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Abstract— We study secret-key agreement with public
discussion over a flat-fading wiretap channel model. The
fading gains are correlated across the receivers and sam-
pled independently at each time. Perfect receiver channel
state information (CSI) is assumed, whereas a noisy CSI
of the main channel is also available to the transmitter.
We propose lower and upper bounds on the capacity. Our
lower bound is achieved by a coding scheme that involves
a separate binning of the receiver CSI sequence and its
channel output sequence. In general it improves upon
the joint-binning schemes considered in earlier works.
Our upper and lower bounds coincide, establishing the
capacity, when either the transmitter has no CSI or
when the channel gains of the legitimate receiver and
the eavesdropper are statistically independent.

I. I NTRODUCTION

In recent years there has been a significant interest in
developing secret-key agreement protocols over fading
channels, see e.g., [1]–[7] and the references therein.
In time-division duplex (TDD) wireless systems, a
natural reciprocity between uplink and downlink exists,
which is clearly a valuable resource for generating a
shared secret key. In frequency division duplex (FDD)
systems, such a reciprocity does not exist, butpublic
interaction between the remote terminals can still be
used to generate a shared secret-key that remains
concealed from an eavesdropper.

While a significant body of literature exists for prac-
tical protocol designs for secret-key generation, sur-
prisingly little attention has been devoted towards un-
derstanding information theoretic limits. The pioneer-
ing works in [8], [9] introduce a channel-wiretapper
model (CW) where the sender and receiver commu-
nicate over a wiretap channel. A public discussion
channel (of unlimited capacity) is also available for
communication. A characterization of the secret-key
capacity of the CW model remains open. However it
has been solved for the practically important case of
independent noise channels. When the output symbols
at the receiver (yr) and eavesdroppers (ye) are con-
ditionally independent given the input symbolx , i.e.,
yr ↔ x ↔ ye holds thenC = maxp(x) I(x ; yr|ye).
Building upon these results, reference [10] establishes
the secret-key capacity for a class of fading channels.
The fading coefficients are sampled i.i.d. both in time
and across the receivers and the channel gains are re-

vealed the respective receivers. Since the channel gains
can be viewed as additional outputs at the receiver [11],
the model essentially reduces to a continuous valued
and cost constrained extension of the CW model [8],
[9]. The secret-key capacity is characterized in an
analogous manner and Gaussian inputs are shown to
be optimal. Reference [12] studies a non-coherent i.i.d.
Rayleigh fading CW model and establishes that (i) the
capacity achieving distribution is discrete and (ii) the
secret-key capacity remains bounded in the signal-to-
noise ratio (SNR) regardless of the number of antennas
at each terminal.

While the capacity results in [10], [12] provide
useful fundamental limits, they crucially depend on
the fading channel gains of the receiver and the eaves-
dropper being independent. When this condition does
not hold, the proposed coding schemes may not be
optimal. In realistic scattering environments, correla-
tion between the channel gains could be observed, see
e.g., [13], [14]. As such the correlation depends on
a number of factors such as the altitude of the base-
station, the number of scatteres and the position of the
receivers. Secondly the results assume that no channel
state information (CSI) is available at the transmitter
and are applicable only to FDD systems. In TDD
systems, the transmitter may have access to a noisy
version of of the legitimate receiver’s channel state
information (CSI), which again is not considered in
earlier works.

In this paper, we first study correlated fading chan-
nels with receiver only CSI and establish the secret-key
capacity using a two stage scheme where the receiver
channel gains are first revealed to the transmitter
over the discussion channel. The secret-key generation
codebook is then used conditioned on this knowledge
at all the terminals. We observe that the capacity
achieving technique in [10], [12] that involves joint
binning of the receiver output and channel gains is
sub-optimal. We then extend these results to the case
when the transmitter also has access to a noisy CSI of
the legitimate receiver. We propose a natural extension
of our two-step coding scheme, an upper bound on
the secret-key capacity, as well as the capacity when
the channel gains of the receiver and eavesdropper are
independent.



II. CHANNEL MODEL

The channel model is an i.i.d. fading channel model
described by

yr(t) = hr(t)x(t) + zr(t)

ye(t) = he(t)x(t) + ze(t)
, t = 1, 2, . . . , n (1)

where the noise random variableszr(t) and ze(t) are
mutually independent and sampled fromCN (0, 1) in-
dependently for eacht. The fading gains(hr(t), he(t))
are sampled from a joint distributionphr,he(hr, he),
independently for eacht. The input symbols are
complex-valued and satisfy an average power con-
straint 1

n

∑n

t=1 E[|x(t)|2] ≤ P . The realizations of
hr(t) andhe(t) are revealed to the legitimate receiver
and the eavesdropper. For our numerical results we
consider the case of Gaussian fading wherehr and
he are each zero mean, unit variance, jointly Gaussian
random variables with a correlation coefficient ofρe.

In addition, we assume that the transmitter is re-
vealed an i.i.d. sequenceht(t), which is a noisy version
of hr(t). The transmitter stateht satisfies the Markov
chain ht → (x , hr) → (yr, ye, he) indicating that the
channel outputs at the receiver and eavesdropper are
independent ofht given(x , hr). In the case of Gaussian
channels we letht(t) = ρthr(t) + w(t) wherew(t)
is zero mean Gaussian random variable with variance
1− ρ2t and independent of everything else.

III. M AIN RESULTS

Our main results are as follows.
Theorem 1: For the case of receiver-only CSI i.e.,

whenht = 0 the secret-key capacity is given by

C = Ehr,he

[

log

(

1 +
P |hr|2

1 + P |he|2

)]

(2)

The capacity achieving scheme involves a two-step
process. First the receiver revealshnr to all the termi-
nals using the public discussion channel. Thereafter a
conditional secret-key generation codebook is used to
achieve a rate of

C = max
p(x)

{I(x ; yr|hr)− I(yr; ye, he|hr)} (3)

= max
p(x)

I(x ; yr|ye, hr, he) (4)

It is interesting to compare the proposed coding
scheme with the joint-binning scheme [10].

Proposition 1: An achievable rate using the joint-
binning scheme in [10] for the Gaussian fading channel
with receiver-only CSI and a Gaussian input distribu-
tion x ∼ CN (0, P ) is:

RJB = Ehr,he

[

log

(

1 +
P |hr|2

1 + P |he|2

)]

+ log(1 − ρ2e)

(5)

if RJB ≥ 0. The rate is zero otherwise.
We note that the loss in (5) with respect to the

capacity expression (2) is thelog(1 − ρ2e) term. This
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Fig. 1. A comparison of capacity achieving Scheme (2) and joint-
binning scheme (5) for SNR = 10 dB andρt = 0.

can be interpreted as the penalty arising from the
eavesdropper CSI being correlated with the receiver
CSI. The joint-binning scheme loses secret-key bits
as the eavesdropper can learn more information about
yn
r , which is jointly binned withhnr . In contrast our

proposed scheme only binsyn
r and revealshnr and thus

avoids this leakage.
Fig. 1 provides a numerical comparison between the

capacity and the joint-binning scheme as a function of
the correlation parameterρe. We assume SNR = 10
dB andρt = 0. We see that even a small amount of
correlation can result in a significant penalty in the
joint-binning scheme.

When the transmitter has access to a side-
information sequenceht we have the following results.

Proposition 2: An achievable secret-key rate for the
fading-wiretap channel with transmitter CSI is

R− = max
px|ht

{

I(x , ht; yr|hr)− I(ye, he; yr|hr)

+ max {I(hr; ht)− I(hr; ye, he), 0}

}

. (6)

The secret-key rate is achieved by a natural exten-
sion of the capacity achieving scheme with receiver-
only CSI. In the first step the legitimate receiver bins
the sequencehnr so that a secret key of rateR1 =
max {I(hr; ht)− I(hr; ye, he), 0} can be achieved. In
the second phase the sequenceyn

r is binned using a
conditional secret-key generation codebook so that a
rate of R2 = I(x , ht; yr|hr) − I(ye, he; yr|hr) can be
achieved. The total secret-key rate isR− = R1 +R2.

In contrast, the joint-binning scheme yields a lower
rate as stated below:

Proposition 3: An achievable secret-key rate for the
fading wiretap channel with transmitter CSI using the
joint-binning scheme is:

R−
JB = max

px|ht

{

I(x , ht; yr|hr)− I(ye, he; yr|hr)

+ I(hr; ht)− I(hr; ye, he)

}

(7)



The joint-binning scheme provides an advantage to
the eavesdropper if its state sequencehne is strongly
correlated withhnr . This is manifested in the fact that
the second termI(hr; ht)−I(hr; ye, he) in (7) becomes
negative. The strategy in Prop. 2 discussed earlier
alleviates this problem by separately binninghnr and
yn
r .
We next state an upper bound on the secret-key rate.
Proposition 4: An upper bound on the secret-key

rate for the fading wiretap channel with public discus-
sion is

R+ = max
px|ht

I(x , ht; yr, hr|ye, he) (8)

The above upper bound equals the secret-key capacity
if the channel also satisfies(yr, hr) → (x , ht) →
(ye, he).

We remark that when(yr, hr) → (x , ht) → (ye, he)
holds, the capacity can be achieved using only a joint-
binning scheme, even though it is in general sub-
optimal (c.f. Prop. 2).

Theorem 2: When the channel gainshr and he are
independent, the secret-key capacity for the Gaussian
fading wiretap channel is lower and upper bounded by
C− ≤ C ≤ C+ where

C− = max
P (ht)

Ehr,ht,he

[

log

(

1 +
P (ht)|hr|2

1 + P (ht)|he|2

)]

+ log
1

1− ρ2t
(9)

where the maximum is over all power allocation poli-
ciesP (ht) that satisfyE[P (ht)] ≤ P and where1

C+ = Ehr,he

[

log

(

1 +
|h†rhe|

2

|he|4

)]

+ log
1

1− ρ2t
.

(10)

IV. PROOF OFMAIN RESULTS

We provide a proof of the main results in this
section. In the analysis of our coding schemes we
assume that the fading gainshr and he are discrete
valued and belong to a set{h1, h2, . . . , hD}. We let
pj = Pr(hr = hj). The result can be extended to
continuous valued channel gains using quantization
arguments. We omit the details in this paper, but refer
the reader to [10], [15] for a similar analysis.

A. Proof of Theorem 1

We first establish that the rate expression in (3) is
achievable. In our proposed coding scheme, the sender
samples an i.i.d. sequencexn from the distribution
px(·) and sends it overn channel uses. The receiver
observes(yn

r , h
n
r ) whereas the eavesdropper observes

(yn
e , h

n
e ). At the end of the source transmission the re-

ceiver transmitshnr over the public discussion channel.
At this point all the terminals have access tohnr . The
sender partitions the sequencexn into subsequences

1We useh†
r

to denote the conjugate ofhr.

(xn1

1 , . . . , xnD

D ) where x
nj

j denotes the subsequence
of xn corresponding to the indices wherehr,j = hj.
Likewise the receiver partitionsyn

r into subsequences
(yn1

r1 , . . . , y
nD

rD ). The receiver applies an independent
secret-key generation codebook [8], [9] on each of the
subsequencesynj

r,j of rate:

Rj = I(x ; yr|hr = hj)− I(ye, he; yr|hr = hj) (11)

and generates a keykj. The overall key k =

(k1, . . . , kD) has a rateR =
∑D

j=1 pjRj which equals
the expression in (3).

To establish the rate in (4) we observe that because
the noise variableszr andze are independent we have
that yr ↔ (x , hr) ↔ (ye, he) and hence

C = I(x ; yr|hr)− I(ye, he; yr|hr) (12)

= I(ye, he, x ; yr|hr)− I(ye, he; yr|hr) (13)

= I(x ; yr|hr, ye, he). (14)

Furthermore it follows from [9, Theorem 2] that an
upper bound on the secret-key capacity with outputs
(yr, hr) and (ye, he) at the legitimate terminals and
eavesdropper respectively is

C+ = max
p(x)

I(x ; yr, hr|ye, he) = max
p(x)

I(x ; yr|ye, he, hr),

(15)

where we use the fact thathr is independent of(ye, x)
givenhe in the second step. This upper bound coincides
with (4).

To establish Theorem 1 it only remains to show
that the expression in (4) is maximized by a Gaussian
input i.e.,x ∼ CN (0, P ). Let px(·) be any distribution
with E[x2] = P1 ≤ P . For each fixed(hr, he), the
estimation error ofyr given ye is

σ2
yr|ye

= 1 + |hr|
2P1 −

P 2
1 |hr|

2|he|
2

1 + P1|he|2
(16)

= 1 +
P1|hr|2

1 + P1|he|2
. (17)

Thus we have

h(yr|hr, ye, he) = Ehr,he [h(yr|ye, hr = hr, he = he)]

(18)

≤ Ehr,he

[

log 2πe

(

1 +
P1|hr|2

1 + P1|he|2

)]

(19)

≤ Ehr,he

[

log 2πe

(

1 +
P |hr|2

1 + P |he|2

)]

(20)

where (19) follows from (17) and the fact that a
Gaussian input distribution maximizes the differential
entropy among all distributions with a fixed variance
and the last step follows from the fact that the objective
function is increasing inP1 and so we maximize it by



settingP1 = P . Thus we have

I(x ; yr|hr, ye, he) = h(yr|he, hr, ye)− h(yr|ye, hr, he, x)

(21)

= h(yr|he, hr, ye)− h(zr) (22)

= h(yr|he, hr, ye)− log 2πe (23)

≤ Ehr,he

[

log

(

1 +
P |hr|2

1 + P |he|2

)]

(24)

where the last step follows from (20). Since equality
holds by selecting a Gaussian input distribution, this
complete the proof of Theorem 1.

B. Proof of Prop. 1

The joint-binning scheme proposed in [8], [9] in-
volves joint binning of(yn

r , h
n
r ) such that the transmit-

ter can reproduce these sequences with high probability
given xn. The rate that can be achieved is,

RJB = I(x ; yr, hr)− I(ye, he; yr, hr) (25)

= I(x ; yr|hr)− I(ye, he; yr|hr) + I(x ; hr)− I(ye, he; hr)
(26)

= I(x ; yr|hr)− I(ye, he; yr|hr)− I(he; hr) (27)

where the last relation follows from the fact that
(x , hr) are independent andye → he → hr holds.
Evaluating (27) withx ∼ CN (0, P ) we have that

I(x ; yr|hr)− I(ye, he; yr|hr)

= h(yr|hr, ye, he)− h(yr|hr, x) (28)

= Ehr,he

[

log

(

1 +
P |hr|2

1 + P |he|2

)]

(29)

and using the jointly Gaussian fading model we have

I(hr; he) = − log(1 − ρ2e). (30)

This establishes (5).

C. Proof of Prof. 2

The coding scheme is an extension of the scheme
in the proof of Theorem 1. In particular we propose a
layered coding scheme as follows:

• The sender samplesxi from the distribution
px|ht(xi|hti) for i = 1, 2, . . . , n and transmits it
at time t = i. The receiver and eavesdropper are
revealed(yr,i, hr,i) and (ye,i, he,i) respectively.

• Upon receiving (hnr , y
n
r ), the receiver applies

a Slepian-Wolf code [8], [9] of rateRs,0 =
H(hr|ht) to hnr and transmits the corresponding
bin index over the public discussion channel. By
virtue of the Slepian-Wolf coding theorem the
transmitter is able to recover sequencehnr with
high probability upon observinghnt and the bin
index.

• The sender and receiver apply a secret-key agree-
ment codebook [8], [9] tohnr to generate a secret
key of rate

R0 = max (0, I(hr; ht)− I(hr; he, ye)) (31)

If the expression in (31) is zero, no secret-key is
produced in this step.

• With the common knowledge ofhnr between
the transmitter and receiver, the sequences
xn, hnt and yn

r are partitioned into D

sub-sequences. The sender partitions the
sequences (xn, hnt ) into D subsequences
{(xn1

1 , hn1

t1 ), . . . , (x
nj

j , h
nj

tj ), . . . , (x
nD

tD , hnD

tD )}
where (x

nj

j , h
nj

tj ) corresponds to those indices
i ∈ [1, n] wherehr,i = hj. Likewise the receiver
partitionsyn

r into (yn1

r,1, . . . , y
nD

r,D).
• A separate secret-key generation codebook in [8]

is then applied to each theD subsequences and a
key kj of rate

Rj = I(x , ht; yr|hr = j)− I(ye, he; yr|hr = j)
(32)

is produced.
• The overall secret-key is obtained by concatenat-

ing each of theD + 1 keys in the above steps.
The secret-key has a rate

R = R0 +

D
∑

j=1

Pr(hr = j)Rj , (33)

which reduces to (6).

D. Proof of Prop. 3

A straightforward extension of the joint-binning
scheme gives

RJB = I(x , ht; yr, hr)− I(ye, he; yr, hr) (34)

= I(x , ht; yr|hr)− I(ye, he; yr|hr)

+ I(x , ht; hr)− I(ye, he; hr) (35)

= I(x , ht; yr|hr)− I(ye, he; yr|hr)

+ I(ht; hr)− I(ye, he; hr) (36)

where the last step follows from the Markov condition
x ↔ ht ↔ hr.

E. Proof of Prop. 4

In [16, Theorem 4], it is shown that an upper
bound on secret-key agreement capacity for the wiretap
channelpyr,ye|ht,x(·) with non-causal transmitter CSI
hnt is given by

C ≤ max
px|ht

I(x , ht; yr|ye) (37)

Following the discussion in [11], [17], the channel
with two-sided CSI is equivalent to a channel with
transmitter only CSI but with outputs(hr, yr) and
(he, ye) at the legitimate receiver and the eavesdropper
respectively. Hence the above upper bound can also be
applied to the case of two-sided CSI:

C ≤ max
px|ht

I(x , ht; yr, hr|ye, he) (38)

thus establishing (8).



When the Markov condition(hr, yr) ↔ (x , ht) ↔
(ye, he) is satisfied, we have

I(x , ht; yr, hr|ye, he)

= I(ye, he, x , ht; yr, hr)− I(ye, he; yr, hr) (39)

= I(x , ht; yr, hr)− I(ye, he; yr, hr) (40)

which equals (34). Thus the capacity can be achieved
by a joint-binning scheme in this special case.

F. Proof of Theorem 2

When the channel gainshr andhe are independent,
the Markov condition(hr, yr) ↔ (x , ht) ↔ (ye, he) is
satisfied. Thus we have that

C = max
p(x|ht)

I(x , ht; yr, hr|ye, he) (41)

To establish the lower bound (9) we selectx ∼
CN (0, P (ht)) and evaluate (7).

I(x , ht; yr|hr)− I(yr; ye, he|hr)

= h(yr|hr, ye, he)− h(yr|hr, x , ht)

Since(yr, ye) are jointly Gaussian random variables it
follows that

h(yr|hr, ye, he) (42)

= E

[

log 2πe

(

1 + |hr|
2P (ht)−

P 2(ht)|hr|
2|he|

2

1 + P (ht)|h2e |

)]

(43)

= E

[

log 2πe

(

1 +
P (ht)|hr|2

1 + P (ht)|h2e |

)]

(44)

Thus usingh(zr) = log 2πe, we have,

I(x , ht; yr|hr)− I(yr; ye, he|hr) (45)

= E

[

log

(

1 +
P (ht)|hr|2

1 + P (ht)|h2e |

)]

(46)

Furthermore sincehr andhe are independent andhr ∼
CN (0, 1) andht are jointly Gaussian with a correlation
coefficient ofρt

I(hr; ht)− I(he; hr) = h(hr)− h(hr|ht) = − log(1− ρ2t )
(47)

Substituting (46) and (47) we obtain the desired lower
bounds in (9).

To establish the upper bound note that

R+ = I(ht, x ; yr, hr|ye, he)

= I(ht, x ; yr|ye, he, hr) + I(ht, x ; hr|ye, he) (48)

The seco nd term in (48) can be upper bounded by
observing that whenhr and he are independent, we
have that(x , ye, he) → ht → hr and hence

I(ht, x ; hr|ye, he) ≤ I(ht; hr) = − log(1− ρ2t ). (49)

The first term in (48) can be upper bounded as follows

I(ht, x ; yr|ye, he, hr) = h(yr|ye, he, hr)− h(zr) (50)

≤ h

(

yr −
hrh

†
e

|he|2
ye

∣

∣

∣

∣

ye, he, hr

)

− h(zr) (51)

≤ E

[

log

(

1 + P
|h†rhe|

2

|he|4

)]

(52)

Note that the upper bound expression in (10) follows
by substituting (49) and (52) into (48).
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