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Abstract—We study the non-coherent capacity of secret-key
agreement with public discussion over i.i.d. Rayleigh Fading
wireless channels, where neither the sender nor the receivers
have access to instantaneous channel state information (CSI).
We present two results. At high Signal-to-Noise Ratio (SNR),
the secret-key capacity is bounded in SNR, regardless of the
number of antennas at each terminal. Second, for a system with
a single antenna at both the legitimate and the eavesdropper
terminals and an arbitrary number of transmit antennas, the
secret-key capacity-achieving input distribution is discrete, with
a finite number of mass points. Numerically we observe that at
low-SNR, the capacity achieving distribution has two mass points
with one of them at the origin.

Index Terms—Non-coherent capacity, secret-key agreement,
Rayleigh fading channels, information theoretic security, Karush-
Kuhn-Tucker (KKT) condition, discrete input distribution.

I. INTRODUCTION

Information theoretic secret-key agreement provides prov-
ably secure mechanisms for generating secret-keys between
two or more legitimate terminals. In such protocols, the
legitimate terminals need to have access to a source of corre-
lated randomness e.g., communication channels or correlated
sources [1], [2]. Furthermore a discussion channel of unlimited
capacity is also available for communication, but is public
to the wiretapper. The legitimate terminals distill a common
secret-key that satisfies an equivocation constraint with respect
to the eavesdropper.

The present paper studies capacity limits of secret-key
agreement when the underlying channel from the sender to
the receiver and the eavesdropper are modeled as independent
identically distributed (i.i.d.) Rayleigh fading. We further
assume the non-coherent model i.e., the instantaneous channel
state information is not known to either of the terminals. The
channel statistics are however globally known.

Note that for our proposed channel model the outputs at
the legitimate receiver and the eavesdropper are conditionally
independent given the channel input. A class of discrete
memoryless channel models with this property was studied
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in [1], [2] and a single-letter capacity expression was charac-
terized. In particular a source-emulation strategy was shown
to be optimal — the sender generates a discrete memoryless
source, then transmits it over the channel to generate correlated
sources at the two terminals and then the legitimate terminals
distill a common key as in the source model. While their result
can be extended using standard techniques to the (continuous-
valued) Rayleigh fading channels studied in this work, finding
the optimizing distribution is difficult in general. In the present
work we show the following two properties (1) Unlike the
case without secrecy constraint where the capacity scales as
log log (P ) at high Signal-to-Noise-Ratio (SNR), the secret-
key capacity is bounded in SNR, regardless of the number
of antennas at each terminal and (2) The capacity achieving
distribution is discrete with a finite number of mass points, for
the Multiple-Input-Single-Output(MISO) case.

In related works, [3] studies the secret-key agreement over
Rayleigh fading channels for the case of receiver CSI and
establishes that a Gaussian input distribution maximizes the
secret-key capacity. [4]–[10] also approach similar problems
in different settings. [11] studies the problem of generating
shared secret keys using channel reciprocity instead of public
discussion. This approach is not considered in the present
paper. Related work can also be found in [12]–[18].

II. THE CHANNEL MODEL

In this paper we consider the Channel-Type Model with
wiretapper [1, Section III]. The sender and receiver communi-
cate over a discrete memoryless channel (DMC). In addition
they can also access a public discussion channel of unlimited
capacity. In our case of interest, the DMC consists of an i.i.d.
multi-input-multi-output (MIMO) fading channel where the
sender and receiver and eavesdropper have nT , nR and nE

antennas respectively. We have closely followed [19] and [20]
while proposing our model. The outputs at both the legitimate
destination and the eavesdropper, at time i = 1, . . . , L, are
expressed, respectively by:{

y(i) = H(i)x(i) + v(i)

z(i) = G(i)x(i) + w(i)
(1)

where x(i) ∈ Cnt is the transmitted signal, and H(i) ∈
CnR×nT , G(i) ∈ CnE×nT represent the main channel and
the eavesdropper channel transfer matrices, respectively; and
v(i) ∈ CnR , w(i) ∈ CnE are circularly symmetric white
Gaussian noises with covariance matrices E[v(i)v(i)†] = InR

and E[w(i)w(i)†] = InE . We assume that H(i) and G(i) have
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independent and identically-distributed Gaussian entries with
zero-mean and unit-variance. We assume that the Channel
State Information (CSI) is not available at any terminal. That
is, the transmitter, the legitimate receiver and the eavesdropper
do not have access to the instantaneous channel realizations
H(i) and G(i); but are aware of their statistic. The source
is constrained according to a short-term average power con-
straint:

E[x(i)†x(i)] = tr(Qx) ≤ P (2)

for all i = 1, . . . , L. Given the normalization of the fading
channels and the additive noise in our channel model, P in
(2) may be interpreted as a signal-to-noise ratio (SNR) per
receive antenna. Since the channel defined in (1) is i.i.d. we
may drop the time index i in the sequel for convenience.
The sender and receiver can interactively communicate over
the discussion channel between each successive use of the
channel. We refer to the reader to [1] for a formal description
of the protocol. Furthermore we are interested in the secret-
key capacity between the sender and the receiver. We again
refer to the reader to [1] for a formal description and definition
of key capacity.

III. SECRET-KEY CAPACITY

In [1, Theorem 2], a single-letter formula of key capacity
has been established and is given by:

C = sup
F (x)∈F

I(x; y|z), (3)

where F is the set of all possible distribution functions F (x)
that satisfy the average power constraint. Note that in our
model of interest y and z are conditionally independent given
x and the distribution is given by [21]:

py|x(y|x)= 1

πnR(1 + ‖x‖2)nR
exp

( −‖y‖2
1 + ‖x‖2

)
(4)

pz|x(z|x)= 1

πnE (1 + ‖x‖2)nE
exp

( −‖z‖2
1 + ‖x‖2

)
, (5)

where ‖·‖ denotes the Euclidean norm of a vector. We note that
py|x and pz|x depend on y, z and x only through their norms.
We next define new random variables: X = ‖x‖, Y = ‖y‖2

and Z = ‖z‖2. Following [22, Appendix VI], we see that the
pdf of the conditional distribution associated with the norms
is given by:

p‖z‖ | ‖x‖(‖z‖ | ‖x‖) = φ′ pz|x(z|x) (6)

or equivalently

pZ|X(z|x) = φpz|x(z|x) (7)

where

φ′ =
‖z‖nE−1πnE

Γ(nE)

φ =
‖z‖2(nE−1)πnE

Γ(nE)
(8)

are the Jacobian coordinate transformation factors applied in
nE dimensions. We also note that Y and Z are chi-squared

random variables with 2nR and 2nE degrees of freedom when
conditioned on X . Then, from (4) and (5),

pY |X(y|x) = y(nR−1)

Γ(nR) (1 + x2)nR
exp

( −y

1 + x2

)
,

pZ|X(z|x) = z(nE−1)

Γ(nE) (1 + x2)nE
exp

( −z

1 + x2

)
.

(9)

Also,

pz(z)=Ex
[
pz|x(z|x)

]
=Ex

[
p‖z‖|‖x‖(‖z‖|‖x‖)

φ′

]

=E‖x‖

[
p‖z‖|‖x‖(‖z‖|‖x‖)

φ′

]

=
p‖z‖(‖z‖)

φ′ (10)

Now, I(x; y|z) can be formulated as follows:

I(x; y|z)=I(x; y, z)− I(x; z)

=I(X ;Y, Z)− I(X ;Z) (11)

=I(X ;Y |Z)

(11) followed from the fact that pz(·) and pz|x(·) depend only
on the norms X and Z . A detailed derivation appears in
Appendix A. The result is summarized in the following lemma.

Lemma 1: The non-coherent secret-key capacity of the
channel model (1) described above is given by:

C = sup
F (x)∈F

I(X ;Y |Z). (12)

Lemma 1 states that secret-key communication is conveyed
over the norms X, Y and Z. This property will be used in
the sequel. As verified in Appendix B the capacity can be
expressed as

C = sup
F (x)∈F�
pY |X(y|x)pZ|X(z|x) ln

[
pY |X(y|x)

pY |Z(y|z;F )

]
dydzdF (x)

(13)

IV. CAPACITY RESULTS AT A HIGH-SNR REGIME

In this section, we analyze the non-coherent secret key
capacity asymptotically at high-SNR. The reader is referred
to [20] and [19] for details regarding high-SNR asymptotic
analysis. Our result is rather negative as it establishes the non-
efficiency of communication over this channel at high-SNR.
Theorem 1 below formalizes this result.

Theorem 1: At high-SNR, the non-coherent secret-key ca-
pacity of the channel model (1) described above is given by:

C(P ) = O(1) (14)

where O(1) denotes a term that remains constant as P → ∞.
Proof: Keeping in mind the result given by Lemma 1 and

equations given by 9, we define two new random variables W 1

and W2 such that {
Y = (1 +X2)W1

Z = (1 +X2)W2

(15)
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where it follows via (9) that W1 and W2 are Gamma-
distributed random variables, mutually independent and also
independent of X , and with probability density functions
(pdfs):

pW1(w1)=
wnR−1

1

Γ(nR)
exp (−w1) (16)

pW2(w2)=
wnE−1

2

Γ(nE)
exp (−w2). (17)

(15) can be viewed as a multiplicative channel model which is
equivalent from a capacity perspective to our original model
by Lemma 1.

Now, by letting Y1 = ln (Y ), Z1 = ln (Z), D1 =
ln (1 +X2), N1 = ln (W1) and N2 = ln (W2), and by
applying the log function on both sides of (15), the following
channel is obtained: {

Y1 = D1 +N1

Z1 = D1 +N2

(18)

Since the log function is a one-to-one transformation that does
not entail any capacity loss, the secret-key capacity can be
bounded as follows:

I(X ;Y |Z)=I(D1;Y1|Z1)

=h(Y1|Z1)− h(Y1|Z1, D1)

=h(Y1 − Z1|Z1)− h(Y1|Z1, D1)

≤h(Y1 − Z1)− h(N1) (19)

=h(N1 −N2)− h(N1). (20)

Hence, it remains to show that the right hand side of (20) is
bounded.

First note that using (16), the p.d.f. of N1 can be easily
derived as:

pN1(n1) =
exp (nRn1 − en1)

Γ(nR)
, (21)

thus, the second term on the RHS of (20) can be upper
bounded as follows:

−h(N1)=E[ln pN1(n1)]

=nRE[N1]− E[W1]− ln (Γ(nR))

≤nR ln (E[W1])− E[W1]− ln (Γ(nR)) (22)

=nR ln (nR)− nR − ln (Γ(nR)), (23)

where (22) follows from Jensen inequality and (23) holds
because E[W1] = nR.

To show that h(N1 − N2) is upper bounded, it suffices to
show that Var(N1 −N2) = E

[
N2

1

]
+E

[
N2

2

]−E[N1]
2−E[N2]

2

is bounded, since a Gaussian distribution with same variance
upper bounds the differential entropy of any continuous dis-
tribution. In other words, it suffices to show that E

[
N2

1

]
< ∞

and E
[
N2

2

]
< ∞.

E
[
N2

1

]
=E

[
(ln (W1))

2
]

≤E
[
(ln (W1))

2 |W1 ≤ 1
]
Pr(W1 ≤ 1)

+E
[
(ln (W1))

2 |W1 > 1
]
Pr(W1 > 1)

≤E

[
1

W1
|W1 ≤ 1

]
Pr(W1 ≤ 1)

+E[W1|W1 > 1]Pr(W1 > 1) (24)

≤E

[
1

W1

]
+ E[W1]

=
1

nR − 1
+ nR (25)

In the above derivation, (24) follows from the fact that
x (ln(x))

2 ≤ 1 for any x ∈ [0, 1] and (ln(x))
2 ≤ x for

any x > 1, whereas (25) holds when nR > 1 because 1
W1

follows inverse Gamma distribution with parameters β = 1
and α = nR. For nR = 1 we can see that the random
variable N1, being the log of an exponential random variable,
has density function pN1(x) = exe−ex with finite mean and
variance. By a similar argument, E

[
N2

2

]
is finite, and thus

Var(N1 −N2) is also finite. Now, we have an upper bound
on I(X ;Y |Z) that is itself bounded irrespective to the power
P . We conclude that the secret-key capacity is asymptotically
bounded at high-SNR.

V. THE KARUSH-KUHN-TUCKER (KKT) CONDITION

In this section, following [19], a necessary and sufficient
condition for optimality in secret-key agreement settings is
established. Our proof relies on two steps. First, we show
that the supremum in (13) is achieved (Lemma 2). Next, we
argue that I(X ;Y |Z) is also weak differentiable in F over
F (Lemma 3). The KKT follows then by the concavity of a
modified objective function that includes the power constraint.
In our proof, we are focussing on the MISOSE case, i.e.,
nR = nE = 1.

Lemma 2: The supremum in (13) is achievable by at least
one F , say F ∗, belonging to F+, where F+ is the set of all
nonnegative input distributions that meet the power constraint.

Proof: A sufficient condition for the supremum in (13)
to exist, is that the mutual information I(X ;Y |Z) be weak
continuous in F and the set F+ be weak compact. That F+

is weak compact follows from [19, Appendix 1.A]. The proof
of weak continuity of I(X ;Y |Z) in F is reported in Appendix
C.

Lemma 3: I(X ;Y |Z) is weak differentiable and concave
in F over F+.

Proof: The proof of weak differentiability is presented in
Appendix D. The concavity of I(X ;Y |Z) in F , follows from
[23, Fact 2].
Now, from Lemma 2 and Lemma 3, a necessary and sufficient
condition for optimality, referred to as the KKT condition, can
be obtained as stated below. Here, we denote pY |Z(y|z;F ) as
the conditional distribution of Y given Z induced by the input
distribution function F .
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Proposition 2: For the channel given by (1) described
above, where nR = nE = 1, an input random variable X ∗

with distribution function F ∗ achieves the secret-key capacity
C if and only if there exists a γ ≥ 0 such that,

γ(x2 − P ) + C−�
pY |X(y|x)pZ|X(z|x) ln

[
pY |X(y|x)

pY |Z(y|z;F ∗)

]
dy dz ≥ 0

(26)
for all x, with equality if x belongs to the support of X ∗.

Proof: The proof is presented in Appendix E.
Using (16), (17) and letting s = 1

1+x2 with s ∈ [0, 1], (26)
can be expressed as:

γ

(
1

s
− 1− P

)
+ C − ln (s) + 1+�

s2e−s(y+z) ln
[
pY |Z(y|z;F ∗)

]
dy dz ≥ 0.

(27)

VI. CHARACTERIZATION OF X∗

Here we follow [19] and [24] to use the Kuhn-Tucker
condition (26) to prove that X ∗ is discrete. Although our
framework parallels these previous works, several modifica-
tions are necessary to account for the conditional mutual
information. The existence of a secret-key capacity achieving
input implies that X∗ should satisfy one of the following
properties:

1) Its support contains an interval;
2) It is discrete, with an infinite number of mass points in

some bounded interval;
3) It is discrete and infinite, but with only a finite number

of mass points on any bounded interval;
4) It is discrete with a finite number of mass points.

Now, let us assume that 1) or 2) holds and define the function
H(·) by:

H(zc) = γ

(
1

zc
− 1− P

)
+ C − ln (zc) + 1+�

z2ce
−zc(y+z) ln

[
pY |Z(y|z;F ∗)

]
dydz

(28)

for all zc belonging to the set of complex numbers, where
ln (·) is the principal branch of the logarithm. We note that
H(zc) is analytic over the domain D defined by �(zc) > 0.
We now make the following observations:

• From our assumption it is evident that there exists an
A such that the support of X ∗ contains infinitely many
points in [0, A] or equivalently the support of S ∗ contains
an infinite set of distinct points in Ss ⊆ [1/(1 +A2), 1],

• The interval [1/(1 + A2), 1] is compact, hence by
Bolzano-Weierstrass theorem Ss has an accumulation
point in [1/(1 +A2), 1] ⊂ [0, 1],

• From the Kuhn-Tucker condition (27), H(z c) = 0 on the
support of S∗ and thus on Ss.

Hence we have an analytic function over D that vanishes on
a set having an accumulation point of in D. From the identity
theorem [25], we conclude that H(zc) = 0 over the whole D

and in particular, over �(zc) ∈ [0,∞). Consequently, (28) can
be written as:�

e−zc(y+z) ln
[
pY |Z(y|z;F ∗)

]
dydz

=
−1

z2c

[
γ(

1

zc
− 1− P ) + C − ln (zc) + 1

]
,

(29)

where zc ∈ D. We next show that there cannot be a valid
conditional probability density function pY |Z(·|·) that satis-
fies (29). This is done by multiplying both sides of (29) by
z2c and by taking the limit zc → ∞ we show that while the
right hand side diverges, the left hand side remains bounded.
Towards this end we show the following.

Lemma 4: For each zc with �(zc) > 0 we have that�
e−zc(y+z) ln

[
pY |Z(y|z;F ∗)

]
dydz = I1 (zc)− I2 (zc) ,

(30)
where I1(·) and I2(·) denote the Laplace transforms of the
following

I1(·) = L(w ln f(w)) (31)

I2(·) = L
(∫ w

0

ln g(τ)dτ

)
(32)

where we define

f(t) =

∫ 1

0

s2e−stdF ∗(s) (33)

g(t) =

∫ 1

0

se−stdF ∗(s). (34)

Furthermore I1(zc) and I2(zc) are well defined for all zc with
�(zc) > 0.

Proof: The proof of Lemma 4 is provided in Appendix F.

Note that f(t) and g(t) in (31) and (32) are infinitely
differentiable decreasing functions over the positive real axis.
Furthermore,

g(0) = E

[
1

(1 +X2)

]
∈ [0, 1] (35)

Similarly, we have:

lim
t→0

f(t) = E

[
1

(1 +X2)
2

]
∈ [0, 1] (36)

lim
t→0

tf ′(t) = 0. (37)

Finally, multiplying both sides of (29) by z 2
c and taking the

limit as zc → ∞, we show that the RHS of (29) goes to
infinity whereas LHS of (29) is finite. To see this, we first
recall that:

lim
zc→∞ z2cLHS = lim

zc→∞
[
z2c (I1 (zc)− I2 (zc))

]
. (38)

Then, the limit of the second term on the RHS of (38) is equal
to:

lim
zc→∞z2c I2 (zc)= lim

zc→∞

[
zc

∫ ∞

0

e−zcw ln [g(w)]dw

]
= lim

w→0
[ln (g (w))] (39)

=ln
(
E
[
1/

(
1 +X2

)])
, (40)
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where (39) follows by the Initial Value Theorem [26] and
(40) is obtained from (35). Next, we note that the sec-
ond derivative (w ln (f(w)))

′′
exists for all positive w, that

lim
w→0

[w ln (f(w))] = 0 and that lim
w→0

[
(w ln (f(w)))

′]
=

ln
(
E
[
1/

(
1 +X2

)2])
. Hence, applying the identity (from

[26]),∫ ∞

0

e−zctp
′′
(t)dt = z2c

∫ ∞

0

e−zctp(t)dt− zcp(0)− p′(0)

(41)
to the function w ln (f(w)) and taking the limit as zc → ∞
on both sides of (41) yield,

0 = lim
zc→∞

[
z2c (I1 (zc))

]− ln
(
E
[
1/

(
1 +X2

)2])
, (42)

which confirms that lim
zc→∞

[
z2c (I1 (zc))

]
is finite too. There-

fore, the limit in (38) exists and is finite. This implies that
(29) does not hold for all zc ∈ D. But, this contradicts our
initial assumption that either 1) or 2) holds. Consequently,
neither 1) nor 2) can happen. We are then left with 3) and 4)
as the only possibilities.

Let us assume that 3) holds. In this case we argue that the
Lagrange multiplier in the KKT condition (27) is zero and
in turn obtain a contradiction. Since X ∗ has infinitely many
mass points and only finitely many in any bounded interval,
S∗ has an accumulation point only at zero and its support can
thus be written as a sequence {si} converging to zero. Let
Pr{S∗ = si} = pi. Then we have:

pY |Z(y|z;F ∗) =
∑∞

i=1 pipY |S∗(y|si)pZ|S∗(z|si)∑∞
i=1 pipZ|S∗(z|si) (43)

=

∑∞
i=1 pis

2
i e

−si(y+z)∑∞
i=1 pisie

−siz
. (44)

Note that the denominator of (44) is smaller than E[S] which
is less than 1 (c.f. (35)). This implies that pY |Z(y|z;F ∗) >

pis
2
i e

−si(y+z) for all y, z ≥ 0 and all i = 1, 2, . . .. Conse-
quently, we have:�

s2e−s(y+z) ln
[
pY |Z(y|z;F ∗)

]
dydz

>
�

s2e−s(y+z) ln
[
pis

2
i e

−si(y+z)
]
dydz (45)

= ln
(
pis

2
i

)− 2si
s

(46)

Now, using (46), bound the LHS of (27) as follows:

LHS >

γ(
1

s
− 1− P ) + C − ln (s) + 1 + ln(pis

2
i )−

2si
s

(47)

=
γ − 2si

s
+ o(

1

s
) (48)

Where the o(·) term applies when s → 0 for a fixed i. Now,
if γ > 2si then (48) goes to infinity as s → 0, but the LHS of
(27) should be zero on the support of S ∗ which by our initial
assumption, contains a point of accumulation at 0. Hence, γ ≤
2si. As this is true for all si, and si → 0, we see that γ ≤ 0.
As the Lagrange multiplier is non-negative, we conclude that
γ = 0. Then from (27) we get,

C−ln (si)+1+
�

s2i e
−si(y+z) ln [p(y|z;F ∗)]dydz = 0 (49)
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Fig. 1. The SISOSE secret-key capacity versus the SNR value P .

for all si. Now taking the limit at si → 0 on both sides of
(49), we see that the integrand on the LHS tends toward 0,
which implies that

C = lim
si→0

ln(si)− 1 (50)

and consequently the capacity C goes to −∞, which contra-
dicts C ≥ 0. Hence, the assumption 3) is ruled out as well.
Therefore, the optimum input distribution must be discrete
with a finite number of mass points which is what we wanted
to prove.

We conclude the section by enumerating the key differences
in the results obtained in [19] with those obtained in this paper.
These differences primarily arise because we are dealing with
the conditional version of the mutual information compared to
[19]:

1) To eliminate the conditions 1) and 2) in [19, Section
IV], the authors obtain a unique distribution function
p(y) that satisfies the Kuhn-Tucker condition and claim
that this function fails to satisfy the properties of a
probability distribution function. On the contrary, (29) of
this paper may have infinite solutions for pY |Z(y|z) but
we prove that none of them is a valid solution because
(29) does not hold good as zc → ∞;

2) To disprove 3) in [19, Section IV], the authors establish
the impossibility of γ = 0 by proposing a family
of distributions with strictly monotonically increasing
mutual information, whereas to disprove (49), we exploit
the fact that the capacity is non-negative;

3) In [19], the authors establish that the mutual information
is strictly concave in F . Our result on concavity relies
on [23] which does not establish strict concavity. Con-
sequently we do not pursue the problem of establishing
uniqueness of the input distribution in this work.

VII. NUMERICAL RESULTS

We employed the Gauss-Laguerre quadrature method to
evaluate all the concerned integrals in obtaining capacity-
achieving input distributions. We obtain some useful insights
related to the variation of the number of mass points and their
respective probabilities with the SNR. Furthermore we exploit
the variation of KKT, a necessary and sufficient condition for
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Fig. 3. The optimal non zero mass point locations versus the SNR value P .
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Fig. 4. The non zero mass point probability versus the SNR value P at very
low SNR region.
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Fig. 5. The non zero mass point location versus the SNR value P at very low
SNR region .

optimality, with x to exactly predict the location of a new
mass point and to validate the optimal input distribution for
a given SNR value. It has been observed that there exists a
mass point at the origin for all SNR values. Fig. 1 represents
the non-coherent secret-key capacity in nats per channel use
(npcu) in function of SNR (average power constraint in Joules
per second). As shown in Fig. 1, the secret-key capacity shown
in solid blue is monotonically increasing in SNR. In this
figure, discontinuities of the capacity plot can be observed.
Indeed, these regions represent zones where a new mass point
is about to appear and where numerical optimization becomes
very unstable to an extent that the results obtained in these
zones do not fulfill the KKT condition. Furthermore, it may
be seen in Fig. 1, that the capacity is bounded at high-SNR
in full agreement with Theorem 1. Also shown in Fig. 1 as
a benchmark, is the Additive White Gaussian Noise (AWGN)
channel secret-key capacity (in dashed line). While the gap
between the two plots is marginal at very-low SNR (below
0.5 J/s), the AWGN secret-key capacity prevails remarkably
as SNR increases.

In Fig. 2, the LHS of the KKT condition (26) is plotted
versus x for an SNR= 0.09 and where numerical optimization
was set to two mass point input distributions (N = 2). From
Fig. 2, it can be seen that although the KKT is null in two
points, the results obtained is not optimal since the plot goes
below zero for a certain value of x, suggesting that a new
mass point is more likely to appear. In order to confirm our
claim, we set N = 3 in our optimization problem and increase
the power constraint away from this unstable zone, to find
that three mass point is in fact optimal and that a new mass

point shows up around x = 3 at approximately P = 0.4. This
explains the discontinuities in our capacity plot as depicted
by Fig. 1. We conjecture that a new mass point shows up
first at x → ∞ and then decreases as SNR increases. Note
that this peculiar behavior of the optimal input distribution has
also been observed previously in non-coherent fading channels
without secrecy [19].

Fig. 3 depicts optimal non zero mass point locations versus
SNR. Likewise in Rayleigh fading channel without secrecy,
two mass point is optimal at low SNR (below P = 0.08). As
SNR increases, the number of mass point increases gradually
to be N = 3 for P below 0.9 and then N = 4 for P below 10.
At high-SNR, we observe that the optimal distribution has 3
non zero mass points and more interestingly as SNR increases,
only the biggest of the three tends to increase whereas the
two others of lower values tend to attain constant values of
approximately 1.9 and 3.5, respectively.

Finally, the non zero mass point probability versus P is
shown in Fig. 4 at low-SNR, where it can be seen that the non
zero mass point probability seems to increase almost linearly
with SNR. On the other hand, the non zero mass point location
versus P is also displayed in Fig. 5 at low-SNR, where it can
be observed that as SNR increases the non zero mass point
decreases in magnitude.

VIII. CONCLUSION

The secret-key capacity under an average power constraint
of a Rayleigh fading channel, where the instantaneous CSI
is not available at any terminal, has been studied. When the
legitimate receiver and the eavesdropper have one antenna
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each, i.e., the MISOSE (nR = nE = 1) setting, it has been
shown that the capacity-achieving input distribution is discrete
with a finite number of mass points. Although in this case
we have focused on the MISOSE case, our proof technique
can be extended in a straightforward manner to encompass
a channel where the number of receive antennas at both the
legitimate receiver and the eavesdropper are arbitrary, using
techniques similar to the ones discussed in [19, Appendix
III]. At high-SNR, it is established that the secret-key capacity
is bounded irrespective of SNR, regardless of the number of
antennas at each terminal. At low-SNR, it has been observed
through numerical results that an input distribution with two
mass points, one of them at the origin, is optimal.

APPENDIX A

To establish (11), here we prove that I(x; z) = I(X ;Z).
The proof of I(x; y, z) = I(X ;Y, Z) will follow on similar
lines. The notion that I(x; z) = I(X ;Z) has previously been
used in [27], [19] and [20]. Here we provide an explicit proof
to establish the claim.

I(x; z)

=
�

pz,x(z, x) ln
[
pz|x(z|x)
pz(z)

]
dzdx

=
�

pz,x(z, x) ln
[
p‖z‖ | ‖x‖(‖z‖ | ‖x‖)/φ′

p‖z‖(‖z‖)/φ′

]
dzdx (51)

=
�

pz,x(z, x) ln
[
p‖z‖ | ‖x‖(‖z‖ | ‖x‖)

p‖z‖(‖z‖)
]
dzdx

=
�

pz,x(z, x) ln [f(‖x‖, ‖z‖)]dzdx (52)

=
�

pz|x(z|x)px(x) ln [f(‖x‖, ‖z‖)]dzdx

=

∫
Ex

[
pz|x(z|x) ln [f(‖x‖, ‖z‖)]

]
dz

=

∫
Ex [h(‖x‖, ‖z‖)] dz

=

∫
E‖x‖ [h(‖x‖, ‖z‖)] dz

=
�

pz|x(z|x)p‖x‖(‖x‖) ln [f(‖x‖, ‖z‖)] dzd‖x‖

=
� p‖z‖ | ‖x‖(‖z‖ | ‖x‖)

φ′ p‖x‖(‖x‖) ln [f(‖x‖, ‖z‖)] dzd‖x‖

=
� p‖z‖,‖x‖(‖z‖, ‖x‖)

φ′ ln [f(‖x‖, ‖z‖)] dzd‖x‖

=
� p‖x‖ | ‖z‖(‖x‖ | ‖z‖)

φ′ p‖z‖(‖z‖) ln [f(‖x‖, ‖z‖)] dzd‖x‖

=
�

p‖x‖ | ‖z‖(‖x‖ | ‖z‖)pz(z) ln [f(‖x‖, ‖z‖)] dzd‖x‖ (53)

=

∫
Ez

[
p‖x‖ | ‖z‖(‖x‖ | ‖z‖) ln [f(‖x‖, ‖z‖)]

]
d‖x‖

=

∫
E‖z‖

[
p‖x‖ | ‖z‖(‖x‖ | ‖z‖) ln [f(‖x‖, ‖z‖)]

]
d‖x‖

=
�

p‖x‖ | ‖z‖(‖x‖ | ‖z‖)p‖z‖(‖z‖) ln [f(‖x‖, ‖z‖)] d‖z‖d‖x‖

=
�

p‖x‖,‖z‖(‖x‖, ‖z‖) ln
[
p‖z‖ | ‖x‖(‖z‖ | ‖x‖)

p‖z‖(‖z‖)
]
d‖z‖d‖x‖

=I(‖x‖; ‖z‖)
=I(X ;Z)

where (51) follows from (6) and (10). (52) says that
p‖z‖|‖x‖(‖z‖ | ‖x‖)

p‖z‖(‖z‖) is some function f(·) of the norms of the
two vectors. (53) follows from (10).

APPENDIX B
PROOF OF (13)

I(X ;Y |Z) = I(X ;Y, Z)− I(X ;Z)

=h(Y, Z)− h(Y, Z|X)− h(Z) + h(Z|X)

=h(Y |Z)− h(Y |X) (54)

=
�

pY,X(y, x) ln
(
pY |X(y|x))dydx

−
�

pY,Z(y, z) ln
(
pY |Z(y|z)

)
dydz

=
�

pY,X,Z(y, x, z) ln
(
pY |X(y|x))dydxdz

−
�

pY,Z|X(y, z|x) ln (pY |Z(y|z;F )
)
dydzdF (x)

=
�

pY,Z|X(y, z|x) ln (pY |X(y|x))dydF (x)dz

−
�

pY |X(y|x)pZ|X(z|x) ln
(
pY |Z(y|z)

)
dydzdF (x) (55)

=
�

pY |X(y|x)pZ|X(z|x) ln (pY |X(y|x))dydF (x)dz

−
�

pY |X(y|x)pZ|X(z|x) ln
(
pY |Z(y|z)

)
dydzdF (x) (56)

where to obtain (54), (55) and (56), we used the fact that given
X , Y and Z are independent. Here pY |Z(y|z;F ) signifies the
conditional distribution of Y given Z induced by F.

APPENDIX C
WEAK CONTINUITY OF THE CONDITIONAL MUTUAL

INFORMATION

From [28, Section 5.10], we first note that if a function
f is weak* continuous on a weak* compact set F +, then f
achieves its maximum on F+. Since it has been established
that F+ is convex and compact in [19, Appendix 1.A], we only
need to show that the mutual information is weak continuous
on F+ to prove the existence of a capacity achieving input
distribution. Recall that from (11), we have:

I(X ;Y |Z) = −hY |X(F ) + hY |Z(F )

= −hY |X(F ) + hY,Z(F )− hZ(F ).

That hY |X(F ) and hZ(F ) are weak* continuous in F follows
along similar lines as the proof in [19, Appendix 1.B]. We
now prove that hY,Z(F ) is weak* continuous in F . Suppose
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the exists a sequence {Fn} that converges to F , which will

be referred to as Fn
w∗→ F . First, recall that

pY,Z(y, z;F ) =

∫
1

(1 + x2)2
e−(y+z)/(1+x2)dF (x). (57)

Since the integrand in (57) is a bounded continuous function
of x, then by the definition of weak* topology, pY,Z is a
continuous function of F for all y, z ≥ 0. Moreover, x ln (x)
is continuous and thus pY,Z(y, z;F ) ln [pY,Z(y, z;F )] is also
continuous in F . Hence by the definition of weak continuity,
we have:

lim
n→∞pY,Z(y, z;Fn) ln

[
pY |Z(y|z;Fn)

]
=pY,Z(y, z;F ) ln [pY,Z(y, z;F )] (58)

We now claim that:

lim
n→∞hY,Z(Fn)

=− lim
n→∞

�
pY,Z(y, z;Fn) ln [pY,Z(y, z;Fn)]dydz

=−
�

lim
n→∞pY,Z(y, z;Fn) ln [pY,Z(y, z;Fn)]dydz (59)

=−
�

pY,Z(y, z;F ) ln [pY,Z(y, z;F )]dydz (60)

=hY,Z(F )

where (60) follows from (58). We next justify the interchange
of the limit and the integral in (59). To do this, we note that by
Lebesgue dominated convergence theorem, it suffices to find
an integrable function g such that

pY,Z(y, z;Fn) ln [pY,Z(y, z;Fn)] ≤ g(y, z), (61)

for all Fn. Let g(y) = min
(
1, 1/y2

)
. First, note that both

pY |X(y|x) ≤ g2(y) and pZ|X(z|x) ≤ g2(z). Thus, by (57),
we also have pY,Z(y, z) ≤ g2(y)g2(z) for all x, y, z and
Fn. Using the fact that |x ln (x)|2 ≤ x for all x ∈ [0, 1], the
following derivation holds:

|pY,Z(y, z;Fn) ln [pY,Z(y, z;Fn)]|2≤pY,Z(y, z;Fn)

=

∫
pY,Z|X(y, z|x)dFn(x)

≤
∫

g2(y)g2(z)dFn(x)

=g2(y)g2(z)

Since g is integrable over [0,∞), (61) is true. Consequently,
hY,Z(F ) is weak* continuous. By a similar argument, hZ(F )
is also weak* continuous. Hence being a sum of weak*
continuous functions, I(X ;Y |Z) is weak* continuous in F .

APPENDIX D
WEAK DIFFERENTIABILITY OF THE CONDITIONAL

MUTUAL INFORMATION

The idea of weak differentiability has been previously used
in [19] in channels without secrecy constraint. Here, we extend
this idea to show that the conditional mutual information is
weak differentiable. Let us first define the mapping

g(F ) =

∫
x2dF (x) − P

from F+ to R, the set of real numbers. Note that g(F ) is linear
and hence convex in F . Since I(F ) (the mutual information
as a function of F (·)) is also convex, there exists a γ ≥ 0 in
R such that

C = sup
F∈F+

[I(F )− γg(F )]. (62)

Moreover, since this capacity is achieved by some F0, then
we necessarily have:

γg(F0) = 0 (63)

We next prove that the functions I and g are weak differen-
tiable in F . Let us define:

Fθ=(1− θ)F0 + θF

i(x;F )=
�

pY |X(y|x)pZ|X(z|x) ln
[

pY |X(y|x)
pY |Z(y|z;F )

]
dydz

Computing (I(Fθ)− I(F0)), we get:

I(Fθ)− I(F0) =�
pY |X(y|x)pZ|X(z|x) ln

[
pY |Z(y|z;F0)

pY |Z(y|z;Fθ)

]
dydzdF0

+ θ

∫
i(x;Fθ)dF (x)

− θ

∫
i(x;Fθ)dF0(x).

Next we see that

pY,Z(y, z;Fθ)=(1− θ)pY,Z(y, z;F0) + θpY,Z(y, z;F )

pZ(z;Fθ)=(1− θ)pZ(z;F0) + θpZ(z;F ).

Then from the definition of weak differentiability [19, Ap-
pendix II-B], we have:

I ′F0
(F )=lim

θ↓0
I(Fθ)− I(F0)

θ

=

∫
i(x;F0)dF (x) − I(F0), (64)

which holds because both terms are finite due to the power
constraint. Similarly for g we obtain:

g′F0
(F ) = g(F )− g(F0) (65)

Since (64) and (65) are valid for any F0 and F in F+, we
conclude that I and g are weak differentiable and so is I−γg.

APPENDIX E
THE KKT CONDITION

By Lemma 3, I is concave in F . Furthermore, g is linear in
F and hence I−γg is concave in F . Now from [19, Theorem
3], a necessary and sufficient condition for F0 to achieve the
supremum in (62) is

I ′F0
(F )− γg′F0

(F ) ≤ 0 ∀F ∈ F+, (66)

or equivalently,∫ [
i(x;F0)− γx2

]
dF (x)≤I(F0)− γ

∫
x2dF0(x)

=C − γ (g (F0) + P )

=C − γP , (67)
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where (67) follows from or (63). Now we conclude the section
by noting that from [19, Theorem 4], (67) is also equivalent
to: {

i(x;F0) ≤ C + γ(x2 − P ) ∀x
i(x;F0) = C + γ(x2 − P ), ∀x ∈ E0,

(68)

where E0 is the set of points of increase of F0. From (68), the
KKT condition (26) follows immediately.

APPENDIX F
PROOF OF LEMMA 4

The probability pY |Z(y|z) can be written as

pY |Z(y|z;F ∗) =
pY,Z(y, z;F

∗)
pZ(z;F ∗)

=
f(y + z)

g(z)
, (69)

where it follows via (9) that when nR = nE = 1, the functions
f(·) and g(·) in (69) are defined by (33) and (34) respectively.

Thus we can split the left hand side (LHS) of (26) into two
parts as stated in (30)�

e−zc(y+z) ln
[
pY |Z(y|z;F ∗)

]
dydz = I1 (zc)− I2 (zc) ,

where I1 (zc) =
�

e−zc(y+z) ln [f(y + z)]dydz and
I2 (zc) =

�
e−zc(y+z) ln [g(z)]dydz. Now, transforming the

coordinate system from Y-Z to W-Z where W = Y + Z, we
find that the Jacobian of the transformation is 1 and hence I 1
can be written as:

I1 (zc)=

∫ ∞

0

∫ ∞

z

e−zcw ln [f(w)]dwdz (70)

=

∫ ∞

0

∫ w

0

e−zcw ln [f(w)]dzdw (71)

=

∫ ∞

0

we−zcw ln [f(w)] dw (72)

On simplification of I2(zc), we also get:

I2(zc) =
1

zc

∫ ∞

0

e−zcw ln [g(w)]dw (73)

Note that (72) and (73) represent the Laplace transforms
of w ln [f(w)] and

∫ w

0 ln [g(τ)]dτ , respectively. Since the
integrands in (72) and (73) are integrable over the interval
[0, a] for all a > 0, then to prove that I1(zc) and I2(zc)
are well-defined for all �(zc) > 0, it suffices to show that
|we−zcw ln [f(w)]| and |e−zcw ln [g(w)]| are bounded by some
integrable functions on [0,∞]. This can be established as
follows:

|we−zcw ln f(w)|
=−we−	(zc)w ln (f(w)) (74)

=−we−	(zc)w ln
(
E
[
S2e−Sw

])
≤−we−	(zc)wE

[
ln
(
S2e−Sw

)]
(75)

=−we−	(zc)wE
[
ln
(
S2

)− Sw
]

=we−	(zc)w

(
wE

[
1

1 +X2

]
+ 2E

[
ln
(
1 +X2

)])
≤we−	(zc)w (w + 2 ln (1 + P )) (76)

(74) holds because f(w) is a decreasing function over w ≥ 0
and f(0) < 1 (c.f. (36)); (75) follows from Jensen inequality;
(76) is true because 1

1+X2 ≤ 1 and applying Jensen inequality
again. Since

∫∞
0 e−	(zc)w (w + 2 ln (1 + P ))dw exists for all

�(zc) > 0, then so does I1(zc). By a similar technique, the
following upper bound may be obtained:

|e−zcw ln g(w)| ≤ e−	(zc)w (w + ln (1 + P )) (77)

to justify the convergence of the integral in (73). We conclude
that I2(zc) is also well-defined for all �(zc) > 0.
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