Structural Properties of Erasure Codes for Streaming Communication

Ashish Khisti

Joint work with:
Ahmed Badr (Toronto), Wai-Tian Tan (Cisco), John Apostolopoulos (Cisco)

University of Toronto
Department of Electrical and Computer Engineering

Streaming Communication
Structural Properties of Erasure Codes for
<table>
<thead>
<tr>
<th>Application</th>
<th>Bit-Rate (Mbps)</th>
<th>Latency (ms)</th>
<th>MSDU (B)</th>
<th>PLR</th>
<th>10-6</th>
<th>10-4</th>
<th>10-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Streaming</td>
<td>4 Mbps</td>
<td>500 ms</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive Gaming</td>
<td>2 Mbps</td>
<td>50 ms</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Conferencing</td>
<td>1 Mbps</td>
<td>100 ms</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

Multimedia Streaming
Real-Time Communication System

\[
\begin{align*}
\text{Rate} & \equiv \frac{u}{v} \\
\text{Causal encoder: } x & \equiv [y]s, \ldots, [1]s, [0]s, y = [z]x \\
\text{Stream source} & \equiv [y]s, z \in \mathbb{R}
\end{align*}
\]
Real-Time Communication System
Real-Time Communication System

Rate: \(\frac{u}{v} \)

Causal encoder: \([x] \)

\(b \in \{ [0] \} \) s \(\cdots \) \([1] \) \(s \) \([0] \) \(s \) \(f \) \(= \) \([i] \) \(x \)

Source

Stream
Real-Time Communication System

Rate

Causal encoder: $x \mapsto \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Output

Input

Time

Source
Real-Time Communication System

Rate = \frac{\log b}{\log n}

\forall \theta \in [\tau] \text{ s.t. } f = [\tau] x

Causal encoder: x

Time

Source stream

Real-Time Communication System
Real-Time Communication System
Real-Time Communication System

Packet Broadcast Channel

\[\text{Rate} = \frac{u}{v} \]

Causal encoder: \(x \)

\(b \) \(\in \) \([2]s\)

Source

Time
Real-Time Communication System

![Diagram of a real-time communication system with components and equations related to delay constraint decoding and packet erasure.]

- Delay constraint decoding: $([L+\beta], [I], [0])^\beta = [\gamma]$.
- Packet erasure channel: $[\gamma]x = [\gamma]y$ for packet erasure; otherwise $x = [\gamma]y$.
- Causal encoder: $x = [\gamma]y$.
- Rate $\frac{b}{u} \in ([\gamma]s, \ldots, [0]s) f = [\gamma]s$.
Real-Time Communication System

Delay \mathcal{D}

$[0]s$

$([L] + \beta) \mathcal{A} \cdots [1] \mathcal{A} [0] \mathcal{A} \beta = [\gamma]s$

Decoder constrained: $[\gamma]s = [\gamma] \mathcal{A}$

Packet erasure channel $\mathcal{X} = [\gamma] \mathcal{A}$

$[\gamma]x = [\gamma] \mathcal{A}$

Rate $\frac{b}{u}$

$[\gamma]s \cdots [1]s [0]s \beta \mathcal{F} = [\gamma] \mathcal{X}$

Causal encoder \mathcal{X}

$\mathcal{D} = [\gamma]s$

Source
Streaming Code: Causal Encoder + Delay Constrained Decoder

\[
\]

Delay constrained decoder: \(\delta\) for packet erasure: otherwise \(X = [\delta]X\)

Packet Bresure Channel

\[
\]

Rate

\[
\frac{b}{n} \in ([\delta]s, \ldots, [I]s, [0]s)_{\delta} = [\delta]s
\]

Causal encoder: \(X = [\delta]X\)

Source

Real-Time Communication System
Proposed Channel Model

Gilbert-Elliott Model

Loss Pattern
Sliding Window Erasure Channel: $C(N, B, W)$

In any sliding window of length W, the channel can introduce only one of the following:
- Upto N erasures in arbitrary positions
- An erasure burst of maximum length B

Loss Pattern

Gilbert-Elliott Model

Proposed Channel Model
Problem Setup - Sliding Window Erasure Channel Model

Source Model: i.i.d. sequence \(s_t \sim p_s(\cdot) = \text{Unif}\{F_q^b:k\} \)

Streaming Encoder: \(x_t = f_t(s_0, \ldots, s_t) \)

Erasure Channel: (Sliding Window Model)

Delay-Constrained Decoder: \(\hat{s}_t = g_t(y_0, \ldots, y_{t+T}) \)

Rate \(R = \frac{k_n}{q} \) is achievable over the \(C(N, B, W) \) channel, if there is a sequence of encoding and decoding functions, \(f_t(\cdot) \) and \(g_t(\cdot) \), respectively over a sufficiently large field \(F_q \) and rate \(R = \frac{k_n}{q} \).

The supremum of achievable rates is the streaming capacity:

\[
\frac{u}{q} = R
\]
Problem Setup - Sliding Window Erasure Channel Model

Source Model: i.i.d. sequence

\[s[t] \sim p(s) = \text{Unif}\{F_q^k\} \]

Streaming Encoder:

\[x[t] = f_t(s[0], \ldots, s[t]) \]

Erasure Channel: (Sliding Window Model)

Delay-Constrained Decoder:

\[\hat{s}[t] = g_t(y[0], \ldots, y[t+T]) \]

Rate

\[R = \sup \{ \frac{u}{q} \} \]

Streaming Capacity

Arbitrarily large field size

Worst Case Definition

- Rate \(R \) is achievable over the \(C(N, B, W) \) channel, if there is a sequence of encoding and decoding functions, \(f_t(\cdot) \) and \(g_t(\cdot) \) respectively over a sufficiently large field \(\mathbb{F}_q \) and rate \((\cdot)^q \)

- The supremum of achievable rates is the streaming capacity.
Theorem

Consider the $C(N, B, W)$ channel, with $W \geq B + 1$, and let the delay be T.

Upper-Bound

For any rate R code, we have:

$$R \leq N + B \left(\frac{R - 1}{R} \right)$$

Lower-Bound

There exists a rate R code that satisfies:

$$R \geq N + B \left(\frac{R - 1}{R} \right)$$

The gap between the upper and lower bound is 1 unit of delay.
Baseline Codes - Full Rank Condition

Baseline Codes - Full Rank Condition

Strong-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

Random Linear Codes

Erasure Codes:

By $x - u \cdot \frac{b}{y} \in H$, $H \cdot W \cdot s + \cdots + 1 \cdot H \cdot s + 0 \cdot H \cdot s = d$

$X = \begin{bmatrix}
\begin{array}{cccccccc}
\begin{array}{c}
\text{d} \\
\text{s}
\end{array} & \begin{array}{c}
\text{d} \\
\text{s}
\end{array}
\end{array}
\end{bmatrix}$

u
Baseline Codes - Full Rank Condition

- Strongly-MDS Codes (Gabidulin '88, Gluesing-Luerssen '06)
- Random Linear Codes

Erasure Codes:

\[y - u \times v H \in ?H, \quad \sum_{H} H \cdot H^{-1} s + \cdots + I \cdot I^{-1} s + 0 \cdot H \cdot s = d \]

\[\begin{bmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \]

\[\begin{bmatrix} d \ddots \ddots \ddots \ddots \ddots \ddots \ddots \\ \ddots \ddots \ddots \ddots \ddots \ddots \ddots \end{bmatrix} \begin{bmatrix} u \end{bmatrix} \]
Baseline Codes - Full Rank Condition

Erasure Codes:

\[
\begin{align*}
\begin{bmatrix}
\mathbf{b} \\
\mathbf{u} \times \mathbf{H}
\end{bmatrix} \subseteq \mathbf{H}, \\
\mathbf{H} \cdot \mathbf{W} \cdot \mathbf{s} + \cdots + \mathbf{H} \cdot \mathbf{I} \cdot \mathbf{s} + \mathbf{0} \cdot \mathbf{H} \cdot \mathbf{s} = \mathbf{d}
\end{align*}
\]
Baseline Codes - Full Rank Condition

- Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06)
- Random Linear Codes

Erasure Codes:

\[
x - u \times b \in \mathcal{H} \quad 'W' \quad H \cdot W^{-1} s + \cdots + I \cdot I^{-1} s + 0 \cdot H \cdot s = d
\]
Baseline Codes - Full Rank Condition

\[\begin{pmatrix} x \\ \vdots \end{pmatrix} = \begin{pmatrix} s_0 \\ \vdots \end{pmatrix} \cdot H_0 + \begin{pmatrix} s_1 \\ \vdots \end{pmatrix} \cdot H_1 + \cdots + \begin{pmatrix} s_M \\ \vdots \end{pmatrix} \cdot H_M, \]

\(H_i \in \mathbb{F}_q^{n \times k} \)

\(H \cdot \mathbf{s} + \cdots + I \cdot \mathbf{s} + 0 \cdot \mathbf{H} = \mathbf{d} \)

Erasur Codes:

- Strongly-MDS Codes (Gabidulin '88, Glueising-Lurerssen '06)
- Random Linear Codes
Baseline Codes - Full Rank Condition

Erasure Codes:
- Random Linear Codes
- Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06)

\[p_i = s_i \cdot H_0 + s_{i-1} \cdot H_1 + \ldots + s_{i-M} \cdot H_M, \]
\[H_i \in \mathbb{F}_q^{k \times n-k} \]

\[p_0, p_1, \ldots, p_n \]

\[s_0, s_1, \ldots, s_n \]
Baseline Codes - Full Rank Condition

Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)

Random Linear Codes

Erasure Codes:

\[\begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} \in \mathbb{F}_q^n \]

\[H \cdot W^{-1} \mathbf{s} + \cdots + I \cdot I^{-1} \mathbf{s} + 0 \cdot H \cdot \mathbf{s} = \mathbf{d} \]

\[\mathbf{x} \]

\[\begin{bmatrix} d_1 & d_2 & \cdots & d_k \end{bmatrix} \]
Baseline Codes - Full Rank Condition

- Strongly-MDS Codes (Gabidulin'88, Gluesing-Luerssen'06)
- Random Linear Codes

Erasure Codes:

\[
\begin{align*}
\begin{bmatrix}
V \\
H
\end{bmatrix}
& \in \mathbb{F}_q^{b \times (k+u)} \\
\mathbf{H}
& = \begin{bmatrix}
\mathbf{H}_1 \\
\mathbf{H}_2 \\
\vdots \\
\mathbf{H}_M
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{x} - \mathbf{y}
& = \begin{bmatrix}
\mathbf{d}_1 \\
\mathbf{d}_2 \\
\vdots \\
\mathbf{d}_M
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{x}
& = \begin{bmatrix}
\mathbf{s}_1 \\
\mathbf{s}_2 \\
\vdots \\
\mathbf{s}_M
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{x}
& = \begin{bmatrix}
\mathbf{d}_1 \\
\mathbf{d}_2 \\
\vdots \\
\mathbf{d}_M
\end{bmatrix}
\end{align*}
\]
Baseline Codes - Full Rank Condition

\[
\begin{bmatrix}
 s_0 \\
 s_1 \\
 s_2 \\
 s_3 \\
 s_4 \\
 s_5 \\
 s_6 \\
 s_7 \\
\end{bmatrix} \cdot \begin{bmatrix}
 H_0 & H_1 & 0 & 0 \\
 H_1 & H_0 & H_1 & 0 \\
 H_0 & H_1 & H_0 & H_1 \\
 H_1 & H_0 & H_1 & H_0 \\
\end{bmatrix} = \begin{bmatrix}
 d_0 \\
 d_1 \\
 d_2 \\
 d_3 \\
\end{bmatrix}
\]

Erasure Codes:

\[
\begin{align*}
\frac{b}{u} \times \frac{b}{u} \in \mathbb{H} \\
H_0 & \cdot H_1 \cdot \cdots \cdot H_{b-1} \cdot s + \cdots + H_0 \cdot s + 0 \cdot s = d
\end{align*}
\]

Random Linear Codes

Strongly-MDS Codes (Gabidulin, 88, Gluesing-Luerssen, 06)

Recover
Rate \(\frac{1}{2} \) Baseline Erasure Codes, \(T = 7 \)

\[
\frac{B}{T} = 8, \quad R = \frac{B}{T} = 8
\]
Rate 1/2 Repetition Code, $\mathcal{L} = 8$

Rate 1/2 Baseline Erasure Codes, $\mathcal{L} = 7$

$$\frac{3}{\varphi} = \frac{B + \mathcal{L}}{\mathcal{L}} = R, \quad \mathcal{L} = 8, \quad R = 4, \quad B = ?$$
Streaming Code - Burst Erasure Channel

Encoding:

1. Source Splitting:
 \[s_i = (u_i, v_i) \]

2. Erasure Code on \(v_i \):
 \[\text{Generate} \ v_i ! (v_i, p_i) \]
 where \(p_i \) is obtained from a Strongly-MDS code.

3. Repetition Code on \(u_i \):
 \[\text{Repeat the} \ u_i \ 's \text{with a shift of} \ T \]

Merging:

1. Combine the repeated \(u_i \)’s with the \(p_i \)’s.

Rate:

\[R = \frac{T + B}{9} \]
Streaming Code - Burst Erasure Channel

\[R = \frac{u+v}{3u+v} = \frac{1}{2} \]

\[B = 4, T = 8, R = \frac{T}{T+B} = \frac{2}{3} \]
Streaming Code - Burst Erasure Channel

\[R = \frac{\lambda + n \cdot 2}{\lambda + n} = \frac{e}{z} \]

Encoding:

1. Source Splitting:
 \[s_i = (u_i, v_i) \]
 where \(u_i \in \mathbb{F}_B \) and \(v_i \in \mathbb{F}_T \).

2. Erasure Code on \(v_i \):
 Generate \(v_i! \) from a Strongly-MDS code.

3. Repetition Code on \(u_i \):
 Repeat the \(u_i \) symbols with a shift of \(T \).

4. Merging:
 Combine the repeated \(u_i \)'s with the \(p_i \)'s.

Rate:

\[R = \frac{T + B}{2T} = \frac{e}{z} \]

Burst Erasure Channel
Streaming Code - Burst Erasure Channel

Encoding:

\[\frac{\lambda + n \geq}{\lambda + n} = R \]

Merging: Combine the repeated \(u_i \)'s with the \(p_i \)'s

Repetition Code on \(u_i \): Repeat the \(u_i \)'s symbols with a shift of \(\mathcal{L} \)

Strongly-MDS code:

- Erasure Code on \(v_i \): Generate \(v_i \) from a \(B \) is obtained from a

Source Splitting:

- \(s_i = (u_i, v_i) \)
- \(u_i^2 \in \mathbb{F}_b \)
- \(v_i^2 \in \mathbb{F}_b \)

- Generate \(v_i \) from \(u_i \)
- Repeat the \(u_i \)'s symbols with a shift of \(\mathcal{L} \)
- Combine the repeated \(u_i \)'s with the \(p_i \)'s

Rate:

\[\frac{B + \mathcal{L}}{\mathcal{L}} = R \]

\(B \), \(T \), \(R \)
Encoding:

1. **Source Splitting:**
 - Split the source into two parts: $s_i = (u_i, v_i)$, where $u_i^b \in F_B q$ and $v_i^b \in F_T B_q$.

2. **Erase Code on v_i:** Generate (v_i, p_i) using a strongly-MDS code, where $p_i^b \in F_B q$ is obtained from v_i^b.

3. **Repetition Code on u_i:** Repeat the u_i symbols with a shift of T.

4. **Merging:** Combine the repeated u_i's with the p_i's.

5. **Rate:**
 \[\frac{B + T}{B} = R \]
Streaming Code - Burst Erasure Channel

Encoding:

1. Source Splitting: $s_i = (u_i, v_i)$, $u_i \in F_{b_q^n}$, $v_i \in F_{T_{b_q^n}}$

2. Erasure Code on v_i: Generate $\lambda \leftarrow \forall \beta \in F_{b_q^n}$ where $p_i \in \beta$

3. Repetition Code on u_i: Repeat the u_i symbols with a shift of λ

4. $s_i = (u_i, v_i)$

5. Merging: Combine the repeated u_i's with the p_i's

Rate: $R = \frac{b+\lambda}{\lambda} = \frac{\lambda+n}{\lambda+n}$

B = 4, T = 8, R = 8

Strongly-MDS code:

$\forall \lambda \in F_{b_q^n}$ is obtained from a b_q^n-MDS code.

$\forall \beta \in F_{b_q^n}$ where $p_i \in \beta$

$\forall \beta \in F_{b_q^n}$ where $p_i \in \beta$
Encoding:

\[\frac{B + \frac{L}{T}}{L} = R \]

\[\frac{\lambda + n \gamma}{\lambda + n} = R \]

Streaming Code - Burst Erasure Channel

Source Splitting:

- Erasure Code on \(u_i \): Repeat the \(u_i \) symbols with a shift of \(L \)
- Repetition Code on \(u_i \): Repeat the \(u_i \) symbols with a shift of \(L \)
- Strongly-MDS code: is obtained from a

Merging: Combine the repeated \(u_i \)s with the \(p_i \)s

Rate:

\[\frac{B + \frac{L}{T}}{L} = R \]
S. Rate: \(R = \frac{B + \frac{L}{T}}{L} \)

4. Merge: Combine the repeated \(u_i \)'s with the \(p_i \)'s

3. Repetition Code on \(u_i \): Repeat the \(u_i \)'s symbols with a shift of \(L \)

2. Strongly-MDS code: \(b_i \in \mathbb{F}^L \) is obtained from a

1. Erasure code on \(\lambda \): Generate \(\lambda \) where \(P \in \mathbb{F}^L \) is a

Source Splitting: \(s_i \)’s

Encoding:

\[
\begin{align*}
\xi & = \frac{\lambda + n \zeta}{\zeta} = R \\
\end{align*}
\]

Streaming Code - Burst Erasure Channel

\[
\begin{align*}
\frac{\xi}{\zeta} &= \frac{B + \frac{L}{T}}{L} = R \\
A \cdot \frac{L}{T} &= B \\
\end{align*}
\]
Source Splitting: $s_i = (u_i, v_i)$

1. Erasure Code on v_i: Generate $v_i = (v_i, p_i)$ where $p_i \in \mathbb{F}_{B_q}$ is obtained from a Strongly-MDS code.

2. Repetition Code on u_i: Repeat the u_i symbols with a shift of T.

3. Repeat the u_i symbols with a shift of T.

4. Combine the repeated u_i's with the p_i's.

5. Combine the repeated u_i's with the p_i's.

$\frac{B+T}{L} = R$
Robust Extension: CN, B, W Channel

Layered Code Design

Burst-Erasure Streaming Code:

Erasure Code: $q_i = PM_{t=1} u_i \cdot H u_t$

Concatenation: $b \vdash \gamma \vdash n + b \vdash d \vdash n \vdash k$ $\vdash n$ $\vdash n$ $\vdash n$

Attains the lower bound

$\frac{\gamma + B + L}{L} = R$

$\vdash n + b \vdash d \vdash n \vdash k$
Distance and Span Properties

Consider \((n, k, m)\) Convolutional code: \(x_i = \sum_{j=0}^{m} s_{i-j} G_{ij}\)
Consider \((n, k, m)\) convolutional code:

\[x_i = \sum_{j=0}^{m} s_{i-j} G_j \]
Distance and Span Properties

Consider \((n, k, m)\) Convolutional code:

\[
x_i = P_{m j=0} s_{ij} G_j
\]

Column Distance:

\[
d_{C} = \min \left[s_0, \ldots, s_T \right] \quad \text{wt} = \min \left[0 \neq 0s \right] [s_s, \ldots, 0s] = \nu p
\]

Consider \((n, k', m)\) Convolutional code: \(x\).
Consider \((n, k, m)\) convolutional code:

\[
\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
1-\ell & \cdots & 0 \\
\ell & \cdots & 1 \\
\end{pmatrix}
\begin{bmatrix}
J \mathbf{s} & \cdots & 0 \mathbf{s}
\end{bmatrix}
\text{wt}\min_{0 \neq \theta_0} = p
\]

Column Distance: \(d_T\)

Consider \((n, k, m)\) convolutional code: \(x\). Distance and Span Properties
Consider (n, k, m) convolutional code: $x = \sum_{i=0}^{T} s_i G_i$. \[d_T = \min_{0 \neq s} \left[s_0, \ldots, s_T \right] \]

Column Distance:
\[
\begin{bmatrix}
G_0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
J^{-1}G & \cdots & 0 \\
JG & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
J s & \cdots & 0 \\
\end{bmatrix}
\]

Column Span in $[0,3]$
Consider \((n, k, m)\) convolutional code:

\[
x_i = P_{m}^j = 0 \\
\text{Column Distance: } \quad d_{\text{C}} = \min \left[s_0, \ldots, s_T \right] = 0 \\
\text{Column Span: } \quad c_{\text{C}} = \min \left[\sum_{i=0}^{T} s_i \right] = c_T \\
\text{Column Distance: } \quad d_T = \min \left[\sum_{i=0}^{T} s_i \right] = T_p \\
\text{Distance and Span Properties}
\]
Consider a $C(N, B, W)$ channel with delay T and $W^{-1} + 1$. A streaming code is feasible over this channel if and only if it satisfies:

$$1 + B \geq T \text{ and } 1 + N \geq T \text{ and } W^{-1} + 1.$$
Theorem

Consider a \(C(N,B,W) \) channel with delay \(T \) and \(W_T + 1 \). A streaming code is feasible over this channel if and only if it satisfies:

\[
\frac{H - 1}{1} + L \geq Tp + Tc \left(\frac{H - 1}{H} \right)
\]

Field that satisfies:

There exists a rate \(R \) code (MIDAS Code) over a sufficiently large field that satisfies:

\[
\frac{H - 1}{1} + 1 + L \geq Tp + Tc \left(\frac{H - 1}{H} \right)
\]

Theorem

For any rate \(R \) convolutional code and any \(T \) the Column-Distance \(d_T \) and Column-Span \(c_T \) satisfy the following:

\[
\frac{H - 1}{1} + \frac{1}{T} \geq T p \Rightarrow c_T + d_T \geq T + 1 \cdot \frac{1}{R}
\]

There exists a rate \(R \) code (MiDAS Code) over a sufficiently large field that satisfies:

\[
\frac{H - 1}{1} + \frac{1}{T} \geq T p \Rightarrow c_T + d_T \geq T + 1 \cdot \frac{1}{R}
\]

Consider a \(C(N,B,W) \) channel with delay \(T \) and \(W \) and any \(T \) the following:

\[
V + B \geq c_T \text{ and } N \geq T p \text{ satisfies: streaming code is feasible over this channel if and only if it}
\]
Simulation Result

Gilbert Elliott Channel

Good State: \(\Pr(\text{loss}) = e \)

Bad State: \(\Pr(\text{loss}) = 1 \)

Simulation Length = 10^7

Gilbert Channel \((\alpha, \beta) = (5 \times 10^{-4}, 0.5) \), \(T = 12 \) and \(R \approx 0.5 \)

Burst Length vs. Probability of Occurrence
Simulation Results

Gilbert-Elliott Channel

$\left(5 \times 10^{-4} \right), T = 12$ and $R = 0.5$

Strongly MDS

$\left(5 \times 10^{-4} \right), T = 12$

Burst-Erasurce

$\left(5 \times 10^{-4} \right), T = 12$

Table:

<table>
<thead>
<tr>
<th>Code</th>
<th>Strongly MDS</th>
<th>Burst-Erasurce</th>
<th>I II</th>
</tr>
</thead>
<tbody>
<tr>
<td>N B</td>
<td>N B</td>
<td>I II</td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results - II

Fritchman Channel

\(\beta = 0.5\)

\[\beta = \text{Probability of Occurrence} \]

\[\text{Histogram of Burst Lengths for 9-State Fritchman Channel} \]

Analytical vs. Actual

16/23
Fritchman Channel

Simulation Results

<table>
<thead>
<tr>
<th>Code</th>
<th>NB</th>
<th>Code</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiDAS-II 4</td>
<td>35</td>
<td>MiDAS-I 8</td>
<td>31</td>
</tr>
</tbody>
</table>

Burst Erasure:

- Strongly MDS: 20
- Code: 20

Uncoded

- RLC
- SC0
- FLC
- Unencoded

Loss Probability

9 States - Fritchman Channel $(\alpha^t) = (1e-005, 0.5) \ T = 40$

9 States - Fritchman Channel $(\alpha^t) = (1e-05, 0.5) \ T = 40$

$R = 40/79$, 9 states

Simulation Results
Multicast Streaming Codes

Motivation

Delay adapts to Channel State

Receiver 2: Weaker Channel State
Receiver 1: Good Channel State

$B_1 > B_2$

Src. Stream

Encoder

Decoder 1

Decoder 2

B_1

B_2

Burst Erasure

Broadcast Channel

Receiver 1: Good Channel State
Receiver 2: Weaker Channel State

Delay adapts to Channel State

Delay $= T_1$

Delay $= T_2$
Multicast Streaming Codes

- Concatenation Lower Bound: $C \geq \frac{\frac{T_2 T_1 B_2}{T_1 T_2} + \frac{1}{B_1}}{1}$
- Single User Upper Bound: $C \geq \min \left(\frac{T_1 T_2}{B_1}, B_2 \right)$
- Capacity function $C(T_1, T_2, B_1, B_2)$

```
\begin{align*}
\text{Capacity Function} & \geq \min \left( \frac{T_1 T_2}{B_1}, B_2 \right) \\
\text{Encoder} & \\
\text{Decoder 1} & \text{Delay} = T_1 \\
\text{Decoder 2} & \text{Delay} = T_2 \\
\text{Src. Stream} & \\
\end{align*}
```

Burst Erasure Broadcast Channel
Multicast Streaming Setup

Encoder

Decoders 1, 2

Capacity Function

\[C \left(\frac{T_1 + B_1}{T_2 + B_2}, \frac{T_2 + B_2}{T_1 + B_1} \right) \]

Single User Upper Bound:

\[C \geq \min \left(\frac{T_1 + B_1}{T_2 + B_2}, \frac{T_2 + B_2}{T_1 + B_1} \right) \]

Concatenation Lower Bound:

\[C \leq \frac{T_1 + B_1}{T_2 + B_2} \]

Delay = \(T_1 \) for Decoder 1

Delay = \(T_2 \) for Decoder 2

Burst Erasure Channel

Src. Stream
Assume w.l.o.g. $B_2 \geq B_1$.

Multicast Streaming Capacity

Badr-Khisti-Lui (IT Trans. To Appear 2015)
Other Extensions

Mismatched Streaming Codes (Patil-Badr-Khisti-Tan Asilomar 2013)

Partial Recovery Streaming Codes (Patil-Badr-Khisti-Tan Asilomar 2013)

Other Recent Results: Leong-Ho (ISIT 2012)

Burst Erasure Channels: Martinian and Sundberg (IT-2004)

Other Results

Source Streaming with Different Decoding Delays (Lui (unpublished) 2011)

- Embedded Codes

Multiple Links (Lui-Badr-Khisti CWIT 2011) - Layered coding

Interleaved Low-Delay Codes

Multiple Erasure Bursts (Li-Khisti-Cirio Asilomar 2011) - Layered coding

Leong-Qureshi-Ho (ISIT 2013)

Other Recent Results: Leong-Ho (ISIT 2012)

Multiple Source Streams with Different Decoding Delays (Lui)

Multiple Links (Lui-Badr-Khisti CWIT 2011) - Layered coding

Interleaved Low-Delay Codes

Multiple Erasure Bursts (Li-Khisti-Cirio Asilomar 2011) - Layered coding

Leong-Qureshi-Ho (ISIT 2013)

Other Recent Results: Leong-Ho (ISIT 2012)

Burst Erasure Channels: Martinian and Sundberg (IT-2004)

Other Results

Source Streaming with Different Decoding Delays (Lui (unpublished) 2011)

- Embedded Codes

Multiple Links (Lui-Badr-Khisti CWIT 2011) - Layered coding

Interleaved Low-Delay Codes

Multiple Erasure Bursts (Li-Khisti-Cirio Asilomar 2011) - Layered coding

Leong-Qureshi-Ho (ISIT 2013)

Other Recent Results: Leong-Ho (ISIT 2012)

Burst Erasure Channels: Martinian and Sundberg (IT-2004)
Conclusions

Real-Time Communication over Channels with Burst and Isolated Erasures

- Analyses of Probabilistic Channels
- MiDAS Codes
 - Systems Theoretic Approach (e.g., Dual Codes for MiDAS)
- Improved constructions for short-inter-burst gaps

Future Work

- Distance and Span Metrics
- Layering Approach
 - MiDAS Codes: Near Optimal Distance/Span Tradeoff
 - Sliding Window Erasure Channel Model
- Improved constructions for short-inter-burst gaps
References

Sliding Window Erasure Channel: Remarks

(N, B, W) = (2, 3, 6)

W = 6
N = 2

C(N, B, W) = Bursect Channel

(2, 3, 6)
Sliding Window Erasure Channel: Remarks

$$(N, B, W) = (2, 3, 6)$$

$W = 6$

$N = 2$
Sliding Window Erasure Channel: Remarks

\((N, B, W) = (2, 3, 6)\)

\(W = 6\)

\(N = 2\)
Sliding Window Erasure Channel: Remarks

$\mathbf{0} \quad (N, B, W) = (2, 3, 6)$

$W = 6$

$B = 3$

$(N, B, W) = (2, 3, 6)$
Sliding Window Erasure Channel: Remarks

\((N, B, W) = (2, 3, 6)\):

- \(N = 1\) (Burst-Erase Channel)
- \(W = 6\)
- \(B = 3\)

\((N, B, W) = (2, 3, 6)\):

- \(B = 3\)
- \(W = 6\)
C(N) \subseteq M \text{ Burst-Erase Channel}

(N, B, W) = (2, 3, 6)

W = 6
B = 3

(N, B, W) = (2, 3, 6)