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Abstract

Fundamental limits of secret-key generation over a two-way, reciprocal and block fading wireless channel are

investigated. Only statistical channel state information (CSI) of the main channel is assumed to be available, whereas

the eavesdropper has perfect CSI of its own channel. We establish upper and lower bounds on the secret-key generation

capacity with public discussion. The upper bound can be expressed as a sum of two terms — one of the terms arises

due to channel reciprocity, while the other term arises due to the communication. In the limit of long coherence period,

the contribution from channel reciprocity vanishes to zero, whereas the other term prevails. The lower bound involves

a separation based scheme consisting of channel training followed by source emulation in each coherence block. The

resulting rate also consists of the contribution from each phase. For Rayleigh fading channels, in the high signal-

to-noise ratio (SNR) regime, the gap between the upper and lower bounds decreases inversely with the coherence

period. Numerical results indicate significant performance gains over training-only schemes even for moderate values

of SNR and small coherence periods.
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I. INTRODUCTION

There has been a growing interest in using the physical layer for enhancing security in wireless systems in

recent years. One area that has received significant interest (see e.g., [1]–[5]) is secret-key generation using channel

reciprocity. When the legitimate terminals use the same carrier frequency for transmission, the phenomenon of

channel reciprocity [6] applies. The channel measurements are strongly correlated and can be used to generate a

common secret key. Channel reciprocity may not however exist in frequency division duplex (FDD) systems when

the carrier frequencies used are different. In such systems secret-key generation techniques based on interactive

communication between the legitimate terminals [7], [8] may be used. Such approaches rely on independence in

channel fluctuations or noise between the legitimate receiver and eavesdropper channels, which may either exist

naturally or can be engineered artificially.

A. Khisti is with the Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:

akhisti@comm.utoronto.ca).

A portion of the work was presented at the 50th Allerton Conference on Communications, Control and Computing, 2012, Montecillo, IL



2

In this paper we study secret-key generation over a two-way, block-fading channel with an external public

discussion channel. We assume that in each coherence period the channel gains on the main channel are sampled

from a known joint distribution, but the actual realization of the channel gains is not revealed to any of the terminals.

In contrast the channel gains of the eavesdropper are perfectly known only to this terminal. We establish upper

and lower bounds on the secret-key capacity. Our upper bound expression can be interpreted as a sum of two

components. The first component is due to the correlation between the channel gains on the forward and reverse

channel. The second component is due to interactive communication. The contribution of the first component

vanishes inversely with the coherence period whereas the contribution of the second component remains bounded

in this limit. We propose a two-phase coding scheme consisting of channel training followed by source-emulation

in each coherence block. The achievable rate also admits an interpretation similar to the upper bound. Through

suitable power allocation between the training and source emulation phases for Rayleigh fading channels, we show

that the achievable rate approaches the upper bound in the limit of high SNR and long coherence blocks. Numerical

evaluations further indicate significant improvements over training-only schemes.

In related works, information theoretic treatment of secret-key generation was first introduced in [9], [10] and

has been extended in a number of recent works, see e.g., [11]–[15]. Motivated by applications to wireless channels

references [16], [17] study secret-key generation over a state-controlled broadcast channel However the cost of

acquiring CSI is not accounted for in these setups. Secret-key generation over a fast fading Rayleigh channel in the

forward direction and a public discussion channel in the reverse direction have been studied in [18], [19] for the

case of coherent channels and in [20] for the case of non-coherent channels. Note that these works only consider

one-way fading channels and do not account for the role of channel reciprocity in secret-key generation, which has

been the focus of practical approaches. The most closely related work to the present paper is reference [21], where

the authors study a two-way setup with perfect reciprocity over the main channel. The authors propose a coding

technique consisting of channel training and secret-message transmission. Unfortunately the secret-message rate is

non-zero only when the eavesdropper’s channel gain is, on average, weaker than the legitimate receiver’s channel.

In contrast the scheme presented in the present paper yields improvement over the training based scheme even

when the eavesdropper’s channel is stronger. Furthermore assuming imperfect reciprocity over the main channel

the proposed paper also presents an upper bound, which is tight in certain cases. Secret-key generation is also

an integral component in the delay-limited secrecy framework [22], [23]. The ergodic behaviour of the channel

is exploited to maintain a steady buffer of the secret-key whereas each transmitted message is secured using a

one-time pad. The role of channel sparsity in secret-key generation is studied in [24], [25].

The non-coherent capacity of fading channels has been extensively studied in many previous works, see, e.g., [26]–

[28] and references therein. However to the best of our knowledge these models only consider one-way channels.

As such, the use of interactive communication for channel-training and power control in reciprocal fading channel

even in the context of classical communication has been considered in only a limited set of papers e.g., [29], [30]

and remains a fertile area of research. One key assumption made in the present paper is that the channel gains in

the forward and reverse channel gains are correlated, with the correlation coefficient assumed to be in the interval
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Fig. 1. Problem Setup. A two-way fading channel with two legitimate terminals and one eavesdropper terminal. The legitimate terminals A

and B are required to agree on a common secret-key. The fading gains hAB and hBA are not revealed to any terminals, whereas the gAE

and gBE are revealed to the eavesdropper. In addition to the wireless fading channel, terminals A and B can also exchange messages over an

external public discussion channel, which are revealed to E.

[0, 1). In general achieving perfect channel reciprocity in baseband is challenging because different terminals use

different I/Q mixers, amplifiers and path lengths in the RF chains. While closed-loop calibration can be performed

(see e.g. [31], [32]), such methods can become challenging if the calibration needs to be done in the open air. Hence

we believe that our assumption of imperfect reciprocity could be more realistic. We note in advance that while

our proposed coding technique can also be applied to the case of perfect reciprocity, the upper bound becomes

degenerate in this special case.

II. SYSTEM MODEL AND MAIN RESULTS

The problem setup is described in Fig. 1. Nodes, A and B are legitimate terminals, whereas node E is the

eavesdropper. On the forward channel, at time t ∈ {1, 2, . . . , N}, node A transmits a (complex valued) symbol

xA(t) ∈ C, and nodes B and E observe yB(t) and zAE(t) as follows:

yB(t) = hAB(t)xA(t) + nB(t), (1)

zAE(t) = gAE(t)xA(t) + nAE(t). (2)

On the reverse channel, at time t, node B transmits a symbol xB(t) ∈ C, and nodes A and E observe yA(t) and

zBE(t) as follows:

yA(t) = hBA(t)xB(t) + nA(t), (3)

zBE(t) = gBE(t)xB(t) + nBE(t). (4)

We assume that all the additive noise variables in (1)-(4) are mutually independent and sampled i.i.d. from
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CN (0, 1). The input symbols xA(t) and xB(t) satisfy an average power constraint i.e.,

E

[
1

N

N∑
t=1

|xA(t)|2
]
≤ P, E

[
1

N

N∑
t=1

|xB(t)|2
]
≤ P. (5)

We assume a block-fading channel model with a coherence period of T symbols and assume that the communication

spans K coherence blocks i.e., N = KT . Thus for each i ∈ {0, 1, . . . ,K − 1}, the coherence block i spans the

interval [iT +1, (i+1)T ]. At time t = iT +1, the channel gains, hAB(t), hBA(t), gAE(t) and gBE(t), are sampled

from a joint distribution

phAB ,hBA
(hAB , hBA) · pgAE ,gBE

(gAE , gBE) (6)

and remain constant in the interval [iT+1, (i+1)T ]. Note that we assume that the channel gains of the eavesdropper

are independent of the channel gains over the main channel. This assumption is only made to simplify the rate

expressions. We believe that the results can be easily extended to the case where all the channel gains are drawn

from some joint distribution, although the bounds will be more involved.

In the proposed setup, the eavesdropper observes the forward and reverse channel outputs over non-interfering

channels (c.f. (2) and (4)). This is clearly a stronger model than the setup when only a superposition of xA(t)

and xB(t) is observed by the eavesdropper. Note that nodes A and B are assumed to operate in a full-duplex

mode i.e., they can transmit and receive simultaneously. Our results can also be easily generalized if the terminals

operate in a half-duplex mode, provided that the transmission schedules are fixed (e.g., if the nodes alternate during

transmission).

We will also assume that a public discussion channel is available for communication. After the transmission of

xA(t), and before the transmission of xA(t + 1) on the forward channel (and likewise after the transmission of

xB(t) and before the transmission of xB(t+ 1)) the terminals can exchange L rounds of messages over a separate

discussion channel: ψA(t) , {ψA(t, 1), . . . , ψA(t, L)} and ψB(t) , {ψB(t, 1), . . . , ψB(t, L)}, where

ψA(t, j) = ΨA(y t
A,ψ

t−1
B , ψB(t, 1), . . . , ψB(t, j − 1),mA) (7)

ψB(t, j) = ΨB(y t
B ,ψ

t−1
A , ψA(t, 1), . . . , ψA(t, j − 1),mB), (8)

denote the messages transmitted by nodes A and B respectively. The messages transmitted over the discussion

channel are also revealed to the eavesdropper. The transmitted symbols xA(t) and xB(t) can be expressed as:

xA(t) = fA,t(y
t−1
A ,mA,ψ

t−1
B ) (9)

xB(t) = fB,t(y
t−1
B ,mB ,ψ

t−1
A ). (10)

The secret-key at the end of communication is generated as follows:

kA = KA(mA, y
N
A ,ψ

N
A ,ψ

N
B ), kB = KB(mB , y

N
B ,ψ

N
A ,ψ

N
B ). (11)

A secret-key rate R = 1
NH(kA) is achievable if for every ε > 0 there exists a N sufficiently large such that

Pr(kA 6= kB) ≤ ε and

1

N
I(kA; zNA , z

N
B ,ψ

N
A ,ψ

N
B , g

N
AE , g

N
BE) ≤ δ(ε), (12)
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for some function δ(ε) that goes to zero as ε→ 0.

The largest achievable rate is the secret-key capacity which is the quantity of interest. We next present upper and

lower bounds on the secret-key capacity.

A. Upper Bound

We present the following upper bound on the secret-key capacity.

Theorem 1: An upper bound on the secret-key agreement capacity, with (or without) public discussion is given

by the following:

R+ =
1

T
I(hAB ; hBA) +R+

AB +R+
BA (13)

where R+
AB and R+

BA are defined as follows:

R+
AB = max

P (·)∈PF

E

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
(14)

R+
BA = max

P (·)∈PR

E

[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
, (15)

where the maximization in (14) is over the set PF of all power-allocation functions on the forward channel that

satisfy the average power constraint E[P (hAB)] ≤ P , and the maximization in (15) is defined similarly.

�

An interpretation of the upper bound (13) is as follows. The term I(hAB ; hBA) denotes the contribution from

channel correlation. The scaling factor 1
T is due to the fact that the channel gains remain constant over the duration of

one coherence block. The other two terms R+
AB and R+

BA denote the contribution to the secret-key from the forward

and reverse channels using public discussion respectively [9], [10]. The upper bound expression (13) indicates that

the total secret-key rate cannot be larger than the sum of these three terms.

B. Lower Bound

Our lower bound involves a separation based scheme. In each coherence block we reserve the first symbol for

channel training and use the remainder of the block for source emulation [9], [10] .

Theorem 2: An achievable secret-key rate with a public discussion channel is given by:

R− = max
P1,P2

{
1

T
I(ĥAB ; ĥBA) +

T − 1

T

(
R−AB +R−BA

)}
(16)

where we have introduced,

ĥAB , hAB +
1√
P1

n̂A (17)

ĥBA , hBA +
1√
P1

n̂B (18)
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to be noisy observations of the channel gains on the forward and reverse channels respectively, n̂A ∼ CN (0, 1) and

n̂B ∼ CN (0, 1) are independent of all other random variables and

R−AB = E

[
log

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
− log

(
1 +

P2

1 + P1

)
(19)

R−BA = E

[
log

(
1 +

P2|hBA|2

1 + P2|gBE |2

)]
− log

(
1 +

P2

1 + P1

)
, (20)

where P1 and P2 are non-negative constants that satisfy

P1 + (T − 1)P2 ≤ TP. (21)

�

The interpretation of the achievable rate is very similar to the upper bound. The first term in (16) is the contribution

of channel reciprocity to the overall secret-key rate. The rates corresponding to R−AB and R−BA are the contributions

to the secret-key rate by the forward and reverse channels when source emulation is used. The factor
(
1− 1

T

)
is due to the fact that the proposed scheme only uses T − 1 symbols in each block for source emulation. The

penalty terms in (19) and (20) arise because in our analysis of the source emulation phase, we will assume that

the eavesdropper is revealed the true channel gains of the main channel, whereas the intended receivers only have

access to the noisy channel estimates. Finally we note that the expressions in (19) and (20) do not involve power

allocation over fading states as this is precluded in our coding scheme.

We note that the achievable rate (16) is structurally similar to the upper bound expression (13). The following

result shows that the upper and lower bounds are indeed very close in the high signal to noise ratio (SNR) regime

for Rayleigh fading channels.

Corollary 1: In the high SNR regime, assuming that hAB and hBA are jointly Gaussian, zero mean, unit variance

random variables, the upper and lower bounds satisfy the following relation:

lim
P→∞

{
R+(P )−R−G(P )

}
≤ 1

T
γ (22)

where R+, and R− are given by (13) and (16) respectively and

γ ,E

[
log

(
1 +
|hAB |2

|gAE |2

)]
+E

[
log

(
1 +
|hBA|2

|gBE |2

)]
. (23)

�

C. Numerical Comparisons

We present numerical comparisons between our upper and lower bounds in Fig. 2 and Fig. 3. Fig. 2 shows the

bounds as a function of SNR when the coherence period T = 10. Fig. 3 shows the bounds as a function of the

coherence period T when SNR = 30 dB. In both figures we assume that the channel gains are all drawn CN (0, 1)

and let ρ denote the cross-correlation. In Fig. 2 we fix ρ = 0.95, while in Fig. 3 it is fixed to ρ = 0.97.

The upper-most plot in Fig. 2 and Fig. 3, marked with squares, is the upper bound in Theorem 1. Note that for

small values of T the contribution from channel-reciprocity term in (13) is dominant. However when T increases
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the contribution of this term diminishes and the achievable rate saturates to the contribution from the remaining

two terms in (13).

The plot below the upper bound, marked with asterisks, is the lower bound with public discussion in Theorem 2.

As we increase T , we note that the gap between the upper and lower bound decreases inversely with the coherence

period in Fig. 3.

We also have two additional plots for comparison in both Fig. 2 and Fig. 3. The plot marked with circles is an

achievable rate using the separation based scheme when the public discussion channel is not available [33]. We

do not develop this lower bound in the paper as it appears to exhibit a considerable gap from the upper bound.

The lowermost plot is a simple upper bound on training based schemes R+
training = − 1

T log(1 − ρ2). This bound

is attained by revealing the respective channel gains to the legitimate receivers. Note that the training only scheme

is far from optimal even when correlation coefficient is close to 1.

III. UPPER BOUND

We provide a proof of Theorem 1 in this section. We assume that the communication spans over K coherence

blocks and let N = K · T . In our analysis below we use the notation that gt = (g t
AE , g

t
BE) and zt = (ztAE , z

t
BE).

NR = H(kA) (24)

= I(kA; kB) +H(kA|kB) (25)

= I(kA; kB)− I(kA; zN , gN ,ψN
A ,ψ

N
B ) + I(kA; zN , gN ,ψN

A ,ψ
N
B ) +H(kA|kB) (26)

≤ I(kA; kB)− I(kA; zN , gN ,ψN
A ,ψ

N
B ) +Nγ(ε) (27)

≤ I(kA; kB |zN , gN ,ψN
A ,ψ

N
B ) +Nγ(ε) (28)
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≤ I(mA, y
N
A ;mB , y

N
B |zN , gN ,ψN

A ,ψ
N
B ) +Nγ(ε) (29)

≤ I(mA, y
N
A , h

N
BA;mB , y

N
B , h

N
AB |zN , gN ,ψN

A ,ψ
N
B ) +Nγ(ε) (30)

where γ(ε) is a function that approaches zero as ε → 0 and we apply Fano’s Inequality [34] and the secrecy

constraint (12) in (27), and (29) uses the fact that the secret-keys are computed using kA = KA(mA, y
N
A ,ψ

N
A ,ψ

N
B )

and kB = KB(mB , y
N
B ,ψ

N
A ,ψ

N
B ) respectively. We next show the following lemma that successively reduces the

N letter expression in (30).

We can successively reduce the above upper bound using the following two Lemmas. These lemmas are based

on repeated application of the chain rule of mutual information. Their proofs are delegated to the Appendix.

Lemma 1: For each t ∈ {1, . . . , N}, we have that:

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt

A,ψ
t
B) ≤ I(mA, y

t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B ). (31)

Eq. (31) states that removing the conditioning of the public messages ψA(t) , {ψA(t, 1), . . . , ψA(t, L)} as well as

ψB(t) , {ψB(t, 1), . . . , ψB(t, L)} only increases the mutual information expression. The special case when t = 0

is separately stated below.

I(mA, h
N
BA;mB , h

N
AB |gN ,ψA(0),ψB(0)) ≤ I(mA, h

N
BA;mB , h

N
AB |gN ) (32)

�

Proof: See Appendix A

Lemma 2: For each t ∈ {1, 2, . . . , N}, we have that:

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B ) ≤ I(mA, y

t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B )

+ I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) + I(xB(t); yA(t)|zBE(t), gBE(t), hBA(t)). (33)

�

Proof: See Appendix B

We show how to reduce (30) by successively applying Lemma 1 and Lemma 2. Substituting (31) with t = N

into (30) we have:

NR ≤ I(mA, y
N
A , h

N
BA;mB , y

N
B , h

N
AB |zN , gN ,ψN

A ,ψ
N
B ) +Nγ(ε) (34)

≤ I(mA, y
N
A , h

N
BA;mB , y

N
B , h

N
AB |zN , gN ,ψN−1

A ,ψN−1
B ) +Nγ(ε) (35)

Next substituting (33) in Lemma 2 with t = N , into (35)

NR ≤ I(mA, y
N−1
A , hNBA;mB , y

N−1
B , hNAB |zN−1, gN ,ψN−1

A ,ψN−1
B ) +Nγ(ε)

+ I(xA(N); yB(N)|zAE(N), gAE(N), hAB(N)) + I(xB(N); yA(N)|zBE(N), gBE(N), hBA(N)) (36)
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By recursively applying (31) and (33) for t ∈ {N − 1, N − 2, . . . , 1} and finally applying (32) we have that

NR ≤ I(mA, h
N
BA;mB , h

N
AB |gN )+

N∑
t=1

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) +

N∑
t=1

I(xB(t); yA(t)|zBE(t), gBE(t), hBA(t)) +Nγ(ε). (37)

Recall that the random variables mA and mB are mutually independent, and independent of (hNAB , h
N
BA, g

N ).

Furthermore since the channel is block fading channel model, each sequence of channel gains, e.g., hNAB is piecewise

constant for a duration of T symbols and contains only K = N/T independent random variables. Thus we have

I(mA, h
N
BA;mB , h

N
AB |gN ) = I(hNBA; hNAB |gN ) (38)

= KI(hBA; hAB |g) (39)

= KI(hBA; hAB) (40)

where (40) uses the fact that the channel gains (hAB , hBA) are sampled independently of (gAE , gBE) (see (6)).

Next we show that there exists a power allocation function P (·) satisfying E[P (hAB)] ≤ P, such that:

1

N

N∑
t=1

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) ≤ E
[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
(41)

Let Pt(hAB) denote the average power of symbol xAB(t) when the gain on forward-channel equals hAB i.e.,

we have E[|xAB(t)|2|hAB = hAB ] = Pt(hAB). Using the fact that a Gaussian input distribution maximizes the

conditional mutual information (see e.g., [35]) it follows that:

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) ≤ E
[
log

(
1 +

Pt(hAB)|hAB |2

1 + Pt(hAB)|gAE |2

)]
. (42)

Thus we have that
N∑
t=1

I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) ≤
N∑
t=1

E

[
log

(
1 +

Pt(hAB)|hAB |2

1 + Pt(hAB)|gAE |2

)]
(43)

= E

[
N∑
t=1

log

(
1 +

Pt(hAB)|hAB |2

1 + Pt(hAB)|gAE |2

)]
(44)

≤ NE

[
log

(
1 +

1
N

∑N
t=1 Pt(hAB)|hAB |2

1 + 1
N

∑N
t=1 Pt(hAB)|gAE |2

)]
(45)

= NE

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
, (46)

where P (hAB) , 1
N

∑N
t=1 Pt(hAB) is the average power allocated when the fading state equals hAB and (45) uses

the fact that the function f(x) = log
(

1 + ax
1+bx

)
is a concave function in x and hence Jensen’s inequality [34]

applies. Also note that

E[P (hAB)] = E

[
1

N

N∑
t=1

Pt(hAB)

]
(47)

=
1

N

N∑
t=1

E[Pt(hAB)] (48)
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≤ 1

N

N∑
t=1

Pt ≤ P. (49)

This establishes (41). In a similar fashion we can show that there exists a power allocation function P (·) satisfying

E[P (hBA)] ≤ P such that

1

N

N∑
t=1

I(xB(t); yA(t)|zBE(t), gBE(t), hBA(t)) ≤ E
[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
. (50)

(51)

Substituting (40), (46) and (50) into (37) and using N = KT , we have that for a certain power allocation

functions the secret-key rate satisfies:

R ≤ 1

T
I(hAB ; hBA) + E

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
+ E

[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
+ γ(ε). (52)

Since (52) must hold for every ε > 0, and γ(ε)→ 0 as ε→ 0, this completes the proof of Theorem 1.

IV. LOWER BOUND

Our coding scheme in Theorem 2 is a two-phase scheme consisting of training followed by source-emulation. In

each coherence block, the first symbol transmitted on each of the forward and reverse channels is a training symbol

i.e., xA(iT + 1) = xB(iT + 1) =
√
P1 for i ∈ {0, 2, . . . ,K − 1}.

For each j ∈ {2, . . . , T} we sample xA(iT + j) ∼ pxA(·) and xB(iT + j) ∼ pxB (·) independently of all other

symbols where pxA(·) and pxB (·) are fixed distributions such that both E[|xA|2] ≤ P2 and E[|xB |2] ≤ P2. Note

that P1 and P2 denote the power in the training phase and the transmission phase. For convenience we denote

x̄A(i) ∈ CT−1 to be the vector of T − 1 symbols transmitted in the i-th coherence block on the forward channel

and similarly let x̄B(i) ∈ CT−1 denote the vector of T−1 transmitted symbols on the reverse channel. Using (1)-(4),

the corresponding output in the i-th coherence block is expressed as1:

(Forward Channel): ȳB(i) = hAB(i) · x̄A(i) + n̄B(i), z̄AE(i) = gAE(i) · x̄A(i) + n̄AE(i), (53)

(Reverse Channel): ȳA(i) = hBA(i) · x̄B(i) + n̄A(i), z̄BE(i) = gBE(i) · x̄B(i) + n̄BE(i), (54)

where ȳA(i), ȳB(i) ∈ CT−1 denote the output symbols in coherence block i over the forward and reverse channels

respectively and z̄AE(i) and z̄BE(i) denote the associated outputs at the eavesdropper. All the additive noise vectors

have i.i.d. entries sampled from CN (0, 1).

Let ĥAB(i) and ĥBA(i) denote the channel estimates obtained by terminals B and A over the forward and reverse

channels respectively in coherence block i as defined in (17) and (18). Thereafter terminal A observes ȳA(i) whereas

terminal B observes ȳB(i). At the end of K such coherence blocks, as indicated in Table I, terminal A has access to

1In this section, in the analysis of our proposed coding scheme, it is convenient to let hAB(i) and hBA(i) denote the fading gains in

coherence block i. Thus in Table I, the sequence ĥKAB denotes a length K sequence of channel gains corresponding to the K coherence blocks.

The other channel sequences have a similar interpretation. The reader is alerted that notation is different from the channel model (e.g. (1)) where

the channel sequences must be of length N .
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(ĥKBA, x̄
K
A , ȳ

K
A ) whereas terminal B has access to (ĥKAB , x̄

K
B , ȳ

K
B ). The eavesdropper observes (gK

AE , g
K
BE , z̄

K
AE , z̄

K
BE).

The sequences generated in this fashion are then used to extract a common secret-key as discussed below.

TABLE I

SIDE INFORMATION GENERATED AT THE TERMINALS IN THE TWO-PHASE SCHEME

Sequence/Terminal A B E

Channel Sequence ĥKBA ĥKAB (gK
AE , gK

BE)

Source Sequence - Forward Channel x̄KA ȳKB z̄KAE

Source Sequence - Reverse Channel ȳKA x̄KB z̄KBE

A. Discretization of Continuous Valued Random Variables

In the analysis of the coding theorem, we need to consider discrete valued random variables at the legitimate

receivers. We adapt following the technique outlined in [36, pp. 50-51].

• The channel estimates ĥBA and ĥAB are discretized as follows. Let us define:

I1 = {−j∆1,−(j − 1)∆1, . . . , (j − 1)∆1, j∆1}, (55)

where j is an integer and we select ∆1 = 1√
j
. We find elements in I1 closest to the real and imaginary parts

of ĥAB and denote
[
ĥAB

]
j

as the resulting quantization. We define
[
ĥBA

]
j

in a similar fashion.

• We discretize xA(t) and xB(t) to [xA(t)]k and [xB(t)]k respectively, whose real and imaginary parts take values

in the set

I2 = {−k∆2,−(k − 1)∆2, . . . , (k − 1)∆2, k∆2}, (56)

where k is an integer and ∆2 = 1√
k

. We select [xA(t)]k to be the closest such point to xA(t) with |[xA(t)]k| ≤

|xA(t)|. Thus we have that E
[
|[xA(t)]k|

2
]
≤ E[|xA(t)|2] ≤ P2. We define [xB(t)]k in an analogous manner.

• We also discretize the channel output at each legitimate receiver. Note that from (1), we have yB,k(t) =

hAB(t)[xA(t)]k+nAB(t). Note that yB,k(t) is continuous valued even through [xA(t)]k is discrete. We discretize

yB,k(t) to [yB,k(t)]l whose real and imaginary parts take values over the interval

I3 = {−l∆3,−(l − 1)∆3, . . . , (l − 1)∆3, l∆3} (57)

where l is an integer and ∆3 = 1√
l
.

Note that since we use scalar quantization and the sequences ĥKAB and ĥKBA are sampled i.i.d. the sequences[
ĥKAB

]
j

and
[
ĥKBA

]
j

are also sampled i.i.d. In a similar way the sequences
[
x̄KA
]
k

and
[
x̄KB
]
k

are also sampled

i.i.d. Further defining zAE,k(t) = gAE(t)[xA(t)]k + nAE(t) and zBE,k(t) = gBE(t)[xB(t)]k + nBE(t) and using

z̄Kk , (z̄KAE,k, z̄
K
BE,k) and gK , (gK

AE , g
K
BE), we have that:[

ȳKA,k

]
l
↔
(
hKBA,

[
x̄KB
]
k

)
↔ (z̄Kk , g

K) (58)
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[
ȳKB,k

]
l
↔
(
hKAB ,

[
x̄KA
]
k

)
↔ (z̄Kk , g

K) (59)

are satisfied. Note that for each ĥAB we have that
∣∣∣∣ĥAB −

[
ĥAB

]
j

∣∣∣∣→ 0, as j →∞, and similarly
∣∣∣∣ĥBA −

[
ĥBA

]
j

∣∣∣∣→
0, as j → ∞ in a point wise fashion. In a similar manner, as k → ∞, we have that |xA(t)− [xA(t)]k| → 0,

|xB(t)− [xB(t)]k| → 0. Furthermore for each fixed k, as l → ∞, we have that
∣∣yA,k(t)− [yA,k(t)]l

∣∣ → 0 and

|yB,k(t)− [yB,k(t)]l| → 0.

In the subsequent sections, we present our proposed coding scheme and the corresponding achievable rate for

the discretized variables above. Thereafter we argue that in the limit of vanishingly small quantization errors, the

rate converges as expected.

B. Achievable Rate using Discretized Variables

For the discretized set of random variables we have the following achievable rate.

Proposition 1: An achievable secret-key rate using public discussion is given by:

R−∆ =
1

T
I

([
ĥAB

]
j

;
[
ĥBA

]
j

)
+
T − 1

T

(
R−AB,∆ +R−BA,∆

)
(60)

where ĥAB and ĥBA are the MMSE estimates of channel gains hAB and hBA respectively (c.f. (17), (18)) and

R−AB,∆ = I
(

[yB,k]l ; [xA]k, [u]j

)
− I

(
[yB,k]l ; zAE,k, gAE , hAB

)
(61)

R−BA,∆ = I
(

[yA,k]l ; [xB ]k, [u]j

)
− I

(
[yA,k]l ; zBE,k, gBE , hBA

)
(62)

where we have introduced [u]j ,

([
ĥAB

]
j
,
[
ĥBA

]
j

)
. The variables [xA]k and [xB ]k are obtained by discretizing xA

and xB respectively as in section IV-A. Furthermore xA ∼ pxA(·) and xB ∼ pxB (·) are sampled independently and

satisfy E[|xA|2] ≤ P2 and E[|xB |2] ≤ P2. The powers P1 (c.f. (17), (18)) and P2 must satisfy P1+(T−1)P2 ≤ TP .

�

The coding theorem associated with Prop. 1 is presented in Appendix C.

C. Achievable Rate: Extension to Continuous Valued Inputs

In this section, we further analyze the achievable rate in the limit that the quantization error due to discretization

in section IV-A approaches zero. In this limit, the rate required over the public discussion channel will also increase

to infinity. However we note that there is no rate constraint imposed over the discussion channel and thus the

proposed rate can be approached arbitrarily closely. In our analysis we make use of the following fact:

Fact 1: [36, pg. 23] Let u and v be two arbitrary random variables (discrete or continuous) with a joint probability

measure µ(u, v) and marginal measures µ(u) and µ(v). The mutual information between u and v , defined as,

I(u; v) =

∫
log

dµ(u, v)

d(µ(u)× µ(v))
dµ(u, v) (63)

where dµ(u, v)/d(µ(u)× µ(v)) denotes the Radon-Nikodym derivative of the joint probability measure with respect

to the product measure, can be equivalently expressed as:

I(u; v) = lim
j,k→∞

I
(

[u]j ; [v ]k

)
(64)
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where [u]j and [v ]k are any sequence of fine quantizations of u and v respectively such that
∣∣∣u − [u]j

∣∣∣ and |v − [v ]k|

tend to zero as pointwise as j →∞, and k →∞, respectively

Upon examining (61),(62) and taking j, l→∞, with k fixed, we have that with u = (ĥAB , ĥBA):

lim
l,j→∞

I
(

[yB,k]l ; [xA]k, [u]j

)
= I(yB,k; [xA]k, u) (65)

lim
l→∞

I
(
[yB,k]l ; zAE,k, gAE , hAB

)
= I(yB,k; zAE,k, gAE , hAB) (66)

lim
l,j→∞

I
(

[yA,k]l ; [xB ]k, [u]j

)
= I(yA,k; [xB ]k, u) (67)

lim
l→∞

I
(
[yA,k]l ; zBE,k, gBE , hBA

)
= I(yA,k; zBE,k, gBE , hBA) (68)

Similarly the first term in (60) converges as follows

lim
j→∞

I

([
ĥAB

]
j

;
[
ĥBA

]
j

)
= I(ĥAB ; ĥBA). (69)

We now consider the term

I(yB,k; [xA]k, u)− I(yB,k; zAE,k, gAE , hAB) = ~(yB,k|zAE,k, gAE , hAB)− ~(yB,k|[xA]k, u) (70)

We will show that when xA ∼ CN (0, P2) we have that

lim inf
k→∞

~(yB,k|zAE,k, gAE , hAB) ≥ E
[
log 2πe

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
(71)

lim sup
k→∞

~(yB,k|[xA]k, u) ≤ log 2πe

(
1 +

P2

1 + P1

)
(72)

Together (71) and (72) imply that:

lim inf
k→∞

{I(yB,k; [xA]k, u)− I(yB,k; zAE,k, gAE , hAB)} ≥ E
[
log

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
− log

(
1 +

P2

1 + P1

)
(73)

We first establish (71). Note that

~(yB,k|zAE,k, gAE , hAB) = ~(yB,k, zAE,k|gAE , hAB)− ~(zAE,k|gAE , hAB) (74)

= ~(yB,k, zAE,k|gAE , hAB)− ~(zAE,k|gAE) (75)

Furthermore since E
[
|[xA]k|

2
]
≤ P2, and [xA]k is independent of gAE , we have, using (2),

E[|zAE,k|2|gAE = gAE ] ≤ |gAE |2P2 + 1. (76)

Thus using the fact that the differential entropy under a variance constraint is maximized by a Gaussian distribution

we have that

~(zAE,k|gAE) ≤ E[log (2πe( |gAE |2P2 + 1))]. (77)

Next we show

lim inf
k→∞

~(yB,k, zAE,k|hAB , gAE) ≥ E
[
(log 2πe)2

(
1 + P2|hAB |2 + P2|gAE |2

)]
, (78)
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using an argument analogous to [36, pp. 77]. Eq. (77) and (78) together complete the proof of (71). Note that for

each (hAB = hAB , gAE = gAE) we have that

fyB,k,zAE,k
(y, z|hAB = hAB , zAE = gAE) =

∫
fnB (y − hAB [xA]k) · fnAE

(z − gAE [xA]k) dF[xA]k
(x) (79)

= E[xA]k

[
fnB (y − hAB [xA]k) · fnAE

(z − gAE [xA]k)

]
(80)

where nB and nAE are the additive noise variables in (1) and (2). Since fnB (·) and fnAE
(·) are bounded and

continuous functions fyB,k,zAE,k
(y, z|hAB = hAB , gAE = gAE) converges to fyB ,zAE

(y, z|hAB = hAB , gAE =

gAE) as k →∞. Furthermore we have that

fyB,k,zAE,k
(y, z|hAB = hAB , zAE = gAE) ≤ max

nB ,nAE

fnB (nB)fnAE
(nAE) =

1

2π
. (81)

Therefore, for each a > 0 we can express:

~(yB,k, zAE,k|hAB , gAE)

=

∮
hAB

∮
gAE

∮
y

∮
z

fhAB
(hAB)fgAE

(gAE)fyB,k,zAE,k
(y, z|hAB , gAE) log

1

fyB,k,zAE,k
(y, z|hAB , gAE)

dydzdgAEdhAB

(82)

≥
∮
|hAB |≤a

∮
|gAE |≤a

∮
|y|≤a

∮
|z|≤a

f(hAB)f(gAE)fyB,k,zAE,k
(y, z|hAB , gAE) log

1

fyB,k,zAE,k
(y, z|hAB , gAE)

dydzdgAEdhAB

(83)

where (83) follows from the fact that from (81) the integrand in (82) is always positive and therefore (83) is

integrating over a smaller set. By the dominated convergence theorem [36, Appendix B], upon taking k →∞ for

each fixed a, the right hand side converges to∮
|hAB |≤a

∮
|gAE |≤a

∮
|y|≤a

∮
|z|≤a

f(hAB)f(gAE)fyB ,zAE
(y, z|hAB , gAE) log

1

fyB ,zAE
(y, z|hAB , gAE)

dydzdgAEdhAB .

(84)

Upon taking a→∞, the above expression in turn converges to ~(yB , zAE |hAB , gAE). Since xA ∼ CN (0, P2) the

relation (78) now follows.

To establish (72) we let h̃AB be the MMSE estimation error of hAB given the observation
√
P1hAB + nB . We

can express hAB = h̃AB + eAB , where the estimation error eAB satisfies E[|eAB |2] ≤ 1
1+P1

. Using (1), we can

express

~ (yB,k|[xA]k, u) ≤ ~
(
yB,k | [xA]k, h̃AB

)
(85)

= ~
(
hAB [xA]k + nB | [xA]k, h̃AB

)
(86)

≤ ~ (eAB [xA]k + nB | [xA]k) (87)

≤ ~ (eAB [xA]k + nB) (88)

≤ log 2πe

(
1 +

P2

1 + P1

)
(89)
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where (89) uses the fact that since the input [xA]k is generated independently of hAB and satisfies E[|[xA]k|2] ≤ P2

we have

E
[
|eAB [xA]k|

2
]

= E[|eAB |2]E[|[xA]k|
2] (90)

≤ 1

1 + P1
P2, (91)

and we use the fact that differential entropy is maximized by a Gaussian distribution under a variance constraint.

Since (89) holds for every k, the inequality in (72) now follows. The proof of (73) is now complete.

In a similar fashion we can show that

lim inf
k→∞

{I(yA,k; [xB ]k, u)− I(yA,k; zB,k, gBE , hBA)} ≥ E
[
log

(
1 +

P2|hBA|2

1 + P2|gBE |2

)]
− log

(
1 +

P2

1 + P1

)
(92)

The proof of (16) follows by substituting (69), (73) and (92) into (60).

V. PROOF OF COROLLARY 1

In this section we analyze the high SNR behaviour of the upper and lower bounds. In particular we will show

that in the limit P →∞, the upper and lower bounds in (13) and (16) reduce to the following:

lim
P→∞

R+ ≤ − 1

T
log(1− ρ2) + γ (93)

lim
P→∞

R− = − 1

T
log(1− ρ2) +

T − 1

T
γ. (94)

where γ is defined in (23). The claim in Corollary 1 immediately follows from (93) and (94). Note that the first

term in (13) is independent of P and furthermore since hAB and hBA are jointly Gaussian, zero mean, unit variance

and with a cross-correlation of ρ it can be readily shown that

I(hAB ; hBA) = − log(1− ρ2). (95)

The remaining two terms are upper bounded as follows. For any power allocation P (hAB) note that

E

[
log

(
1 +

P (hAB)|hAB |2

1 + P (hAB)|gAE |2

)]
≤ E

[
log

(
1 +
|hAB |2

|gAE |2

)]
(96)

which follows since the function f(x) = ax
1+bx is increasing in x for any a, b > 0. Similarly we have

E

[
log

(
1 +

P (hBA)|hBA|2

1 + P (hBA)|gBE |2

)]
≤ E

[(
1 +
|hBA|2

|gBE |2

)]
. (97)

The upper bound (93) follows by substituting (95), (96) and (97) into (13).

For establishing (94), we consider the secret-key rate expression (16) in Thm 2. We select P2 =
√
P

T−1 and

P1 = P −
√
P . Note that as P → ∞ we have that P1, P2 → ∞ and P2

P1
→ 0. Since the function f(x) = ax

1+bx is

bounded for all a, b > 0 we can apply the Dominated Convergence Theorem to interchange the limit and expectation,

lim
P2→∞

E

[
log

(
1 +

P2|hAB |2

1 + P2|gAE |2

)]
=E

[
log

(
1 +
|hAB |2

|gAE |2

)]
(98)

lim
P2→∞

E

[
log

(
1 +

P2|hBA|2

1 + P2|gBE |2

)]
=E

[
log

(
1 +
|hBA|2

|gBE |2

)]
(99)
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Furthermore since limP→∞ log
(

1 + P2

1+P1

)
= 0

clearly holds, using (19) and (20) it follows that

lim
P→∞

R−AB(P ) +R−BA(P ) = γ (100)

We next consider the first term in (16). When hAB and hBA are zero mean, unit variance, jointly Gaussian

random variables with a cross-correlation coefficient of ρ, using (17) and (18) it can be easily shown that

I(ĥAB ; ĥBA) = log(1− α2ρ2) (101)

where α = P1

P1+1 . It immediately follows that

lim
P1→∞

− log(1− α2ρ2) = − log(1− ρ2), (102)

Eq. (94) follows by using (100) and (102) in (16).

The proof of Corollary 1 is now completed.

VI. CONCLUSIONS

In this paper we study the secret-key generation capacity over a two-way reciprocal block fading channel model

with public discussion. There are two principle factors that contribute to the secret-key: (i) the reciprocity between

channel gain of the main channel and (ii) interactive communication. We propose a two-phase separation scheme

consisting of channel training and source emulation in each coherence block. Through a suitable allocation of

power between the two phases, we show that the proposed scheme is near optimal in the high SNR regime for

Rayleigh fading channels. More generally our results show that, even for moderately long coherence periods, the

contribution of channel reciprocity towards the secret-key generation capacity is generally far less significant than

source emulation. Thus in designing practical secret-key generation schemes over fading channels, one should aim

to exploit the interactive nature of the system as opposed to passive training.

In future work it will be interesting to study the problem setup when an external public discussion channel is

not available. The overhead for transmitting public messages needs to be explicitly considered in such systems and

corresponding upper bounds may also have to be developed. In the low SNR regime it appears that the associated

scheme may be very different than the proposed two-phase scheme [37]. Similarly extending the secret-key capacity

results to the case of multiple antennas also remains an interesting topic for future research.

APPENDIX A

PROOF OF LEMMA 1

Recall that we can express

ψt
A =

(
ψt−1

A , ψA(t, 1), . . . , ψA(t, L)
)

(103)

ψt
B =

(
ψt−1

B , ψB(t, 1), . . . , ψB(t, L)
)

(104)
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where ψA(t, j) denotes the j-th public message transmitted by node A after xA(t). It can be expressed as

ψA(t, j) = ΨA(y t
A,ψ

t−1
B , ψB(t, 1), . . . , ψB(t, j − 1),mA) (105)

The message ψB(t, j) is defined in a similar fashion. Now we use the following inequalities:

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt

A,ψ
t
B) (106)

= I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L, {ψB(t, j)}1≤j≤L) (107)

≤ I(mA, y
t
A, h

N
BA, ψA(t, L);mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L) (108)

= I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L) (109)

≤ I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB , ψB(t, L)|zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L−1) (110)

= I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B , {ψA(t, j)}1≤j≤L−1, {ψB(t, j)}1≤j≤L−1) (111)

where the equality in (109) follows from the fact that ψA(t, L) is a deterministic function of

{mA, y
t
A,ψ

t−1
B , ψB(t, 1), . . . , ψB(t, L− 1)}

as indicated in (105). In a similar manner (111) follows from the fact that ψB(t, L) is a deterministic function of

{mB , y
t
B ,ψ

t−1
A , ψA(t, 1), . . . , ψA(t, L− 1)}.

Note that in following (106)-(111) we have eliminated the messages (ψA(t, L), ψB(t, L)). By recursively applying

the same sequence of steps we successively eliminate the entire sequence of messages {ψA(t, j), ψB(t, j)} and the

claim in (31) follows.

The proof of (32) uses the sequence of steps analogous to (106)-(111) along with the fact that ψA(0, j) is a deter-

ministic function of (mA, {ψB(0, k)}1≤k≤j−1) and likewise ψB(0, j) is a function of (mB , {ψA(0, k)}1≤k≤j−1).

The details are completely analogous and will be omitted.

APPENDIX B

PROOF OF LEMMA 2

Using the chain rule of mutual information we have

I(mA, y
t
A, h

N
BA;mB , y

t
B , h

N
AB |zt, gN ,ψt−1

A ,ψt−1
B )

= I(mA, y
t
A, h

N
BA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

+ I(mA, y
t
A, h

N
BA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B ) (112)

= I(mA, y
t
A, h

N
BA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

+ I(mA, y
t−1
A , hNBA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B )

+ I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA,ψ

t−1
A ,ψt−1

B ) (113)

= I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )
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+ I(yA(t);mB , y
t−1
B , hNAB |mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B )

+ I(mA, y
t−1
A , hNBA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B )

+ I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA,ψ

t−1
A ,ψt−1

B ) (114)

where we use the chain rule of mutual information in (112), (113) and (114). Further note that in the proposed

coding scheme xA(t) = fA,t(mA, y
t−1
A ,ψt−1

B ) and xB(t) = fB,t(mB , y
t−1
B ,ψt−1

A ). Therefore we can express:

I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA,ψ

t−1
A ,ψt−1

B )

= I(yA(t); yB(t)|zt, gN , y t−1
B , hNAB ,mB , y

t−1
A , hNBA,mA, xA(t), xB(t),ψt−1

A ,ψt−1
B ) = 0 (115)

where we use the fact that the forward and reverse channels are memoryless and the additive noise variables nA(t)

and nB(t) are independent (c.f. (1), (3)) and therefore:

yB(t)↔ (xA(t), hAB(t),Ω, xB(t), hBA(t))↔ yA(t) (116)

where

Ω ,
{
zt, gN , y t−1

A , y t−1
B , ht−1

AB , h
N
AB,t+1, h

t−1
BA , h

N
BA,t+1,mA,mB ,ψ

t−1
A ,ψt−1

B

}
(117)

denotes the remainder of the terms in (115) which are all independent of {nA(t), nB(t)}.

We next consider the second and third term in (114) and show that:

I(yA(t);mB , y
t−1
B , hNAB |mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B ) ≤ I(yA(t); xB(t)|zBE(t), gBE(t), hBA(t)) (118)

I(mA, y
t−1
A , hNBA; yB(t)|zt, gN , y t−1

B , hNAB ,mB ,ψ
t−1
A ,ψt−1

B ) ≤ I(xA(t); yB(t)|zAE(t), gAE(t), hAB(t)) (119)

We establish (118) below. Eq. (119) can be established in an analogous fashion and its proof will be omitted.

I(yA(t);mB , y
t−1
B , hNAB |mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B )

= I(yA(t);mB , y
t−1
B , hNAB , xB(t)|mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t)) (120)

= ~(yA(t)|mA, y
t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t))

− ~(yA(t)|mB , y
t−1
B , hNAB , xB(t),mA, y

t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t)) (121)

= ~(yA(t)|mA, y
t−1
A , hNBA, z

t, gN ,ψt−1
A ,ψt−1

B , xA(t))− ~(yA(t)|xB(t), hBA(t)) (122)

≤ ~(yA(t)|hBA(t), zBE(t), gBE(t))− ~(yA(t)|xB(t), hBA(t)) (123)

= I(yA(t); xB(t)|hBA(t), zBE(t), gBE(t)) (124)

where (120) uses the fact that xA(t) is a function of (mA, y
t−1
A ,ψt−1

B ) and similarly xB(t) is a function of

(mB , y
t−1
B ,ψt−1

A ). Eq. (122) uses the fact that with Ω defined in (117), the Markov relation

yA(t)↔ (hBA(t), xB(t))↔ (Ω, xA(t), hAB(t)) (125)
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holds. Eq. (123) follows from the fact that conditioning reduces entropy. This completes the proof of (118).

We finally show that the first term in (114) can be upper bounded as

I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B ) ≤ I(mA, y

t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B ).

(126)

This is also established using the chain rule of mutual information as follows.

I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

= I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN , zAE(t), zBE(t),ψt−1

A ,ψt−1
B ) (127)

≤ I(mA, y
t−1
A , hNBA, zAE(t);mB , y

t−1
B , hNAB |zt−1, gN , zBE(t),ψt−1

A ,ψt−1
B ) (128)

= I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN , zBE(t),ψt−1

A ,ψt−1
B )

+ I(zAE(t);mB , y
t−1
B , hNAB |zt−1, gN , zBE(t),mA, y

t−1
A , hNBA,ψ

t−1
A ,ψt−1

B ) (129)

Next recall that since xA(t) = fA,t(mA, y
t−1
A ,ψt−1

B ) we have:

I(zAE(t);mB , y
t−1
B , hNAB |zt−1, gN , zBE(t),mA, y

t−1
A , hNBA,ψ

t−1
A ,ψt−1

B )

= I(zAE(t);mB , y
t−1
B , hNAB |zt−1, gN , zBE(t),mA, y

t−1
A , hNBA, xA(t),ψt−1

A ,ψt−1
B )

= ~(zAE(t)|zt−1, gN , zBE(t),mA, y
t−1
A , hNBA, xA(t),ψt−1

A ,ψt−1
B )

− ~(zAE(t)|zt−1, gN , zBE(t),mA, y
t−1
A , hNBA, xA(t),mB , y

t−1
B , hNAB ,ψ

t−1
A ,ψt−1

B )

= ~(zAE(t)|xA(t), gAE(t))− ~(zAE(t)|xA(t), gAE(t)) = 0 (130)

where (130) uses the fact that the forward channel (c.f. (2)) satisfies

zAE(t)↔ (xA(t), gAE(t))↔ (zt−1, gt−1, gN
t+1, gBE(t), zBE(t),mA, y

t−1
A , hNBA,mB , y

t−1
B , hNAB ,ψ

t−1
A ,ψt−1

B ).

(131)

Thus substituting (130) into (129) we have that:

I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt, gN ,ψt−1

A ,ψt−1
B )

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN , zBE(t),ψt−1

A ,ψt−1
B ) (132)

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB , zBE(t)|zt−1, gN ,ψt−1

A ,ψt−1
B ) (133)

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B )

+ I(mA, y
t−1
A , hNBA; zBE(t)|mB , y

t−1
B , hNAB , z

t−1, gN ,ψt−1
A ,ψt−1

B ) (134)

≤ I(mA, y
t−1
A , hNBA;mB , y

t−1
B , hNAB |zt−1, gN ,ψt−1

A ,ψt−1
B ) (135)

The justification that the second term in (134) equals zero can be established in an identical fashion as (130),

and will be omitted. This completes the proof of (126).

The claim in Lemma 2 follows upon substituting (115), (118), (119) and (126) into (114).
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APPENDIX C

PROOF OF PROP. 1

We provide the coding theorem associated with Prop. 1 below. As stated in section IV, the two-phase transmission

scheme generates correlated sequences in Table I, which are then discretized at the legitimate terminals, as explained

in section IV-A. For convenience table II shows the sequences available at each terminal after discretization below.

TABLE II

CORRELATED SOURCE AND CHANNEL SEQUENCES AFTER DISCRETIZATION

Sequence/Terminal A B E

Channel Sequence
[
ĥKBA

]
j

[
ĥKAB

]
j

(
gK
AE , gK

BE

)
Source Sequence - Forward Channel

[
x̄KA
]
k

[
ȳKB,k

]
l

z̄KAE,k

Source Sequence - Reverse Channel
[
ȳKA,k

]
l

[
x̄KB
]
k

z̄KBE,k

We establish the existence of a codebook C̃⊗ that satisfies the following for sufficiently large K:

1) Both the legitimate terminals can decode sequences
([

ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

)
with an error

probability no greater than δK(ε).

2) The equivocation at the eavesdropper satisfies:

1

N
H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ Θ, z̄KAE,k, z̄
K
BE,k, g

K
AE , g

K
BE

)
≥ R−∆ − δ

1
K(ε) (136)

where the quantity R−∆ is defined in (60), Θ denotes the collection of messages that need to be exchanged

over the discussion channel, and δK(ε), δ1
K(ε) are function that can be made sufficiently small by selecting

K sufficiently large.

An overview of the coding scheme is illustrated in Fig. 4. Note that the proposed code construction C̃⊗ will only

generate a common tuple of sequences at the legitimate receivers satisfying (136). The secret-key generation step

will be discussed subsequently.

A. Codebook Construction and Error Analysis

We define:

R−B,c = H

([
ĥAB

]
j

∣∣[ĥBA

]
j

)
+ 2ε (137)

R−A,c = H

([
ĥBA

]
j

∣∣[ĥAB

]
j

)
+ 2ε (138)

R−B,s = H
(

[ȳB,k]l
∣∣ [x̄A]k, [u]j

)
+ 4ε (139)

R−A,s = H
(

[ȳA,k]l
∣∣ [x̄B ]k, [u]j

)
+ 4ε (140)

where [u]j ,

([
ĥAB

]
j
,
[
ĥBA

]
j

)
and ε is a sufficiently small positive constant that will be specified in the sequel.
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Discussion Channel
A B

K
ABĥ K

BAĥ

A

Discussion Channel
A B

K
ABĥ K

BAĥ

B

K
ABĥ

K
BAĥ

)ˆ,ˆ( K
BA

K
AB

K hhu 

Phase I: Reconciliation of channel-estimates.

Discussion Channel
A B

K
Ay KK

B ux ,

A

Discussion Channel
A B

KK
A ux ,

K
By

B

K
Ay

K
By

Phase II: Reconciliation of source sequences.

Fig. 4. Reconciliation of source and channel sequences in the proposed coding scheme with public discussion. The public messages are denoted

by Θ = (ΦA,ΦB ,ΨA,ΨB). In the analysis of the coding scheme, we use discretized version of the source and channel sequences.

We next randomly sample four codebooks CA, CB , SA and SB as discussed below.

• The codebook CB is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ĥKAB

]
j
∈

TK
ε

([
ĥAB

]
j

)
into 2KR−

B,c bins, such that there are 2
K

(
I
(
[ĥAB]

j
; [ĥBA]

j

)
−ε

)
sequences per bin.

• The codebook CA is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ĥKBA

]
j
∈

TK
ε

([
ĥBA

]
j

)
into 2KR−

A,c bins, such that there are 2
K

(
I
(
[ĥAB]

j
; [ĥBA]

j

)
−ε

)
sequences per bin.

• The codebook SB is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ȳKB,k

]
l
∈

TK
ε

(
[ȳB,k]l

)
into 2KR−

B,s bins such that there are 2K(I([yB,k]
l
;[x̄A]k,[u]j)−3ε) sequences per bin.

• The codebook SA is sampled by randomly and uniformly partitioning the set of all typical sequences
[
ȳKA,k

]
l
∈

TK
ε

(
[ȳA,k]l

)
into 2KR−

A,s bins such that there are 2K(I([ȳA,k]
l

; [x̄B ]k,[u]j)−3ε) sequences in each bin.

The encoding steps are as follows.

• Given the sequence
[
ĥKAB

]
j
, terminal B finds bin in CB to which it belongs and transmits the bin-index φB

over the discussion channel.

• Given the sequence
[
ĥKBA

]
j
, terminal A finds the bin in CA to which it belongs and transmits the bin index

φA over the discussion channel.

• Given the sequence
[
ȳKA,k

]
l
, terminal A finds the bin in SA to which it belongs and transmits the bin index

ψA over the discussion channel.

• Given the sequence
[
ȳKB,k

]
l
, terminal B finds the bin in SB to which it belongs and transmits the bin index

ψB over the discussion channel.

We next sketch the decoding at legitimate terminals. The decoding proceeds in two phases. In the first phase the

terminals attempt to reconstruct channel sequences and in the second phase they attempt to reconstruct the source

sequences.

Upon receiving φB , terminal A searches for all sequences in the bin associated with φB that are jointly typical
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with
[
ĥKBA

]
j
. If there is a unique sequence

[
h̃KAB

]
j

that satisfies this, then it is selected as the reconstruction

sequence. Terminal A declares
[
ûKA
]
j

=

([
h̃KAB

]
j
,
[
ĥKBA

]
j

)
to be the estimate of the joint sequence pair. In a

similar fashion, upon receiving φA, terminal B generates
[
ûKB
]
j

=

([
ĥKAB

]
j
,
[
h̃KBA

]
j

)
to be the joint sequence

pair. We declare an error if either
{[

ûKA
]
j
6=
[
uK
]
j

}
or
{[

ûKB
]
j
6=
[
uK
]
j

}
. Through standard arguments [36,

Chapter 10], it can be shown that the error probability approaches zero as K →∞ given (137) and (138).

In the second phase of decoding, the terminals attempt to decode the source sequences. Upon receiving ψB , and

given
([

x̄KA
]
k
,
[
ûKA
]
j

)
, terminal A searches for all sequences in the bin associated ψB that satisfy

([
yKB,k

]
l
,
[
x̄KA
]
k
,
[
ûKA
]
j

)
∈

TK
2ε

(
[ȳB,k]l, [x̄A]k, u

)
. If there is a unique sequence

[
ŷKB,k

]
l

that satisfies this, then it is selected as the reconstruction

sequence. We declare ΓA =
([

ûKA
]
j
,
[
yKA,k

]
l
,
[
ŷKB,k

]
l

)
to be the common reconstruction sequences at terminal A.

Likewise terminal B reconstructs
[
ŷKA,k

]
l

upon receiving ψA by searching for all sequences in the associated bin of

ψA that satisfy
([

yKA,k

]
l
,
[
x̄KB
]
k
,
[
ûKB
]
j

)
∈ TK

2ε

(
[yA,k]l, [x̄B ]k, [u]j

)
. We declare ΓB =

([
ûKB
]
j
,
[
ŷKA,k

]
l
,
[
yKB,k

]
l

)
to be the common reconstruction sequences at terminal B. We declare an error if {ΓA 6= ΓB}. Through standard

analysis, it can be shown that

E[Pr(ΓA 6= Γ
⋃

ΓB 6= Γ)| C⊗] ≤ δK(ε), (141)

where δK(ε) → 0 as ε → 0 and K → ∞ where Γ ,
([

uK
]
j
,
[
yKA,k

]
l
,
[
yKB,k

]
l

)
and C⊗ , (CA, CB ,SA,SB)

denotes the collection of all the four codebooks.

B. Equivocation Analysis

We show that our proposed random code ensemble also satisfies:

1

N
H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ Θ, z̄KAE , z̄
K
BE , g

K
AE , g

K
BE , C⊗

)
≥ R−∆ − δ

1
K(ε) (142)

with Θ = (ψA, ψB , φA, φB) and C⊗ , (CA, CB ,SA,SB). In the following analysis we introduce z̄Kk =
(
z̄KAE,k, z̄

K
BE,k

)
and gK =

(
gK
AE , g

K
BE

)
. First consider the following:

H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ ψA, ψB , φA, φB , z̄
K
k , g

K , C⊗
)

≥ H
([

ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ z̄Kk , gK , C⊗
)
−H(φA|C⊗)−H(φB |C⊗)−H(ψA|C⊗)−H(ψB |C⊗)

(143)

= H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ z̄Kk , gK

)
−H(φA|C⊗)−H(φB |C⊗)−H(ψA|C⊗)−H(ψB |C⊗)

(144)

where the last step follows from the fact that all the source and channel sequences in Table II are sampled

independently of the codebooks (CA, CB ,SA,SB) in our code construction. The first term in (144) can be lower

bounded as follows:
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H

([
ĥKAB

]
j
,
[
ĥKBA

]
j
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣ z̄Kk , gK

)
≥ H

([
ĥKAB

]
j
,
[
ĥKBA

]
j

)
+H

([
ȳKA,k

]
l
,
[
ȳKB,k

]
l

∣∣z̄Kk , gK ,
[
ĥKAB

]
j
,
[
ĥKBA

]
j

)
(145)

≥ H
([

ĥKAB

]
j
,
[
ĥKBA

]
j

)
+H(

[
ȳKA,k

]
l
,
[
ȳKB,k

]
l
|z̄Kk , gK , hKAB , h

K
BA) (146)

= H

([
ĥKAB

]
j
,
[
ĥKBA

]
j

)
+H(

[
ȳKA,k

]
l
|z̄KBE,k, g

K
BE , h

K
BA) +H(

[
ȳKB,k

]
l
|z̄KAE,k, g

K
AE , h

K
AB) (147)

= KH

([
ĥAB

]
j
,
[
ĥBA

]
j

)
+KH

(
[ȳA,k]l|z̄BE,k, gBE , hBA

)
+KH([ȳB,k]l|z̄AE,k, gAE , hAB) (148)

where we use the chain rule of entropy and the fact that (ĥKAB , ĥ
K
BA) is independent of (z̄K , gK) in (145); in (146)

we use the fact that conditioning reduces entropy as well as ĥKAB and ĥKBA are independent of the remaining variables

given hKAB and hKBA respectively; in (147) we use the fact that x̄KA and x̄KB are sampled independently and hence

the following Markov conditions hold:

ȳKA ↔ (z̄KBE , g
K
BE , h

K
BA)↔ (ȳKB , g

K
AE , h

K
AB), (149)

ȳKB ↔ (z̄KAE , g
K
AE , h

K
AB)↔ (ȳKA , g

K
BE , h

K
BA). (150)

which are established in Appendix D. The discretized random variables are also inherit the same properties. Eq. (148)

follows from the fact that the sequence pair (hKAB , h
K
BA) is sampled i.i.d. and furthermore x̄KA and x̄KB are also

sampled i.i.d.

The remaining terms in (144) can be upper bounded using (137)-(140).

H(φA | C⊗) ≤ K
{
H

([
ĥBA

]
j

∣∣[ĥAB

]
j

)
+ 2ε

}
, (151)

H(φB | C⊗) ≤ K
{
H

([
ĥAB

]
j

∣∣[ĥBA

]
j

)
+ 2ε

}
, (152)

H(ψA | C⊗) ≤ K
{
H
(

[ȳA,k]l
∣∣ [x̄B ]k, [u]j

)
+ 4ε

}
, (153)

H(ψB | C⊗) ≤ K
{
H
(

[ȳB,k]l
∣∣ [x̄A]k, [u]j

)
+ 4ε

}
. (154)

Using (151) and (152), we have the following:

KH

([
ĥAB

]
j
,
[
ĥBA

]
j

)
−H(φA|C⊗)−H(φB |C⊗)

≥ KH
([

ĥAB

]
j
,
[
ĥBA

]
j

)
−KH

([
ĥAB

]
j

∣∣[ĥBA

]
j

)
−KH

([
ĥBA

]
j

∣∣[ĥAB

]
j

)
− 4Kε (155)

= K · I
([

ĥAB

]
j
;
[
ĥBA

]
j

)
− 4Kε. (156)

Using the fact that each element in [x̄B ]k = ([xB(1)]k, . . . , [xB(T − 1)]k) is sampled i.i.d. and using (153) and

letting ε′ = ε
T−1 we have

KH([ȳA,k]l|z̄BE,k, gBE , hBA)−H(ψA|C⊗)
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≥ KH([ȳA,k]l|z̄BE , gBE , hBA)−KH([ȳA,k]l|[x̄B ]k, [u]j)− 4Kε (157)

≥ K(T − 1)
{
H([yA,k]l|zBE , gBE , hBA)−H([yA,k]l|[xB ]k, [u]j)− 4ε′

}
(158)

= K(T − 1)
{
I([yA,k]l; [xB ]k, [u]j)− I([yA,k]l; zBE,k, gBE , hBA)− 4ε′

}
. (159)

The justification of (158) is as follows. From the channel model (2) and (4) the sequence [ȳA,k]l =

([yA,k(1)]l, . . . , [yA,k(T − 1)]l) of T − 1 random variables, when conditioned on hBA is an i.i.d. sequence and

similarly the sequence z̄BE,k = (zBE,k(1), . . . , zBE,k(T − 1)) when conditioned on gBE is an i.i.d. sequence.

Therefore the first term in (157) can be expressed as

H([ȳA,k]l|z̄BE,k, gBE , hBA) = (T − 1)H([yA,k]l|zBE,k, gBE , hBA). (160)

Furthermore using the fact that conditioning reduces entropy, the second term in (157) can be upper bounded as

H
(

[ȳA,k]l|[x̄B ]k, [u]j

)
≤ (T − 1)H

(
[yA,k]l|[xB ]k, [u]j

)
. (161)

Note that (158) follows by substituting (160) and (161) into (157). In a similar fashion we can show that

KH([ȳB,k]l|z̄AE,k, gAE , hAB)−H(ψB |C⊗)

≥ K(T − 1)
{
I([yB,k]l; [xA]k, [u]j)− I([yB,k]l; zAE,k, gAE , hAB)− 4ε′

}
(162)

Combining (156), (159) and (162) we obtain that

H(
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l
,
[
uK
]
j

∣∣z̄Kk , gK , φA, φB , ψA, ψB , C⊗)

≥ KI
([

ĥAB

]
j
;
[
ĥBA

]
j

)
− 4Kε− 8Kε′

+K(T − 1)
{
I([yA,k]l; [xB ]k, [u]j)− I([yA,k]l; zBE,k, gBE , hBA)− 2ε′

}
+K(T − 1)

{
I([yB,k]l; [xA]k, [u]j)− I([yB,k]l; zAE,k, gAE , hAB)−2ε′

}
(163)

Dividing both sides by N = K ·T the relation (142) now follows. By examining (141) and (142) it follows that there

exists a deterministic codebook C̃⊗ in the ensemble, that simultaneously satisfies the equivocation constraint (136)

and

Pr(ΓA 6= Γ
⋃

ΓB 6= Γ) ≤ δ(ε). (164)

C. Secret-Key Generation

Our analysis thus far has established the existence of a codebook C̃⊗ that generates a common tuple of sequences([
uK
]
,
[
ȳKA,k

]
l
,
[
ȳKB,k

]
l

)
, satisfies the equivocation constraint (136) and the reliability constraint (164). We next

discuss how one can use the codebook C̃⊗ to generate a common secret-key at the two terminals.

We consider transmission over a total of M macro-blocks. Each macro-block i spans K coherence blocks the

terminals sample sequences x̄KA (i) and x̄KB (i) in an i.i.d. fashion, independently from the previous blocks. Thereafter
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we execute the steps discussed in the previous sections, which results in the following observations at the legitimate

receivers and the eavesdropper:

ΓA(i) =
([

ûKA (i)
]
j
,
[
yKA,k(i)

]
l
,
[
ŷKB,k(i)

]
l

)
(165)

ΓB(i) =
([

ûKB (i)
]
j
,
[
ŷKA,k(i)

]
l
,
[
yKB,k(i)

]
l

)
(166)

Ω(i) =
(
z̄Kk (i), gK(i), ψA(i), ψB(i), φA(i), φB(i)

)
. (167)

Note that {ΓA(i),ΓB(i),Ω(i)} are sampled i.i.d. across the macro-blocks. Furthermore for each i ∈ {1, 2, . . . ,M},

they satisfy (164) and (136). Thus an achievable one-way secret-key generation rate for the sequence {ΓA(i),ΓB(i),Ω(i)}

is (see e.g., [15]):

R− =
1

N
[I(ΓA; ΓB)− I(ΓA; Ω)] (168)

=
1

N
[H(ΓA|Ω)−H(ΓA|ΓB)] (169)

≥ 1

N
[H(Γ|Ω)−NγK(ε)] (170)

≥ R−∆ − δK(ε)− γK(ε) (171)

where (170) follows Fano’s inequality and (171) follows from (136). Since we can make ε arbitrarily small and K

sufficiently large, the achievability of the proposed rate follows.

APPENDIX D

PROOF OF (149)

To establish (149) consider

p(ȳKA | z̄KBE , g
K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB) =

∑
x̄KB

p(ȳKA , x̄
K
B | z̄KBE , g

K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB) (172)

=
∑
x̄KB

p(ȳKA | z̄KBE , g
K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB , x̄

K
B )p(x̄KB | z̄KBE , g

K
BE , h

K
BA, ȳ

K
B , g

K
AE , h

K
AB) (173)

=
∑
x̄KB

p(ȳKA |hKBA, x̄
K
B )p(x̄KB | z̄KBE , g

K
BE) (174)

=
∑
x̄KB

p(ȳKA |hKBA, x̄
K
B , z̄KBE , g

K
BE)p(x̄KB | z̄KBE , g

K
BE , h

K
BA) (175)

=
∑
x̄KB

p(ȳKA , x̄
K
B |hKBA, z̄KBE , g

K
BE) = p(ȳKA |hKBA, z̄KBE , g

K
BE). (176)

where (174) follows from the fact that x̄KA is sampled independently of x̄KB and the channel estimates, and using

the structure of the channel (3) we also have that

ȳKA ↔ (x̄KB , h
K
BA)↔ ( z̄KBE , g

K
BE , ȳ

K
B , g

K
AE , h

K
AB) (177)

This establishes (149). Eq (150) can be established in an analogous fashion and its proof will be omitted.
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