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Abstract—We study sequential coding of a Markov source pro-
cess under error propagation constraints. The channel can erase
up to B packets in a single burst, but reveals all other packets to
the destination. The destination is required to reproduce all the
(vector) source sequences sequentially, except those thatoccur
in a window of length B+W following the start of the erasure
burst. Our earlier work establishes upper and lower bounds on
the compression rate as a function ofB and W . In this work
we show that for the class ofsymmetric sources, if we restrict to
a memoryless encoding function, then a binning based scheme
is optimal. Our converse involves a drawing connection between
the sequential coding problem and a multiuser source coding
problem called Zig-Zag source coding with side information.

I. I NTRODUCTION

A tradeoff between compression efficiency and error re-
silience is fundamental to any video compression system.
In live video streaming, an encoder observes a sequence of
correlated video frames and produces a compressed bit-stream
that is transmitted to the destination. If the underlying channel
is an ideal bit-pipe, it is well known that predictive coding[1]
achieves the optimum compression rate. Unfortunately in
many emerging video distribution networks, such as peer-to-
peer systems and mobile systems, packet losses are unavoid-
able. Predictive coding is highly sensitive to such packet losses
and can lead to a significant amount of error propagation.
Various techniques are used to practice prevent such losses.
Commonly used video coding techniques use a group of
picture (GOP) architecture, where intra-frames are periodically
inserted to limit the effect of error propagation. Forward error
correction codes can also be applied to compressed bit-streams
to recover from missing packets [2], [3]. Modifications to
predictive coding, such as leaky-DPCM [4], [5], have been
proposed in the literature to deal with packet losses. The
robustness of distributed video coding techniques in presence
of packet losses has been studied in e.g., [6], [7].

Information theoretic analysis of video coding has received
significant attention in recent times, see e.g., [8]–[10] and the
references therein. These works focus primarily on the source
coding aspects of video. Thesource process is a sequence
of vectors, each of which is spatially i.i.d. and temporally
correlated. Each source vector is sequentially compressedinto
a bit stream. The destination is required to recover the source
vectors in a sequential manner as well. However all of these

works assume an ideal channel with no packet losses. To our
knowledge even the effect of a single isolated packet loss is
not fully understood [11].

In an earlier work [12] we build upon [8], [9] and intro-
duce an information theoretic framework to characterize the
tradeoff between error propagation and compression rate. An
encoder is revealed source vectors in a sequential manner
and compresses them sequentially into channel packets that
are then transmitted over a channel. An information theoretic
notion of error propagation is defined and upper and lower
bounds are obtained on the compression rate. The lower bound
is based on a careful analysis of information flow during
the decoding process whereas the upper bound is based on
a binning technique. For a special class of sources, a new
technique,prospicient coding is proposed, and shown to be
optimal. However the optimal compression rate remains an
open problem for a large class of sources including the binary
symmetric Markov source.

In this paper we consider a class ofsymmetric Markov
sources. For this class the minimum compression rate has
not yet been characterized. Our main result in this paper
is that if we restrict to the class ofmemoryless encoders,
then the binning based scheme proposed in [12] is optimal.
The converse is established by drawing a connection to a
multiuser source coding problem called zig-zag source coding
network [13]–[15].

II. PROBLEM STATEMENT

A. Source Model

We consider a semi-infinite stationary vector source process
{sn

t }t≥0 whose symbols (defined over some finite alphabetS )
are drawn independently across the spatial dimension and from
a first-order Markov chain across the temporal dimension, i.e.,
for eacht ≥ 1,

Pr( sn
t = sn

t | sn
t−1 = sn

t−1 ) =
n

∏
j=1

p
s1|s0(st j |st−1, j), ∀t ≥ 1.

(1)

We assume that the prior distributionps0(·) and p
s1|s0(·|·) are

selected such that the underlying random variables{st}t≥0

constitute a time-invariant and a first-order stationary Markov
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Fig. 1. Problem Setup. As shown in the figure, the channel introduces an erasure burst of lengthB between the interval[ j, j +B−1]. The decoder is not
required to reproduce the source sequences that occur in theinterval [ j, j +B+W −1]. All other sequences need to be reproduces in an instantaneous and
lossless manner.

chain. Of particular interest in this paper is the class of
symmetric sources where the underlying Markov chain is
also reversible i.e., the random variables satisfy(s0, . . . ,st)

d
=

(st , . . . ,s0), where the equality is in the sense of distribu-
tion [16]. Of particular interest to us is the following property
satisfied for eacht ≥ 1.

pst+1,st (sa,sb) = pst−1,st (sa,sb), ∀sa,sb ∈ S (2)

i.e., we can “exchange” the source pair(sn
t+1,s

n
t ) with

(sn
t−1,s

n
t ) without affecting the joint distribution. An important

class of sources that are symmetric are the binary sources:
s

n
t = s

n
t−1⊕z

n
t , where{zn

t }t≥1 is an i.i.d. binary source process
(in both temporal and spatial dimensions) with the marginal
distribution Pr(zt,i = 0) = p, the marginal distribution Pr(st,i =
0) = Pr(st,i = 1) = 1

2 and⊕ denotes modulo-2 addition.

B. Rate-Recovery Function

A rate-R causal encoder maps the sequence{sn
i }i≥0 to an

index fi ∈ [1,2nR] according to some function

fi = F i (s
n
0, ...,s

n
i ) (3)

for eachi ≥ 0. A memoryless encoder satisfiesF i
(

sn
0, ...,s

n
i

)

=
F i(s

n
i ) i.e., the encoder does not use the knowledge of the past

sequences.
The channel introduces an erasure burst of sizeB, i.e. for

some particularj ≥ 0, it introduces an erasure burst such that
gi = ⋆ for i ∈ { j, j + 1, ..., j +B− 1} and gi = fi otherwise.
Upon observing the sequence{g j} j≥0 the decoder is required
to perfectly recover all the source sequences using decoding
functions

ŝn
i = G i(g0,g1, . . . ,gi), i /∈ { j, . . . , j+B+W −1}. (4)

It is however not required to produce the source sequences in
the window of lengthB+W following the start of an erasure
burst. We call this period the error propagation window. The
setup is shown in Fig. 1.

A rate R(B,W ) is feasible if there exists a sequence of
encoding and decoding functions and a sequenceεn that

approaches zero asn → ∞ such that, Pr(sn
i 6= ŝi

n) ≤ εn for
all i /∈ { j, ..., j +B+W −1}. We seek the minimum feasible
rateR(B,W ) which we define to be therate-recovery function.
The following upper and lower bounds have been established
in [12].

Theorem 1 ( [12]): For any stationary first-order Markov
source process the rate-recovery function satisfiesR−(B,W )≤
R(B,W )≤ R+(B,W ) where

R−(B,W ) = H(s1|s0)+
1

W +1
I(sB;sW+B+1|s0). (5)

R+(B,W ) = H(s1|s0)+
1

W +1
I(sB ; sB+1|s0) (6)

�

Notice that the upper and lower bound coincide forW = 0
and W → ∞, yielding the rate-recovery function in these
cases. The upper bound is obtained via a memoryless binning
based scheme. At each time the encoding functionfi in (3)
is obtained as the bin-index of an independent Slepian-Wolf
codebook [17]. The rate expression forR+(B,W ), which is
equivalent to [12]

R+(B,W ) =
1

W +1
H(sB+1,sB+2, . . . ,sB+W+1|s0) (7)

guarantees that the decoder can recovers
n
j+B+W following

an erasure burst between[ j, j +B− 1] using theW + 1 bin
indices f j+B, . . . , f j+B+W and the source sequencesn

j−1 before
the erasure.

In [12] some counter-examples are provided where the
lower boundR−(B,W ) (c.f. (5)) is tight and binning based
upper boundR+(B,W ) (c.f. (6)) is not optimal in general.
Nevertheless such examples require a special structure anddo
not include many natural source models such as the binary
symmetric sources. The optimal rate-recovery function for
the class of symmetric sources remains open. In this paper
we establish the optimality of binning based scheme if one
restricts to the class of memoryless encoders.

Theorem 2: For the class of symmetric sources that sat-
isfy (2) the rate-recovery function, restricted to the class of



memoryless encoders, is given by

R(B,W ) =
1

W +1
H(sB+1,sB+2, . . . ,sB+W+1|s0). (8)

�

Note that the achievability follows immediately from (7). Thus
it only remains to show that the lower bound (5) needs to be
improved. We have only been able to obtain this improvement
for the class of memoryless encoders. For the general encoder
structure (3) this remains an open problem. At first glance one
may expect that the binning based scheme is always optimal
for the class of memoryless encoders. This is however not true.
Interestingly theprospicient encoders in [12] that improve
upon the binning based lower bound are also memoryless.
Our proof involves an interesting connection a multi-terminal
source coding problem called zig-zag source coding [13]–[15].
In particular we develop a simple approach to lower bound the
sum-rate of a zig-zag source coding network with symmetric
sources that may be of independent interest.

III. PROOF OFTHEOREM 2

The special case whenW = 0 follows directly from (5). We
only need to consider the case whenW ≥ 1. For simplicity in
exposition we consider the case whenW = 1. Then we need
to show that

R(B,W = 2)≥
1
2

H(sB+1,sB+2|s0) (9)

The proof for generalW ≥ 1 follows along similar lines and
will be sketched briefly.

Assume that an erasure-burst spans time indices
j−B, . . . , j−1. The decoder must recover

ŝ
n
j+1 = G j+1

(

f
j−B−1

0 , f j, f j+1

)

. (10)

From Fano’s inequality, we have,

H
(

s
n
j+1 | f

j−B−1
0 , f j, f j+1

)

≤ nεn. (11)

Furthermore if there is no erasure until timej then

ŝ
n
j = G j

(

f
j

0

)

(12)

must hold. Hence from Fano’s Inequalty,

H
(

s
n
j | f j

0

)

≤ nεn. (13)

Our aim is to combine (11) and (13) to establish the following
lower bound on the sum-rate

R j +R j+1 ≥ H(s j+1|s j)+H(s j|s j−B−1). (14)

The lower bound then follows since

R ≥ max(R j,R j+1) (15)

≥
1
2
(R j +R j+1) (16)

≥
1
2
(H(s j+1|s j)+H(s j|s j−B−1)) (17)

=
1
2
(H(s j+1|s j,s j−B−1)+H(s j|s j−B−1)) (18)

=
1
2

H(s j+1,s j|s j−B−1) =
1
2

H(sB+1,sB+2|s0) (19)

thus establishing (9).
To establish (14) we make a connection to a multi-terminal

source coding problem in Fig. 2.

A. Zig-Zag Source Coding

Consider the source coding problem with side infor-
mation illustrated in Fig. 2(a). In this setup there are
four source sequences drawn i.i.d. from a joint distribution
p(s j+1,s j,s j−1,s j−B−1). The two encodersj and j + 1 are
revealed source sequencess

n
j andsn

j+1 and the two decodersj
and j+1 are revealed sourcessn

j−1 andsn
j−B−1. The encoders

operate independently and compress the source sequences to
f j and f j+1 at ratesR j and R j+1 respectively. Decoderj
has access to(f j ,s

n
j−1) while decoder j+1 has access to

(f j , f j+1,s
n
j−B−1) and are interested in reproducing,

ŝ
n
j = Ĝ j(f j,s

n
j−1) (20)

ŝ
n
j+1 = Ĝ j+1(f

j+1
j ,sn

j−B−1) (21)

respectively such that Pr(sn
i 6= ŝ

n
i )≤ εn for i = j, j+1.

Whensn
j−B−1 is a constant sequence, the problem has been

studied in [13], [15]. A complete single letter characterization
involving an auxiliary random variable is obtained. Fortunately
in the present case of symmetric sources a simple lower bond
can be obtained using the following observation.

Lemma 1: The set of all achievable rate-pairs(R j,R j+1)
for the problem in Fig. 2(a) is identical to the set of all
achievable rate-pairs for the problem in Fig. 2(b) where the
side information sequencesn

j−1 at decoder 1 is replaced by the
side information sequencesn

j+1.
The proof of Lemma 1 follows by observing that the ca-

pacity region for the problem in Fig. 2(a) depends on the joint
distributionp(s j,s j+1,s j−1,s j−B−1) only via themarginal dis-
tributions p(s j,s j−1) and p(s j+1,s j,s j−B−1). When the source
is symmetric the distributionsp(s j,s j−1) and p(s j,s j+1) are
identical. The formal proof will be omitted.

Thus it suffices to lower bound the achievable sum rate for
the problem in Fig. 2(b). First upon applying the Slepian-Wolf
lower bound to encoderj+1

nR j+1 ≥ H(sn
j+1|s

n
j−B−1, f j)− nεn (22)

and to boundR j

nR j ≥ H(f j) = I(f j;sn
j |s

n
j−B−1)

≥ H(sn
j |s

n
j−B−1)−H(sn

j |s
n
j−B−1, f j)

≥ nH(sB+1|s0)−H(sn
j |s

n
j−B−1, f j)

+H(sn
j |s

n
j−B−1,s

n
j+1, f j)− nεn (23)

= nH(s j|s j−B−1)− I(sn
j ;s

n
j+1|s

n
j−B−1, f j)− nεn

= nH(s j|s j−B−1)−H(sn
j+1|s

n
j−B−1, f j)+H(sn

j+1|s
n
j−B−1,s

n
j , f j)− nεn

= nH(s j|s j−B−1)−H(sn
j+1|s

n
j−B−1, f j)+ nH(s j+1|s j)− nεn

(24)

where (23) follows by applying Fano’s inequality to
since s

n
j can be recovered from(sn

j+1, f j) and hence
H(sn

j |s
n
j−B−1,s

n
j+1, f j) ≤ nεn holds and (24) follows form the

Markov relationsn
j+1 → s

n
j → (f j ,s

n
j−B−1). Observe that (14)

follows by summing (22) and (24).
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Fig. 2. Connection between the streaming problem and Zig-Zag source coding problem. The setup on the right is identical to the setup on the left, except with
the side information sequencesn

j−1 replaced withsn
j+1. However the rate region for both problems turns out to be identical for symmetric Markov sources.

B. Connection between Streaming and Zig-Zag Coding Prob-
lems

It remains to show that the lower bound on the Zig-Zag
coding problem also constitutes a lower bound on the original
problem.

Lemma 2: Suppose that the encoding functionf j = F j(s
n
j )

is memoryless. Suppose that there exist decoding func-
tions ŝn

j = G j(f
j

0 ) and ŝn
j+1 = G j+1( f j−B−1

0 , f j, f j+1) such that
Pr(ŝ j

n 6= s
n
j ) and Pr(ŝn

j+1 6= s
n
j+1) both vanish to zero asn→∞.

Then
H(sn

j |s
n
j−1, f j)≤ nεn (25)

H(sn
j+1|s

n
j−B−1, f j, f j+1)≤ nεn (26)

also hold.
We omit the proof due to space constraint. The conditions

in (25) and (26) show that any rate that is achievable in
the original problem is also achieved in the zig-zag source
network. Hence a lower bound to the source network also
constitutes a lower bound to the original problem.

C. Extension to Arbitrary W > 1

Finally we comment of the extension of the above approach
to W = 2. We now consider three encoderst ∈ { j, j+1, j+2}.
Encodert observes a source sourcessn

t and compresses it
into an indexf j ∈ [1,2nR j ]. The corresponding decoders are
revealed sn

t−1 for t ∈ { j, j + 1} and the decoderj + 2 is
revealedsn

j−B−1. By an argument analogous to Lemma 1 the
rate region is equivalent to the case when decodersj and j+1
are instead revealedsn

j+1 and s
n
j+2 respectively. For this new

setup it is easy to show that decoderj +2 must reconstruct
(sn

j ,s
n
j+1,s

n
j+2) given(sn

j−B−1, f j , f j+1, f j+2). The sum rate must
therefore satisfyR j+R j+1+R j+2 ≥

1
3H(s j,s j+1,s j+2|s j−B−1).

Using an extension of Lemma 2 we can show that the proposed
lower bound also continues to hold for the original streaming
problem. This completes the proof. The extension to any
arbitraryW > 1 is completely analogous.
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