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Abstract—We study sequential coding of a Markov source pro- works assume an ideal channel with no packet losses. To our
cess under error propagation constraints. The channel canrase  knowledge even the effect of a single isolated packet loss is
up to B packets in a single burst, but reveals all other packets to not fully understood [11].

the destination. The destination is required to reproduce & the In an earlier work [12] we build upon [8], [9] and intro-
(vector) source sequences sequentially, except those thatcur g ; ’ p ' .

in a window of length B+W following the start of the erasure duce an information theoretic framework to characterize th
burst. Our earlier work establishes upper and lower bounds @ tradeoff between error propagation and compression rate. A
the compression rate as a function of8 and W. In this work  encoder is revealed source vectors in a sequential manner
we show that for the class ofsymmetric sources, if we restrict to 4 compresses them sequentially into channel packets that

a memoryless encoding function, then a binning based scheme then t itted h L An inf tion thé i
is optimal. Our converse involves a drawing connection beteen are then transmitied over a channel. An information thebre

the sequential coding problem and a multiuser source coding notion of error propagation is defined and upper and lower
problem called Zig-Zag source coding with side information bounds are obtained on the compression rate. The lower bound
is based on a careful analysis of information flow during
the decoding process whereas the upper bound is based on
A tradeoff between compression efficiency and error re- binning technique. For a special class of sources, a new
silience is fundamental to any video compression systetechnique,prospicient coding is proposed, and shown to be
In live video streaming, an encoder observes a sequenceopfimal. However the optimal compression rate remains an
correlated video frames and produces a compressed karstrepen problem for a large class of sources including the pinar
that is transmitted to the destination. If the underlyingrael symmetric Markov source.
is an ideal bit-pipe, it is well known that predictive codifig In this paper we consider a class sfmmetric Markov
achieves the optimum compression rate. Unfortunately s$ources. For this class the minimum compression rate has
many emerging video distribution networks, such as peer-tot yet been characterized. Our main result in this paper
peer systems and mobile systems, packet losses are unavieidhat if we restrict to the class ahemoryless encoders,
able. Predictive coding is highly sensitive to such packs$és then the binning based scheme proposed in [12] is optimal.
and can lead to a significant amount of error propagationhe converse is established by drawing a connection to a
Various techniques are used to practice prevent such lossaaltiuser source coding problem called zig-zag sourcermpdi
Commonly used video coding techniques use a group é&twork [13]-[15].
picture (GOP) architecture, where intra-frames are péarédly
inserted to limit the effect of error propagation. Forwartbe [l. PROBLEM STATEMENT
correction codes can also be applied to compressed barssre o gyrce Moddl
to recover from missing packets [2], [3]. Modifications to
predictive coding, such as leaky-DPCM [4], [5], have bee
proposed in the literature to deal with packet losses. T
robustness of distributed video coding techniques in prese
of packet losses has been studied in e.g., [6], [7].
Information theoretic analysis of video coding has reagiv
significant attention in recent times, see e.g., [8]-[1a] &re n
regflerences therein. These works focus primarily on thecgour P T =% [ L1 =811 ) = I_Ilpﬂ\so(s‘i |S-1j), Vt=1.
coding aspects of video. Th&urce process is a sequence = 1)
of vectors, each of which is spatially i.i.d. and temporally
correlated. Each source vector is sequentially compreased We assume that the prior distributiqn,(-) and ps, |5, (-|-) are
a bit stream. The destination is required to recover thecgouselected such that the underlying random variadle$i>o
vectors in a sequential manner as well. However all of thesenstitute a time-invariant and a first-order stationaryhda

I. INTRODUCTION

We consider a semi-infinite stationary vector source prces
é”}tzo whose symbols (defined over some finite alphabet
are drawn independently across the spatial dimension and fr
a first-order Markov chain across the temporal dimensien, i.
efor eacht > 1,
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Fig. 1. Problem Setup. As shown in the figure, the channebdiuites an erasure burst of len@hbetween the interva]j, j + B — 1]. The decoder is not
required to reproduce the source sequences that occur imtdreal [j, j +B-+W — 1]. All other sequences need to be reproduces in an instantsrew
lossless manner.

chain. Of particular interest in this paper is the class @fpproaches zero as— « such that, RS’ # §") < &, for

symmetric sources where the underlying Markov chain isll i ¢ {j,...,j +B+W —1}. We seek the minimum feasible

also reversible i.e., the random variables satisfy...,s) = rateR(B,W) which we define to be theate-recovery function.

(st,...,s0), where the equality is in the sense of distribuT he following upper and lower bounds have been established

tion [16]. Of particular interest to us is the following peqpy in [12].

satisfied for eaclh > 1. Theorem 1 ( [12]): For any stationary first-order Markov
source process the rate-recovery function satiftie®,W) <

Psi1.s(Sa, ) = Ps_1.5(Sa: %), VSa, €S (2) R(B,W) < R*(B,W) where

i.e., we can “exchange” the source pais’, . s') Wwith _ 1 _

(s" ;,s") without affecting the joint distribution. An important R™(B,W) = H(st|so) + wWrtl (ss;Sw+B+1/%). ()
class of sources that are symmetric are the binary sources:
s' =518 27", where{z"};>1 is an i.i.d. binary source process
(in both temporal and spatial dimensions) with the marginal
distribution P(z ; = 0) = p, the marginal distribution Rs j =
0) =Pr(sj = 1) = 1 and& denotes modulo-2 addition.

R"(B,W) = H(s1|s0) + |(sB ; sB+1/0) (6)

1
W+1
(I
Notice that the upper and lower bound coincide Ygr= 0
and W — o, yielding the rate-recovery function in these
B. Rate-Recovery Function cases. The upper bound is obtained via a memoryless binning
based scheme. At each time the encoding funcfiom (3)
is obtained as the bin-index of an independent Slepian-Wolf
codebook [17]. The rate expression f@r (B,W), which is

A rateR causal encoder maps the sequefig&i>o to an
index f; € [1,2"R] according to some function

fi=Fi (-, 5" (3) equivalent to [12]
for eachi > 0. A memoryless encoder satisfies; (<f,....s") = R (BW) — H(Smin Smem s 4
7i(s") i.e., the encoder does not use the knowledge of the past (BW) W41 (sB1,5842:-- -, sBrw+1lS0)  (7)
sequences. guarantees that the decoder can recasfeg., following

The channel introduces an erasure burst of &izée. for an erasure burst betweép j +B— 1] using theW +1 bin
some particulaj > 0, it introduces an erasure burst such thahdices fitg..... firs4w and the source sequene®, before
g=xforie{j,j+1,..,j+B—1} andg = f; otherwise. the erasure.

Upon observing the sequenég; }j>o the decoder is required | [12] some counter-examples are provided where the

to pe_rfectly recover all the source sequences using degodjgwer boundR~(B,W) (c.f. (5)) is tight and binning based

functions upper boundR*(B,W) (c.f. (6)) is not optimal in general.
o , ; ; ; Nevertheless such examples require a special structurdand

§ = 6i(%0.01,-.,G). el I+ BEW 1) () not include many natural source models such as the binary
It is however not required to produce the source sequencesymmetric sources. The optimal rate-recovery function for
the window of lengthB+W following the start of an erasurethe class of symmetric sources remains open. In this paper
burst. We call this period the error propagation window. Thee establish the optimality of binning based scheme if one
setup is shown in Fig. 1. restricts to the class of memoryless encoders.

A rate R(B,W) is feasible if there exists a sequence of Theorem 2: For the class of symmetric sources that sat-
encoding and decoding functions and a sequegiceghat isfy (2) the rate-recovery function, restricted to the slad



memoryless encoders, is given by thus establishing (9).
1 To establish (14) we make a connection to a multi-terminal
R(B,W) = \N—H_H(SBJrlasBJrZa---aSB+W+l|SO)- (8) source coding problem in Fig. 2.

0 A. Zig-Zag Source Coding

Note that the achievability follows immediately from (7)hds Consider the source coding problem with side infor-

it only remains to show that the lower bound (5) needs to bgation illustrated in Fig. 2(a). In this setup there are
improved. We have only been able to obtain this improvemelur source sequences drawn i.i.d. from a joint distributio

for the class of memoryless encoders. For the general encog@jJrl,Sj,Sj—l75j—B—1)- The two encoder§ and j+1 are
structure (3) this remains an open problem. At first glane® ofeyealed source sequencx?sandsj‘ﬂ and the two decoders

may expect that the binning based scheme is always optiraal j + 1 are revealed source8 ; ands] g ;. The encoders

for the class of memoryless encoders. This is however net tr@perate independent|y and compress the source sequences to
Interestingly theprospicient encoders in [12] that improve fi and fi;1 at ratesR; and Rj;1 respectively. Decodelj

upon the binning based lower bound are also memorylegss access thj,Serl) while decoderj+1 has access to
Our proof involves an interesting connection a multi-terati (fj,fj+l,sj!"7871) and are interested in reproducing,

source coding problem called zig-zag source coding [13]-[1

2n S(f N
In particular we develop a simple approach to lower bound the 5/ =Gi(fis-1) (20)
: ! . . R R i1
sum—ratetr(])fta mg-iag ?qu;ce co((jjmg:}[ _nttatwortk with symmetric Sjn+1 = Gj+1(fjH 75jnfol) (21)
r m in ndent interest. . R S
sources that may be o epende eres respectively such that B" ") <e, fori=j,j+1.
Ill. PROOF OFTHEOREM 2 Whens!' g ; is a constant sequence, the problem has been

The special case whai = 0 follows directly from (5). We studied in [13], [15]. A complete single letter charactatian
only need to consider the case whath> 1. For simplicity in  involving an auxiliary random variable is obtained. Foudtely
exposition we consider the case whah= 1. Then we need in the present case of symmetric sources a simple lower bond

to show that can be obtained using the following observation.
1 Lemma 1. The set of all achievable rate-pai(®;,R; 1)
R(BW=2)> EH(SB+1aSB+2|50) (9)  for the problem in Fig. 2(a) is identical to the set of all

The proof for generaW > 1 follows along similar lines and achievable rate-pairs for the problem in Fig. 2(b) where the
will be sketched briefly._ side information sequencﬁfl at decoder 1 is replaced by the

Assume that an erasure-burst spans time indicei{e information sequence, ;. .
j—B,...,j— 1. The decoder must recover T_he prqof of Lemma 1 foII_owg by observing that the ca-
A . pacity region for the problem in Fig. 2(a) depends on thetjoin
§h1=Gjn (fOJ ,fj,fj+1) - (10)  distribution p(sj, sj+1,5j—1,5j—s—1) only via themarginal dis-
tributions p(sj, sj—1) and p(sj+1,sj,sj—s—1). When the source
. is symmetric the distributiong(s;j,sj—1) and p(sj,sj+1) are
H (sj”+1 | %’B’l,fj,fjﬂ) < nep. (11) identical. The formal proof will be omitted.
Thus it suffices to lower bound the achievable sum rate for
the problem in Fig. 2(b). First upon applying the SlepianHWo
o =g (fol) (12) lower bound to encodej+ 1

NRj;1>H (S?+1|SJD,B,1, fj) —NEn (22)
and to boundR;
i > H(f) = 1(fi;s]ls]-g_1)

From Fano’s inequality, we have,
Furthermore if there is no erasure until timehen

must hold. Hence from Fano’s Inequalty,

H (an | 15’) < nen. (13)

H(s}lsi_g_1) —H(s]ls]"g_1, )
> nH (sgy1[s0) —H(s]s]"g_1,f})

nR
Our aim is to combine (11) and (13) to establish the following>
lower bound on the sum-rate =

R +Rji 1> H(S' 1|S')—|—H(S'|S',B,1). (14)
e i , e +H(sMs!g_1,5"1,f) — Nen (23)
j12j—B=1:2j+1» 1]
The lower bound then follows since non i
R> maxR;.Ris1) (15) = nH(sj[sj—B-1) — I (s} 5]41/5]_B_1,fj) — N€n
- 1 I+t = nH(sj|sj-g-1) —H (5?+1|51n7871a fi)+H (5?+1|51n7871a 5?7 fj) — nen
2 5(Rj+Rjs1) (16)  =nH(sj|sj-B-1) — H(s};als] 5 _1.1j) + NH(sj11ls}) — nen
1 (24)
= 5(H(sjtals) +H(sjlsj-s-1)) (17 where (23) follows by applying Fano's inequality to
1 since s can be recovered from(s! ,,fj) and hence
_ = . . e j j+107
5 (H(sivlsi;si-g-1) +Hlsilsi-8-1)) (18) H(s]|s g 1,57 1,f) < nea holds and (24) follows form the
1 1 Markov relations?, ; — s — (fj, s ). Observe that (14)
= ZH(si.1.silsi__1) = =H 19 j+1 j»Sj-B-1
2 (sj+1:silsj-8-1) 2 (sB+2,58+2/s0) (19) follows by summing (22) and (24).
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Fig. 2. Connection between the streaming problem and Zgyséairce coding problem. The setup on the right is identicéhé¢ setup on the left, except with
the side information sequen@@1 replaced WithsJ"H. However the rate region for both problems turns out to betidal for symmetric Markov sources.
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