 1

]

Pr(W1 > 1)

≤E[ 1

W1
|W1 ≤ 1

]

Pr(W1 ≤ 1)

+E[W1|W1 > 1]Pr(W1 > 1) (17)

≤E[ 1

W1

]

+ E[W1]

=
1

nR − 1
+ nR (18)

In the above derivation, (17) follows from the fact that

x (ln(x))2 ≤ 1 for any x ∈ [0, 1], whereas (18) holds when

nR > 1 because 1
W1

follows inverse Gamma distribution with

parameters β = 1 and α = nR. For nR = 1 we can see that the

random variable N1, being the log of an exponential random

variable, has density function pN1
(x) = exe−ex with finite

mean and variance. By a similar argument, E[N2
2

]

is finite,

and thus Var(N1 −N2) = E[N2
1

]

+E[N2
2

]

is also finite. Now,

we have an upper bound on I(X ;Y |Z) that is itself bounded

irrespective to the power P . We conclude that the secret-key

capacity is asymptotically bounded at high-SNR.
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V. THE KARUSH-KUHN-TUCKER (KKT) CONDITION

In this section, following [6], a necessary and sufficient

condition for optimality in secret-key agreement settings is

established. Our proof relays on two steps. First, we show

that the supremum in (8) is achieved (Lemma 2). Next, we

argue that I(X ;Y |Z) is also weak differentiable in F over

F (Lemma 3). The KKT follows then by the concavity of a

modified objective function that includes the power constraint.

Although we focus in our proof on the MISOSE case, i.e.,

nR = nE = 1, we believe that our framework can be extended

in a straightforward manner to encompass a channel where nR

and nE are arbitrary.

Lemma 2: The supremum in (8) is achievable by at least

one F , say F ∗, belonging to F+, where F+ is the set of all

nonnegative input distributions that meet the power constraint.

Proof: A sufficient condition for the supremum in (8)

to exist, is that the mutual information I(X ;Y |Z) be weak

continuous in F and the set F+ be weak compact. That F+

is weak compact follows from [6, Appendix 1.A], whereas the

proof of weak continuity of I(X ;Y |Z) in F is reported in the

full version of this paper [7].

Lemma 3: I(X ;Y |Z) is weak differentiable and concave

in F over F+.

Proof: The proof of weak differentiability is presented in

[7]. The concavity of I(X ;Y |Z) in F , follows from [8, Fact

2].

Now, from Lemma 2 and Lemma 3, a necessary and sufficient

condition for optimality, referred to as the KKT condition, can

be obtained as stated below.

Theorem 2: For the channel given by (1) described above,

where nR = nE = 1, an input random variable X∗ with

distribution function F ∗ achieves the secret-key capacity C if

and only if there exists a γ ≥ 0 such that,

γ(x2 − P ) + C

−
x

pY |X(y|x)pZ|X(z|x) ln

[

pY |X(y|x)

pY |Z(y|z;F ∗)

]

dy dz ≥ 0

(19)

for all x, with equality if x belongs to the support of X∗.

Proof: The proof is presented in Appendix [7].

Using (12), (13) and letting s = 1
1+x2 with s ∈ [0, 1], (19)

can be expressed as:

γ

(

1

s
− 1− P

)

+ C − ln (s) + 1

+
x

s2e−s(y+z) ln
[

pY |Z(y|z;F
∗)
]

dy dz ≥ 0.

(20)

VI. CHARACTERIZATION OF X∗

Here we follow [6] and [9] to use the Kuhn-Tucker condition

(19) to prove that X∗ is discrete. Although our framework

parallels these previous works, several modifications are nec-

essary to account for the conditional mutual information. The

existence of a secret-key capacity achieving input implies that

X∗ should satisfy one of the following properties:

1) Its support contains an interval;

2) It is discrete, with an infinite number of mass points in

some bounded interval;

3) It is discrete and infinite, but with only a finite number

of mass points on any bounded interval;

4) It is discrete with a finite number of mass points.

Now, let us assume that 1) or 2) holds and define the function

H(z) by:

H(zc) = γ

(

1

zc
− 1− P

)

+ C − ln (zc) + 1

+
x

z2ce
−zc(y+z) ln

[

pY |Z(y|z;F
∗)
]

dydz

(21)

for all zc belonging to the set of complex numbers, where

ln (·) is the principal branch of the logarithm. We note that

H(zc) is analytic over the domain D defined by ℜ(zc) > 0.

We now make the following observations:

• From our assumption it is evident that there exists an

A such that the support of X∗ contains infinitely many

points in [0, A] or equivalently the support of S∗ contains

an infinite set of distinct points Ss ⊆ [1/(1 +A2), 1],
• The interval [1/(1 + A2), 1] is compact, hence by

Bolzano-Weierstrass theorem Ss has an accumulation

point in [1/(1 +A2), 1] ⊂ [0, 1],
• From the Kuhn-Tucker condition (20), H(zc) = 0 on the

support of S∗ and thus on Ss.

Hence we have an analytic function over D that vanishes on

a set having an accumulation point of in D. From the identity

theorem [10], we conclude that H(zc) = 0 over the whole D
and in particular, over zc ∈ [0,∞). Consequently, (21) can be

written as:
x

e−zc(y+z) ln
[

pY |Z(y|z;F
∗)
]

dydz

=
−1

z2c

[

γ(
1

zc
− 1− P ) + C − ln (zc) + 1

]

,
(22)

where zc ∈ D. We next show that there cannot be a valid

conditional probability density function pY |Z(·|·) that satis-

fies (22). This is done by multiplying both sides of (22) by

z2c and by taking the limit zc → ∞ we show that while the

right hand side diverges, the left hand side remains bounded.

Towards this end we show the following.

Lemma 4: For each zc with ℜ(zc) > 0 we have that

x
e−zc(y+z) ln

[

pY |Z(y|z;F
∗)
]

dydz = I1 (zc)− I2 (zc) ,

(23)

where I1(·) and I2(·) denote the Laplace transforms of the

following

I1(·) = L(w ln f(w)) (24)

I2(·) = L

(
∫ w

0

ln g(τ)dτ

)

(25)

where we define

f(t) =

∫ 1

0

s2e−stdF ∗(s) (26)

g(t) =

∫ 1

0

se−stdF ∗(s). (27)

Furthermore I1(zc) and I2(zc) are well defined for all zc with

ℜ(zc) > 0.

Proof: The proof of Lemma 4 is provided in Appendix B.
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Note that f(t) and g(t) in (24) and (25) are infinitely

differentiable decreasing functions over the positive real axis.

Furthermore,

lim
t→0

g(t) = g(0) = E[ 1

(1 +X2)

]

∈ [0, 1] (28)

Similarly, we have:

lim
t→0

f(t) = E[ 1

(1 +X2)
2

]

∈ [0, 1] (29)

lim
t→0

tf ′(t) = 0. (30)

Finally, multiplying both sides of (22) by z2c and taking

the limit as zc → ∞, we show that the RHS goes to infinity

whereas LHS is finite. To see this, we first recall that:

lim
zc→∞

z2cLHS = lim
zc→∞

[

z2c (I1 (zc)− I2 (zc))
]

. (31)

Then, the limit of the second term on the RHS of (31) is equal

to:

lim
zc→∞

z2c I2 (zc)= lim
zc→∞

[

zc

∫ ∞

0

e−zcw ln [g(w)]dw

]

= lim
w→0

[ln (g (w))] (32)

=ln
(E[1/ (1 +X2

)])

, (33)

where (32) follows by the Initial Value Theorem [11] and

(33) is obtained from (28). Next, we note that the sec-

ond derivative (w ln (f(w)))
′′

exists for all positive w, that

lim
w→0

[w ln (f(w))] = 0 and that lim
w→0

[

(w ln (f(w)))
′
]

=

ln
(E[1/ (1 +X2

)2
])

. Hence, applying the identity,

∫ ∞

0

e−zctp
′′

(t)dt = z2c

∫ ∞

0

e−zctp(t)dt− zcp(0)− p′(0)

(34)

to the function w ln (f(w)) and taking the limit as zc → ∞
on both sides of (34) yield,

0 = lim
zc→∞

[

z2c (I1 (zc))
]

− ln
(E[1/ (1 +X2

)2
])

, (35)

which confirms that lim
zc→∞

[

z2c (I1 (zc))
]

is finite too. There-

fore, the limit in (31) exists and is finite. This implies that

(22) does not hold for all zc ∈ D. But, this contradicts our

initial assumption that either 1) or 2) holds. Consequently,

neither 1) nor 2) can happen. We are then left with 3) and 4)

as the only possibilities.

Let us assume that 3) holds. In this case we argue that the

Lagrange multiplier in the KKT condition (20) is zero and

in turn obtain a contradiction. Since X∗ has infinitely many

mass points and only finitely many in any bounded interval,

S∗ has an accumulation point only at zero and its support can

thus be written as a sequence {si} converging to zero. Let

Pr{S∗ = si} = pi. Then we have:

pY |Z(y|z;F
∗) =

∑∞
i=1 pipY |S∗(y|si)pZ|S∗(z|si)

∑∞
i=1 pipZ|S∗(z|si)

(36)

=

∑∞
i=1 pis

2
i e

−si(y+z)

∑∞
i=1 pisie

−siz
. (37)

Note that the denominator of (37) is smaller E[S] which is

less than 1 (c.f. (28)). This implies that pY |Z(y|z;F
∗) >

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

P (linear)

C
a
p
a
c
it
y
 i
n
 n

p
c
u

 

 

AWGN Secret-Key Capacity

Fig. 1. The SISOSE secret-key capacity versus the SNR value P .

pis
2
i e

−si(y+z) for all y, z ≥ 0 and all i = 1, 2, . . .. Conse-

quently, we have:
x

s2e−s(y+z) ln
[

pY |Z(y|z;F
∗)
]

dydz

>
x

s2e−s(y+z) ln
[

pis
2
i e

−si(y+z)
]

dydz (38)

= ln
(

pis
2
i

)

−
2si
s

(39)

Now, using (39), bound the LHS of (20) as follows:

LHS > γ(
1

s
− 1− P ) + C − ln (s) + 1 + ln(pis

2
i )−

2si
s

=
γ − 2si

s
+ o(

1

s
) (40)

Where the o(·) term applies when s → 0 for a fixed i. Now,

if γ > 2si then (40) goes to infinity as s → 0, but the LHS of

(20) should be zero on the support of S∗ which by our initial

assumption, contains a point of accumulation at 0. Hence, γ ≤
2si. As this is true for all si, and si → 0, we see that γ ≤ 0.

As the Lagrange multiplier is non-negative, we conclude that

γ = 0. Then from (20) we get,

C−ln (si)+1+
x

s2i e
−si(y+z) ln [p(y|z;F ∗)]dydz = 0 (41)

for all si. Now taking the limit at si → 0 on both sides of

(41), we see that the integrand on the LHS tends toward 0,

which implies that

C = lim
si→0

ln(si)− 1 (42)

and consequently the capacity C goes to −∞, which contra-

dicts C ≥ 0. Hence, the assumption 3) is ruled out as well.

Therefore, the optimum input distribution must be discrete

with a finite number of mass points which we wanted to prove.

VII. NUMERICAL RESULTS

We employed the Gauss-Laguerre quadrature method to

evaluate all the concerned integrals in obtaining capacity-

achieving input distributions. We obtain some useful insights

related to the variation of the number of mass points and their

respective probabilities with the SNR. Furthermore we exploit

the variation of KKT, a necessary and sufficient condition for

optimality, with x to exactly predict the location of a new mass

point and to validate the optimal input distribution for a given

SNR value. It has been observed that there exists a mass point
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Fig. 3. The optimal non zero mass point locations versus the SNR value P .

at the origin for all SNR values. Figure 1 represents the non-

coherent secret-key capacity in nats per channel use (npcu)

in function of SNR (average power constraint in Joules per

second). As shown in Fig. 1, the secret-key capacity shown in

solid blue is monotonically increasing in SNR. In this figure,

discontinuities of the capacity plot can be observed. Indeed,

theses regions represent zones where a new mass point is

about to appear and where numerical optimization becomes

very instable to an extent that the results obtained in these

zones do not fulfill the KKT condition. Furthermore, it may

be seen in Fig. 1, that the capacity is bounded at high-SNR

in full agreement with Theorem 1. Also shown in Fig.1 as a

benchmark, is the Additive White Gaussian Noise (AWGN)

channel secret-key capacity (in dashed red). While the gap

between the two plots is marginal at very-low SNR (below

0.5 J/s), the AWGN secret-key capacity prevails remarkably

as SNR increases.

In Fig. 2, the LHS of the KKT condition (19) is plotted

versus x for an SNR= 0.09 and where numerical optimization

was set to two mass point input distributions (N = 2). From

Fig.2, it can be seen that although the KKT is null in two

points, the results obtained is not optimal since the plot goes

below zero for a certain value of x, suggesting that a new

mass point is more likely to appear. In order to confirm our

claim, we set N = 3 in our optimization problem and increase

the power constraint away from this instable zone, to find that

three mass point is in fact optimal and that a new mass point

shows up around x = 3 at approximatively P = 0.4. This

explains the discontinuities in our capacity plot as depicted

by Fig. 1. We conjuncture that a new mass point shows up

first at x → ∞ and then decreases as SNR increases. Note

that this peculiar behavior of the optimal input distribution has

also been observed previously in non-coherent fading channels
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Fig. 4. The non zero mass point probability versus the SNR value P at very
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Fig. 5. The non zero mass point location versus the SNR value P at very
low SNR region .

without secrecy [6].

Figure 3 depicts optimal non zero mass point locations

versus SNR. Likewise in Rayleigh fading channel without

secrecy, two mass point is optimal at low SNR (below P =
0.08). As SNR increases, the number of mass point increases

gradually to be N = 3 for P below 0.9 and then N = 4
for P below 10. At high-SNR, we observe that the optimal

distribution has 3 non zero mass points and more interestingly

as SNR increases, only the biggest of the three tends to

increase whereas the two others of lower values tend to attain

constant values of approximately 1.9 and 3.5, respectively.

Finally, the non zero mass point probability versus P is

shown in Fig. 4 at low-SNR, where it can be seen that the non

zero mass point probability seems to increase almost linearly

with SNR. On the other hand, the non zero mass point location

versus P is also displayed in Fig. 5 at low-SNR, where it can

be observed that as SNR increases the non zero mass point

decreases in magnitude.

VIII. CONCLUSION

The secret-key capacity under an average power constraint

of a Rayleigh fading channel, where the instantaneous CSI

is not available at any terminal, has been studied. When

the legitimate receiver and the eavesdropper have each one

antenna, i.e., the MISOSE (nR = nE = 1) setting, it has been

shown that the capacity-achieving input distribution is discrete

with a finite number of mass points. Although in this case

we have focused on the MISOSE case, our proof technique

can be extended in a straightforward manner to encompass

a channel where the number of receive antennas at both the

legitimate receiver and the eavesdropper are arbitrary. At high-

SNR, it is established that the secret-key capacity is bounded
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irrespective of SNR, and regardless of the number of antennas

at each terminal. At low-SNR, it has been observed through

numerical results that two mass point, one of them at the

origin, is optimal.

APPENDIX A

PROOF OF (8)

I(X ;Y |Z)=I(X ;Y, Z)− I(X ;Z)

=h(Y, Z)− h(Y, Z|X)− h(Z) + h(Z|X)

=h(Y |Z)− h(Y |X) (43)

=
x

pY,X(y, x) ln
(

pY |X(y|x)
)

dydx

−
x

pY,Z(y, z) ln
(

pY |Z(y|z)
)

dydz

=
y

pY,X,Z(y, x, z) ln
(

pY |X(y|x)
)

dydxdz

−
y

pY,Z|X(y, z|x) ln
(

pY |Z(y|z;F )
)

dydzdF (x)

=
y

pY,Z|X(y, z|x) ln
(

pY |X(y|x)
)

dydF (x)dz

−
y

pY |X(y|x)pZ|X(z|x) ln
(

pY |Z(y|z)
)

dydzdF (x)(44)

where to obtain (43) and (44), we used the fact that given X ,

Y and Z are independent; and where pY |Z(y|z;F ) signifies

the conditional distribution of Y given Z induced by F.

APPENDIX B

PROOF OF LEMMA 4

The probability pY |Z(y|z) can be written as

pY |Z(y|z;F
∗) =

pY,Z(y, z;F
∗)

pZ(z;F ∗)

=
f(y + z)

g(z)
, (45)

where it follows via (9) that when nR = nE = 1, the functions

f(·) and g(·) in (45) are defined by (26) and (27) respectively.

Thus we can split the left hand side (LHS) of (26) into two

parts as stated in (23)
x

e−zc(y+z) ln
[

pY |Z(y|z;F
∗)
]

dydz = I1 (zc)− I2 (zc) ,

where I1 (zc) =
s

e−zc(y+z) ln [f(y + z)]dydz and

I2 (zc) =
s

e−zc(y+z) ln [g(z)]dydz. Now, transforming the

coordinate system from Y-Z to W-Z where W = Y + Z, we

find that the Jacobian of the transformation is 1 and hence I1
can be written as:

I1 (zc)=

∫ ∞

0

∫ ∞

z

e−zcw ln [f(w)]dwdz (46)

=

∫ ∞

0

∫ w

0

e−zcw ln [f(w)]dzdw (47)

=

∫ ∞

0

we−zcw ln [f(w)] dw (48)

On simplification of I2(zc), we also get:

I2(zc) =
1

zc

∫ ∞

0

e−zcw ln [g(w)]dw (49)

Note that (48) and (49) represent the Laplace transforms

of w ln [f(w)] and
∫ w

0
ln [g(τ)]dτ , respectively. Since the

integrands in (48) and (49) are integrable over the interval

[0, a] for all a > 0, then to prove that I1(zc) and I2(zc)
are well-defined for all ℜ(zc) > 0, it suffices to show that

|we−zcw ln [f(w)]| and |e−zcw ln [g(w)]| are bounded by some

integrable functions on [0,∞]. This can be established as

follows:

|we−zcw ln f(w)|=−we−ℜ(zc)w ln (f(w)) (50)

=−we−ℜ(zc)w ln
(E[S2e−Sw

])

≤−we−ℜ(zc)wE[ln (S2e−Sw
)]

(51)

=−we−ℜ(zc)wE[ln (S2
)

− Sw
]

=we−ℜ(zc)w

(

wE[ 1

1 +X2

]

+ 2E[ln (1 +X2
)]

)

≤we−ℜ(zc)w (w + 2 ln (1 + P )) (52)

=e−ℜ(zc)wP (w) (53)

where in (53), P (w) = w (w + 2 ln (1 + P )) is a polynomial

of order 2 in w. (50) holds because f(w) is a decreasing

function over w ≥ 0 and f(0) < 1 (c.f. (29)); (51) follows

from Jensen inequality; (52) is true because 1
1+X2 ≤ 1 and

applying Jensen inequality again. Since
∫∞

0
e−ℜ(zc)wP (w)dw

exists for all ℜ(zc) > 0, then so does I1(zc). By a similar

technique, the following upper bound may be obtained:

|e−zcw ln g(w)| ≤ e−ℜ(zc)w (w + ln (1 + P )) (54)

to justify the convergence of the integral in (49). We conclude

that I2(zc) is also well-defined for all ℜ(zc) > 0.
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