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Abstract

In this paper, we study a diamond-relay channel where the source is connected to M relays through
orthogonal links and the relays transmit to the destination over a wireless multiple-access channel in
the presence of an eavesdropper. The eavesdropper not only observes the relay transmissions through
another multiple-access channel, but also observes a certain number of source-relay links. The legitimate
terminals know neither the eavesdropper’s channel state information nor the location of source-relay links
revealed to the eavesdropper except the total number of such links.

For this wiretapped diamond-relay channel, we establish the optimal secure d.o.f. In the achievability
part, our proposed scheme uses the source-relay links to transmit a judiciously constructed combination
of message symbols, artificial noise symbols as well as fictitious message symbols associated with
secure network coding. The relays use a combination of beamforming and interference alignment in
their transmission scheme. For the converse part, we take a genie-aided approach assuming that the

location of wiretapped links is known.

I. INTRODUCTION

Cloud Radio-Access Network (C-RAN) is a promising architecture to meet the demand for higher
data rates in next generation wireless networks. In these systems, the base-stations act as relays and
are connected via high-speed backhaul links to a cloud network. Encoding and decoding operations
happen centrally in the cloud. The study of fundamental information theoretic limits and optimal coding
techniques for such systems is a fertile area of research.

Motivated by C-RAN, we study a model where the source is connected to M relay terminals using
orthogonal links with a fixed capacity. The relays transmit to the destination over a wireless multiple-
access channel. Such a setup is known as the diamond-relay network [1]-[5]. We study this model in

the presence of an eavesdropper who can eavesdrop the orthogonal links from the source to the relays as
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well as the wireless transmission from the relays. We require that a message be transmitted reliably to
the legitimate receiver, while keeping it confidential from the eavesdropper. We adopt the information-
theoretic notion of confidentiality, widely used in the literature on the wiretap channel [6]-[23]. We thus
refer to our setup as the wiretapped diamond-relay channel.

While the secrecy capacity of both the scalar Gaussian wiretap channel and its multi-antenna extension
can be achieved using Gaussian codebooks [8]-[10], the optimal schemes in multiuser channels are
considerably more intricate. Very recently, Xie and Ulukus [24] studied the secure degrees of freedom
(d.o.f.) for one-hop Gaussian multiuser channels such as the multiple-access channel and the interference
channel. It turns out that interference alignment [25], [26] plays a central role in achieving the optimal
secure d.o.f. While coding schemes based on Gaussian codebooks can only achieve zero secure d.o.f., the
schemes presented in [24] involve transmitting a combination of information and jamming signals at each
transmitter and judiciously precoding them such that the noise symbols align at the legitimate receiver(s),
yet mask information symbols at the eavesdropper. This approach has been extended for the case with
no eavesdropper’s channel state information (CSI) at the legitimate parties in [27], [28]. We note that a
combination of jamming and interference alignment is also required in the confidential MIMO broadcast
channel with delayed channel state information [29] and the compound MIMO wiretap channel [30].

The diamond-relay channel that we consider is a two-hop network where the first hop consists of
orthogonal links from the source to the relays, while the second hop is a multiple-access channel from the
relays to the destination. Such a network is considerably different from one-hop networks as the channel
inputs from the relays need not be mutually independent. The source can transmit common/independent
message, common noise, or any combination of those to the relays. In [31], for the diamond-relay
channel where an eavesdropper can wiretap only the multiple-access portion of the channel, it is shown
that transmitting common noise over the source-relay links facilitates more efficient jamming for both
the case with full CSI and the case with no eavesdropper’s CSI. For example, a key constituent scheme
proposed in [31] for the case with no eavesdropper’s CSI is computation for jamming (CoJ) where the
source transmits a function of information and common noise symbols to two relays in order that the
common noise symbols introduced to jam information symbols at the eavesdropper can be canceled at
the destination through suitable precoding. When there are more than two relays, this scheme operates

in a time-sharing basis in a way that only two source-relay links are utilized in each sub-scheme.!

1Similarly, the other constituent scheme in [31] for the case with no eavesdropper’s CSI operates in a time-sharing basis in

a way that only a single source-relay link is active in each sub-scheme.
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In the present paper, the optimal secure d.o.f. of the wiretapped diamond-relay channel is established
for the case with no eavesdropper’s CSI. In our wiretapped diamond-relay channel, the eavesdropper not
only observes the relay transmissions through another multiple-access channel, but also observes a certain
number of source-relay links. The legitimate terminals do not know which subset of source-relay links
are revealed to the eavesdropper, except for the total number of such links. For achievability, we note
that it is not straightforward to extend the proposed schemes in [31] because their sub-schemes require
asymmetric link d.o.f. and hence the amount of wiretapped information varies over time according to the
unknown location of wiretapped links. Thus, we first develop symmetric version of the proposed schemes
in [31] and then combine them with a secure network coding (SNC) [32], [33]-like scheme to account for
non-secure source-relay links. While the conventional SNC has been developed for fully wired networks,
we incorporate SNC by utilizing the nature of wireless networks in a way that the additional randomness
introduced in the source-relay links due to SNC is canceled at the destination by beamforming over
the wireless multiple-access channel. To that end, we judiciously choose the generator matrix for SNC.
From a technical point of view, the secrecy analysis involves accounting for the observations from the
source-relay links as well as the multiple-access wiretap channel and is considerably more involved.
Furthermore, the secure d.o.f. is shown to be the same even when the knowledge of the compromised
links is available. Indeed our converse is established via this genie-aided approach.

The rest of this paper is organized as follows. In Section II, we formally state our model of wiretapped
diamond-relay channel. The main result on the secure d.o.f. is presented in Section III. For the achiev-
ability part, our proposed schemes are described at a high-level in Section IV and are rigorously stated
in Appendix A. The converse part is proved in Section V. We conclude this paper in Section VI.

The following notation is used throughout the paper. For two integers ¢ and j, [i : j] denotes the set
{i,i +1,---,j}. For constants x1,--- ,x, and S C [1 : k], x5 denotes the vector (z; : j € S). This
notation is naturally extended for vectors and random variables. For a sequence z(1), z(2), - - - of constants
indexed by time, z* for positive integer k denotes the vector (z(j) : j € [1 : k]). This notation is naturally
generalized for vectors and random variables. |-| denotes the floor function. For positive real number §
and positive integer @), C(4, Q) denotes the PAM constellation 6{—Q,—Q +1,---,0,--- ,Q — 1,Q} of
(2Q + 1) points with distance ¢ between points. For positive integers ¢ and j € [0 : ¢ 4+ 1], [j]; denotes

jifje[l:d,iifj=0,and 1if j =i+ 1.
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Figure 1. The wiretapped diamond-relay channel.

II. MODEL

Consider a diamond-relay channel that consists of an orthogonal broadcast channel from a source
to M > 2 relays and a Gaussian multiple-access channel from the M relays to a destination. In the
broadcast part, the source is connected to each relay through an orthogonal link of capacity C'. In the

multiple-access part, the channel output Y7 () at time ¢ is given as
M
Yi(t) =) hi(t) Xe(t) + Za (1), (1)
k=1

in which Xj(¢) is the channel input at relay k, hj(t)’s are channel fading coefficients, and Z;(t) is
additive Gaussian noise with zero mean and unit variance. The transmit power constraint at relay & is
given as 231" | X2(t) < P, where n denotes the number of channel uses.

In this paper, we consider a scenario illustrated in Fig. 1, where an eavesdropper wiretaps both the
broadcast part and the multiple-access part of the diamond-relay channel. In the broadcast part, the
eavesdropper can wiretap W source-relay links. Let N = M — W denote the number of secure source-
relay links. We assume that the location of wiretapped links is unknown to the source, relays, and

destination. In the multiple-access part, the eavesdropper observes Y5 () at time ¢ given as

M
Ya(t) =Y gr(t)Xi(t) + Za(t), 2)
k=1

where g (t)’s are channel fading coefficients and Z5(¢) is additive Gaussian noise with zero mean and
unit variance.
We assume a fast fading scenario where hy(t)’s and gx(¢)’s are drawn in an i.i.d. fashion over time

according to an arbitrary real-valued joint density function f(hy,--- ,hnr, g1, , g0 ) satisfying that
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(1) all joint and conditional density functions are bounded and (ii) there exists a positive finite number
B such that £+ < |hy(t)], |gx(t)] < B for all k € [1 : M].> For notational convenience, let h(t) =
(hi(t) -+ har(t)) and g(t) = (g1(t) -+ gam(t)) denote the legitimate channel state information (CSI)
and the eavesdropper’s CSI at time ¢, respectively. We assume that the source does not know both the
legitimate CSI and the eavesdropper’s CSI and the eavesdropper knows both the CSI’s. The relays and
destination are assumed to know only the legitimate CSI.3

A (2" n) code consists of a message G ~ Unif[1 : 2"%],* a stochastic encoder at the source that
(randomly) maps G € [1: 2] to (ST, -+, SY;) € SP'x- xS}, such that L H(S) < C fork € [1: M],
a stochastic encoder at time ¢ € [1 : n] at relay k € [1 : M] that (randomly) maps (S, X5 ', ht) to
X (t) € X, and a decoding function at the destination that (randomly) maps (Y7*,h") to G € [1 : 2]
The probability of error is given as Pe(n) = P(G # (). A secrecy rate of R is said to be achievable if

there exists a sequence of (2", n) codes such that lim,, ., P =0 and

1
lim —I(W;S7,Y5'h", g") =0 3)

n—oon
for all 7' C [1: M] such that |T| = W. The secrecy capacity is the supremum of all achievable secrecy
rates.

We also consider the case where the location of wiretapped links is known to all parties. Let 7" denote
the index set of relays whose links from the source are wiretapped. In this case, an achievable secrecy
rate is defined by requiring (3) to be satisfied for the known 7.

In this paper, we are interested in asymptotic behavior of the secrecy capacity when P tends to infinity.
We say a d.o.f. tuple («, d;) is achievable if a secrecy rate R such that limp_, élo% = d, is achievable
when limp_, %10% = a. A secure d.o.f. ds(«) is the maximum ds such that («,ds) is achievable.

According to the context, ds denotes ds(«).

Remark 1. Our model guarantees secrecy from a certain level of relay collusion, i.e., from collusion of
any set of up to W relays when the location of wiretapped links is unknown and from collusion of any

set of relays that have wiretapped links when it is known.

>The former condition implies that the probability that the channel fading coefficients are in a space of Lebesque measure
zero is zero. The latter condition is a mild technical condition to avoid degenerate situations and has a vanishing impact on the
d.o.f. because by choosing B large enough, the omitted support set can be reduced to a negligible probability.

3 Although the relays are assumed to know the global legitimate CSI, i.e., each relay knows all the channel fading coefficients
to the destination, our proposed schemes require relays to know only some local legitimate CSI.

*Unif[S] for a set S denotes the uniform distribution over S. When S = [i : 5], we use Unif[i : j] instead of Unif[[i : j]].
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Remark 2. Our achievability results hold for constant channel gains as well as slow-fading channels.
Furthermore, our achievability results can be generalized for complex channel fading coefficients by

applying [34, Lemma 7] in our analysis of interference alignment.

IIT. MAIN RESULT

In this section, we state the main result of this paper. Let us first present the secure d.o.f. of the

wiretapped diamond-relay channel when N = M, which was established in [31, Theorem 6].

Theorem 1. The secure d.o.f. of the wiretapped diamond-relay channel when N = M, i.e., the eaves-

dropper does not wiretap the broadcast part, is equal to

Mo+ M -1
4
M+1 ’} @)

ds = min {M a,
For the achievability part of Theorem 1, two constituent schemes were proposed in [31]. One scheme
is a time-shared version of the BCJ scheme, where in each sub-scheme, a single relay operates as a
source and the other relays operate as helpers according to the BCJ scheme [27]. The other scheme is
a time-shared version of the CoJ scheme, where in each sub-scheme, the source and a pair of relays
operate according to the CoJ scheme [31, Scheme 5] while the other relays remain idle. For the converse
part of Theorem 1, a technique was introduced in [31] that captures the trade-off between the message
rate and the amount of individual randomness injected at each relay.

The following theorem establishes the secure d.o.f. of the wiretapped diamond-relay channel for the

general case.

Theorem 2. The secure d.o.f. of the wiretapped diamond-relay channel is equal to

. M—1
minj o, = — ¢, N=1

0 {on 57} )
min{Na,%,l}, N >2

for both the cases with and without the knowledge of location of wiretapped links.

Theorem 2 indicates that the secure d.o.f. is the same for the cases with and without the knowledge of
location of wiretapped links. According to Theorem 2, the secure d.o.f. is at most % when the number
of secure links is one. When the number of secure links is one and its location is known, a natural
strategy would be to send the message over the secure link and send nothing over the wiretapped links.
Then, the multiple-access part becomes the wiretap channel with M — 1 helpers whose secure d.o.f. is

shown to be % in [27]. When N > 2, we can interpret Theorem 2 in a way that the secure d.o.f. is

June 1, 2016 DRAFT



o
[o0)
T
I

S| T T
T 06 1
Q
3 e
& 04r --N=2|
—N=3
0.2- - |
0 ¢" L L L 1 1
0 0.2 0.4 0.6 0.8 1

Figure 2. Secure d.o.f. of the wiretapped diamond-relay channel when M =3 and N =1,2,3.

decreased as if the link d.o.f. & was decreased by a factor of % Because only N out of M links are
secure, it is intuitive that the information that can be securely sent over the broadcast part is decreased
by a factor of % In Fig. 2, the secure d.o.f. of the wiretapped diamond-relay channel is illustrated when
M =3and N =1,2,3.

The achievability part of Theorem 2 when the location of wiretapped links is known can be easily
proved by generalizing the proposed schemes in [31]. However, when the location of wiretapped links
is unknown, it is not straightforward to extend the proposed schemes in [31] because their sub-schemes
require asymmetric link d.o.f. and hence the amount of wiretapped information depends on the unknown
location of wiretapped links. To resolve this issue, we first propose simultaneous BCJ (S-BCJ) and
simultaneous CoJ (S-ColJ) schemes for the case with the knowledge of location of wiretapped links.
Then we incorporate SNC on top of those schemes for the case without the knowledge of location of
wiretapped links. Our proposed schemes are described at a high-level in Section IV and rigorously stated

in Appendix A. The converse part of Theorem 2 is proved in Section V.

IV. ACHIEVABILITY

To prove the achievability part of Theorem 2, it suffices to show the achievability of the following

corner points: (o, ds) = (4, 2471) for N > 1 and (o, ds) = (%,1) for N > 2.3

°Note that for N = 1, ds = min {a, 21} can be shown to be achievable by time-sharing between (c,ds) = (0,0) and
(o, ds) = (M2, M=1) For N > 2, d; = min {Na, %, 1} can be shown to be achievable by time-sharing among

(o, ds) = (0,0), (o, ds) = (A=F, 221, and (o, ds) = (£, 1).
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Figure 3. (a): S-BCJ scheme for M = N = 3, (b): S-BCJ scheme for M = 3 and N = 2 when the last link is known to
be wiretapped, (c): S-BCJ-SNC scheme for M = 3 and N = 2 when the location of wiretapped link is unknown. Rectangles
labeled with V', U, F' represent message, noise, and fictitious message symbols, respectively, and a rectangle labeled with L
represents a linear combination of fictitious message symbols. Each symbol (each rectangular) has % d.o.f. in (a) and has é
d.o.f. in (b) and (c). A column of symbols with fat side lines implies that those symbols are aligned and occupy the d.o.f. of a

single symbol.

In the following, we first propose S-BCJ scheme achieving (o, ds) = (1\14\/[—21, %) and S-Col scheme
achieving (o, ds) = (£, 1) for the special case of N = M. Then, we generalize them for the general
case of N < M with the knowledge of location of wiretapped links. Subsequently, we incorporate SNC
on top of the S-BCJ and S-CoJ schemes for the case of N < M without the knowledge of location of
wiretapped links. To provide main intuition behind our schemes, let us give a high-level description of

our schemes in this section. A detailed description with rigorous analysis is relegated to Appendix A.
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Figure 4. (a): S-CoJ scheme for M = N = 3, (b): S-CoJ scheme for M = 3 and N = 2 when the last link is known to
be wiretapped, (c): S-CoJ-SNC scheme for M = 3 and N = 2 when the location of wiretapped link is unknown. Rectangles
labeled with V', U, F' represent message, noise, and fictitious message symbols, respectively, and a rectangle labeled with L
represents a linear combination of fictitious message symbols. Each symbol (each rectangular) has % d.o.f. in (a) and has %
d.o.f. in (b) and (c). A column of symbols with fat side lines implies that those symbols are aligned and occupy the d.o.f. of a

single symbol.

In Fig. 3 and Fig. 4, our proposed schemes are illustrated for M = 3, where rectangles labeled with
V, U, F represent message, noise, and fictitious message symbols, respectively, and a rectangle labeled
with L represents a linear combination of fictitious message symbols. A column of symbols with fat side

lines implies that those symbols are aligned and occupy the d.o.f. of a single symbol.
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A. Special case of N = M

71

1) S-BCJ scheme for N = M achieving (o, ds) = (
of dof. M=t asa vector V= (V;: ke [l: M],je€
each of d.o.f. 51> and sends Vj, = (V4 ;:j € [1: M —

,MT) The source represents the message

— 1]) of independent message symbols

) to relay k, which requires o = M2 . Then,

relay k sends V, together with M independent noise symbols (Uy; : j € [1 : M]) each of d.o.f. W in
a way that (i) for each j € [1: M|, Uy ;’s for k € [1 : M] are aligned at the destination and (ii) V}, ;’s
can be distinguished by the destination. Since Uy ;’s are not aligned and occupy a total of 1 d.o.f at the
eavesdropper, the message can be shown to be secure.

2) S-CoJ scheme for N = M achieving (o, ds) = (F7,1): The source represents the message of
d.o.f. 1 as a vector (Vi,---,Vj) of independent message symbols and generates M independent noise
symbols (Uy, - -+, Unr), where each Vj, and Uy, has a d.o.f. 7. The source sends (Vj, + Uy, Ulkt1),,) to
relay k, which requires o = % Then, the relays send what they have received in a way that (i) each of
Uy’s is beam-formed in the null space of the destination’s channel and (ii) V}’s can be distinguished by
the destination. Since Uy ’s are not aligned and occupy a total of 1 d.o.f at the eavesdropper, the message

can be shown to be secure.

B. General case of N < M with the knowledge of location of wiretapped links

In this case, we send nothing over the wiretapped links. Without loss of generality, let us assume that
the first IV links are secure.

1) S-BCJ scheme achieving (v, ds) = (4=, 25=1): The source represents the message of d.o.f. 241
as avector V = (Vi : k € [1: N],j € [1: M —1]) of independent message symbols each of d.o.f. 175
and sends Vj, = (Vj,;:j € [1: M —1]) torelay k € [1: N] and sends nothing to relay ¢ € [N +1 : M],
which requires o = % Then, relay k& € [1 : M] sends what it has received together with N independent
noise symbols (Uy; : j € [1: N]) each of d.o.f. -} in a way that (i) for each j € [1 : N], Uy ;’s for
k € [1: M] are aligned at the destination and (ii) V} ;’s can be distinguished by the destination. Since
Uy,;’s are not aligned and occupy a total of 1 d.o.f at the eavesdropper, the message can be shown to be
secure.

2) S-CoJ scheme for N > 2 achieving (v, ds) = (%, 1): The source represents the message of d.o.f. 1
as a vector (Vq,---,Vy) of independent message symbols and generates N independent noise symbols
(Uy,---,Un), where each Vi and Uy has a d.o.f. % The source sends (Vj + Uk, Uppyq),) to relay
k € [1 : N] and sends nothing to relay i € [N + 1 : M], which requires v = %. Then, the relays

send what they have received in a way that (i) each of Uy’s is beam-formed in the null space of the
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destination’s channel and (ii) V}’s can be distinguished by the destination. Since U’s are not aligned

and occupy a total of 1 d.o.f at the eavesdropper, the message can be shown to be secure.

C. General case of N < M without the knowledge of location of wiretapped links

When the location of wiretapped links is unknown, the information sent over the source-relay links in
the S-BCJ and S-CoJ schemes should be masked by additional randomness. To that end, we introduce
independent fictitious message symbols whose total d.o.f. is the same as the total d.o.f. of wiretapped
links. Then, in the S-BCJ and S-CoJ schemes assuming a certain location of wiretapped links (e.g., the
last W links), we add a linear combination of these fictitious message symbols to each element sent
from the source to the relays. By doing so, the message can be shown to be secure regardless of the
location of wiretapped links, while the fictitious message symbols are beam-formed in the null space of
the destination and hence the achievable secure d.o.f. is not affected.

This technique of masking the information by adding a linear combination of fictitious message symbols
is similar to SNC [32], [33], and hence we call our schemes S-BCJ-SNC and S-CoJ-SNC. However, it
should be noted that our schemes assume computation over real numbers to enable the beam-forming of
fictitious message symbols over the multiple-access part, while the conventional SNC has been developed
for fully wired networks and assumes computation over finite field.

1) S-BCJ-SNC scheme achieving (o, ds) = (5=}, M=1): As in the S-BCJ scheme when the last W

links are wiretapped, the source represents the message of d.o.f. % as a vector V= (V,;: ke l:

N],j € [1 : M —1]) of independent message symbols each of d.o.f. 1}. To mask each symbol, we
introduce a vector F' = (F), : k € [1 : W(M — 1)]) of independent fictitious message symbols each of
d.of. 5} and generate a vector L = (Ly; : k € [1: M],j € [1 : M — 1]) of linear combinations of
fictitious message symbols by computing L = FT' for some integer matrix I'. Now, the source sends
(Vej +Lg; :je[l:M—1])torelay £ € [1 : N] and sends (L;; : j € [1 : M — 1]) to relay
i € [N +1: M], which requires o = % Then, relay k € [1 : M] sends what it has received together
with N independent noise symbols (Uy; : j € [1 : N]) each of d.o.f. ;75 in a way that (i) for each
j€[l:N], Ugy’s for k € [1 : M| are aligned at the destination, (ii) each of F}’s is beam-formed in
the null space of the destination’s channel, and (iii) V} ;’s can be distinguished by the destination. By
judiciously choosing the generator matrix I', it can be shown that the information leakage is zero (in the
d.o.f. sense).

2) $-CoJ-SNC scheme for N > 2 achieving (c,ds) = (%,1): As in the S-CoJ scheme when the

last W links are wiretapped, the source represents the message of d.o.f. 1 as a vector (V1,---,Vy) of
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independent message symbols and generates N independent noise symbols (Ui, ---,Up), where each
Vi, and Uy, has a d.o.f. . Then, for a vector F = (Fj, : k € [1 : 2W]) of independent fictitious
message symbols each of d.o.f. 4, a vector L = (L : k € [1 : 2M]) of linear combinations of fictitious
message symbols is generated by computing L. = F'T' for some integer matrix I'. Now, the source sends
(Vi + Uk + Log—1, Uppg)y + Lox) to relay k € [1: N] and sends (Lg;—1, L2;) to relay i € [N +1: M],
which requires o = % Then, the relays send what they have received in a way that (i) each of Uj’s
and F}’s is beam-formed in the null space of the destination’s channel and (ii) V}’s can be distinguished
by the destination. By judiciously choosing the generator matrix I', it can be shown that the information

leakage is zero (in the d.o.f. sense).

V. CONVERSE

It suffices to prove the converse part of Theorem 2 for the case with the knowledge of location of

wiretapped links.

A. Proof of the converse part of Theorem 2 for the case with the knowledge of location of wiretapped
links

For the Gaussian multiple-access wiretap channel, it is shown in [28, Section 4.2.1] that there is no loss
of secure d.o.f. if we consider the following deterministic model with integer-input and integer-output,
instead of (1) and (2):

M M
Yi(t) = Y L) Xk(0)], Ya(t) =D Lg(8) Xi(t)] (6)

k=1 k=1

with the constraint
Xp(t)€{0,1,...,|VP]},k=1,..., M. (7)

Likewise, it can be shown that there is no loss of secure d.o.f. in considering the deterministic model
(6) and (7) for the multiple-access part of our model.® Hence, in this section, let us assume that the
multiple-access part is given as (6) and (7), instead of (1) and (2).

Without loss of generality, we assume that the first N links are secure, ie., T = [N +1 : M].
Furthermore, we assume that g™ in addition to h" is available at the destination, which only possibly

increases the secure d.o.f. Hence, h™ and g" are conditioned in every entropy and mutual information

®We omit a formal proof as it is straightforward from that in [28, Section 4.2.1].
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terms in this section, but are omitted for notational convenience. In the following, ¢;’s for i = 1,2, 3, ...
are used to denote positive constants that do not depend on n and P.

First, we obtain

nR (<) IWi YT, Sivir) + ney (8)
(b) S TWEYY, Sivgrany) — TW5Y5" Sty ) + 1z ©)
TW YT IYS, Sty 1) + ez (10)

< H(YP'[YS', Sy 1)) + 12 (11)

= HYY", Y5 [Ty ay) — HOYS' Sy 1) + 12 (12)

< H(X{ap Y1 Y2 Sy 1) — HYS' IS4 1:00) + 12 (13)

= H(X [ Sivgan) + HO Y2 (X[ Sivgan) — HOS Sy ) + e (14)
©

H (XS v 1) — HOYS Sy g1a0y) + 1c2 (15)

< H(X{p SHn|Sivay) — Y2 STy j1an) + nez (16)

< H(S[ny) + H(X 1y 1S[ag) — HYZ' Sy 1:0)) + 12 (17)
M

<nNC+> H(X}|S]) — H(Y3|S{ys1.00) + 12 (18)
i=1

where (a) is due to the Fano’s inequality, (b) is from the secrecy constraint, and (c) is because the
deterministic model (6) is assumed.

Next, to bound H (X['|S}") for i € [1: M], we start from (9) to obtain

R < I(W3 YT, St sran) — IOV Y3, Sthvyan) + nea (19)
< I(Ws YY", Siypaan) — L(W5 Sy iaan) + nee (20)

< I(W; YIS0y 100)) + e @1
T(Sing Y [STvgaaa) + 12 (22)

< HYT'IS{y 1) — HY[S[1ap) + nca (23)

< HOPISy 1) — HOXPIS?) +nes, 1)

where (a) is due to the following chain of inequalites:
(Yl |S[1 M] {Zl_h J}t 1‘51M]) (25)
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M
> H({ ) _[hXi(0)]},|Sfan, X (26)
i=1
= H({U%( }t 1|S[1M ) 27
= H (X[, {{ J}t 1’51M]7 ) —H Xn|{ }t 1’ 1M]7 Xie)
(28)
H(XP[SH 0 Xit) — HXP{ Lhi(6) Xa(0)] } 5 SThams XiF) (29)
H(X{ S0, X ZH ()] [ (t) X5(2)]) (30)
(a)
> H(X]'S[.0p, Xie) — ncs (31)
© m(x257) — nes, (32)

where ¢ denotes [1 : M] \ {i}, (a) is from [28, Lemma 2], and (b) is due to the Markov chain’
X' — (b, g", S57") — (X3, Si).
Now, by combining (18) and (24), we have

(M +1)nR<nNC+ MH(Y{" ’S[N—i-l M}) H(Yy |S[NJrl M])—l—nC5 (33)
=nNC+ (M - 1)H(Y{" ‘SN+1 M]) +HY" ’S[NJrl M}) (an‘s[r}vH:M]) +nes. (34)

Furthermore, H (Y{"[S{y 1.0s) — H(Y3'[S[y;1.a7)) can be bounded as follows:

HY|S{v 1) — HYS' SN 1:0m)

< o {H(Yln’SﬁvH:M} = stystm)) — HOYS S0 = S{vat. M])} (35)
N+1:M

< HY"™) — H(YS 36

® e B, {07 0D} @

[1:M]

(a)
< n-o(log P) 37)

where Px»  denotes the set of all possible distributions of codewords satisfying the power constraint

[1:M]

(7) and (a) is from [35, Section 6].
By substituting (37) to (34), we obtain ds; < Mﬁiﬁ_l On the other hand, from (22), we have

ds < min(Na, 1). Therefore,

(38)

ds Smin{NQ7W7 }

M+1

"We remind that h™ and g™ are conditioned in every entropy and mutual information terms in this section.
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For the special case of N = 1, to derive a tighter bound, we start from (15):

nR < H(X[1.an5%.00) = H(Y2'S[01) + 02 (39)

M
H(XT|Stam) + Y HX]IS?) — H(Y3'|S0p) + nea. (40)
i=2
Now, by combining (40) and (24), we have
MnR < H(XT'|S[.5) + (M = 1) H(Y"|S).07) — H(Y3'|S(.00) + ncs (4D

= H(XT[SGan) + (M = 2)H (Y [Sl0p) + HOYTS(0n) — HYS'[S0p) 006 (42)

(a)
H(XT|Sp3.00) + (M = 2)H(Y{"[Sp.0) + 1 - o(log P) 4 nes (43)

(®)
H(XT|X[3.00) + (M = 2)H(Y{"[S}5.5)) + 1 - o(log P) + nes, (44)
where (a) is from similar steps used to obtain (37) and () is due to the Markov chain X ?—(S[’;: wmp 0 g")—
X3 that can be shown by marginalizing p(h™, g")p(st, -, sh) [y Hklep(xk(t)]sZ,:v’;;l, h').
To bound H(X"|X[2 M] ), we have

= H({ Zthxt)Xi(t)J Vit (45)
=1
M
H({Y )Xo}y | X ) (46)
=1
= H({[m(t)X }t I XBa) “7)
= H(X?,{Uu( B} 1|X2M]> HXT{ X)) X)) (48)
:H(XﬁX[%-M)_HXﬁ{ [P (8)X }t 1 2M] (49)
H(XT|X{500) ZH S AGIORAGI (50)
¢ H(X}|XP00) — ner, 51)

where (a) is from [28, Lemma 2]. By combining (44) and (51), we obtain
MnR < H(Y\") + (M — 2)H(Y{"[S[3.py) + n - o(log P) + ncs (52)
< (M —1)H(Y{") +n-o(log P) + ncs. (53)

Hence, d; < M . Therefore, for N = 1, we have

M -1
ds < mi , , 54
_mm{a i } (54)
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which concludes the proof. We note that the proof technique used for the special case of N = 1 can be

extended for the general case of NV > 1, but the resultant bound is loose when N > 1. [ ]

VI. CONCLUSION

In this paper, we established the optimal secure d.o.f. of the wiretapped diamond-relay channel where
an external eavesdropper not only wiretaps the relay transmissions in the multiple-access part, but also
observes a certain number of source-relay links in the broadcast part. The secure d.o.f. was shown to be
the same for the cases with and without the knowledge of location of wiretapped links. For the former
case, we proposed two constituent jamming schemes. The first scheme is the S-BCJ scheme where
the noise symbols are aligned at the destination and the second scheme is the S-CoJ scheme where
the noise symbols are beam-formed in the null space of the destination’s channel. For the latter case
where the location of wiretapped links is unknown, we combined a SNC-like scheme with S-BCJ and
S-CoJ in a way that (i) the fictitious message symbols of SNC mask all the message and artificial noise
symbols transmitted over the source-relay links and (ii) the fictitious message symbols can be canceled
at the destination via beamforming at the relays. We believe that our results on the wiretapped diamond-
relay channel are an important step towards understanding the secrecy capacity of general multi-terminal

networks, which remains a largely open problem till date.
APPENDIX A
PROOF OF THE ACHIEVABILITY PART OF THEOREM 2

Let us first state two theorems that give us achievable secrecy rates for the wiretapped diamond-relay
channel. These theorems are obtained by assuming symbol-wise relay operations and then considering
the wiretapped diamond-relay channel as the wiretap channel [7]. These theorems are proved in the end

of this appendix.

Theorem 3. For the wiretapped diamond-relay channel with the knowledge of location of wiretapped
links, a secrecy rate R is achievable if

R <I(V;Yilh) — I(V;Y2, 57|h, g) (535
for some p(v)p(si1.a11|v) [ e an P(@kl sk, h) such that H(Sy) < C and E[X?] < P for k€ [1: M)
Theorem 4. For the wiretapped diamond-relay channel without the knowledge of location of wiretapped
links, a secrecy rate R is achievable if

R<I(ViYi|h) — I(V;Y, Srih, g) (56)
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for all T C [L : M] such that |T| = W, for some p(v)p(sp.anlv) [xep.an p(zrlsk, ) such that
H(Sk) < C and E[X}] < P for k € [1: M].

Next, let us present two lemmas used for the proof. The proofs of these lemmas are relegated to
the end of this appendix. The first lemma is a result from Khintchine-Groshev theorem of Diophantine

approximation [26], which plays a key role in the analysis of interference alignment.

Lemma 1. Consider a random vector A = (Ay,---,A;) where each of Ay’s is a random variable
distributed over C(9,0Q) for some positive real number § and positive integers 0, and Q). Assume that

a receiver observes Y given as follows:

-
Y =) MAr+Z (57)

k=1
where \1,--- , \; are random variables whose all joint and conditional density functions are bounded®

and Z is a Gaussian random variable with zero mean and unit variance.

Fix arbitrary € > 0 and v > 0. If we choose ) = P19 and § = 712;/2, it follows

H(A[Y, A1, , Ar) < o(log P). (58)

The following lemma is used for constructing linear combinations of fictitious message symbols for

the case without the knowledge of location of wiretapped links.

Lemma 2. For any positive integers j and k such that j < k, we can construct a j X k matrix I' with

the following properties:

o each element of I is a non-negative integer smaller than p, where p is the smallest prime number
greater than or equal to k, and

e any j columns are linearly independent.
Now, we are ready to prove the achievability part of Theorem 2. Note that it is sufficient to show the

achievability of (v, ds) = (47, 2472) for N > 1 and (v, ds) = (&,1) for N > 2.

A. Proof of the achievability part of Theorem 2 for the case with the knowledge of location of wiretapped
links

Without loss of generality, let us assume that the first N links are secure, i.e., T =[N + 1 : M].

8This condition implies that a space of Lebesque measure zero cannot carry a nonzero probability.
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1) S-BCJ scheme achieving (v, ds) = (4¥=+, 257): Let us apply Theorem 3 with the following choice

of p(”)p(S[LM] v) er[LM] p(xk|sk, h):

V=WVw:kell:N,jel: M—1)) (59)
Vijigell:M—-1]), ke[l:N

o | Waiel D, kelt:n] 0
0, ke[N+1:M]

X, = Zje[l:M—l] M, Vij =+ Zje[l:N] %Uk,ja kell:N] ©1)

> jel:N] %Ulw" ke[N+1:M]
where V}, ;’s and Uy ;’s are independently generated according to Unif[C(d, Q)] for some positive real
number ¢ and positive integer () specified later, and f, ;’s and v;’s are independently and uniformly

chosen from the interval [—B, B]. We note that H(Sy,) < C and E[X?] < P for k € [1 : M| are satisfied
if

(M ~1)log(2Q +1) < C (62)
70Q < VP, (63)
where ¥ = (M — 1+ NB)B. Then, the channel outputs are given as
N M-1
=2 D Tt Vies + Z Z viUij + 21 (64)
k=1 j=1 k=1 j=1
N M-1
= Z Z hkuk,jvk,] + Z vj Z Uk] + 7 (65)
k=1 j=1 j=
N M-1
Yo=Y 3" guptiViej + Z Z T2 Uks+ 22 (66)
k=1 j=1 k=1 j=1

Because S7 = (), Theorem 3 says that the following secrecy rate is achievable:
R <I(V;Yilh) — I(V;Ys]h,g). (67)

To derive a lower bound on the RHS of (67), let us derive a lower and an upper bounds on the first and

the second terms in the RHS of (67), respectively. We will apply Lemma 1 with 7 <= M N and hence

_L-—e / . ~ . .
we choose ) = P2~+9 and § = 'ﬂz; ® for some ¢ > 0 with ~v = 7! to satisfy the power constraint

(63). Now, the first term in the RHS of (67) is bounded as follows:

I(V;Y1|h) = H(V) — H(V|Y1,h) (68)
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(a)
> log(2Q + 1)NM=1 _ o(log P) (69)

(1—e)N(M —1)
~  2(MN +¢)

where (a) is due to Lemma 1 with the substitution of Y < Y;, 7 <= M N and § < M.? Next, we have

log P — o(log P), (70)

I(V;Yalh,g) = I(V,U;Y2|h, g) — I(U; Y2|V, h, g) (71)
=I(V,U;Yzh,g) = HU) + H{U[Yzerr, h, g) (72)
(1—e)MN
=1 ;Yalh,g) — — ——
(V)U7 2| 7g) 2(MN+E) 10gP+H(U|YV2,eﬁ‘7h’g) (73)
(@) (1—e)MN
<IT ;Yaolh,g) — ————log P log P
< 1(V.UsYelh,g) = 5oy los P+ ollog P) (74)
(1—e)MN
< h(Yslh,g) — h(Zs) — ————log P log P
< h(¥alh.g) - h(Z) ~ S A log P+ oflog P s)
®) 1 1 (1-€eMN
< —logP — - log2ne — ——————log P 1
< g log 5 log 2me SN + ) og P + o(log P) (76)
e(MN +1)
< - 7
= 2(MN + o) log P + o(log P), (77)
where U = (Up; : k € [1: M],j € [1: NJ]), Yoer = Zﬁil Z;VZI 45Uy j + Za, (a) follows from

Lemma 1 with Y <= Y5 ¢, 7 <= MN and 6 <= 1, and (b) is because all channel fading coefficients are
assumed to be bounded away from zero and infinity.
By choosing e sufficiently small, we conclude from (62), (70), and (77) that («,ds) = (%, %)

1s achievable.

2) S-CoJ scheme for N > 2 achieving (cv,ds) = (%,1): Let us apply Theorem 3 with the following

choice of p(v)p(si1.anv) [Tuequiar (ke b):

V=(Vi:ke[l:N]) (78)
Vi + Up, Uy ), k€[1:N

5 — (Vi + Uk, Uppg)y ) [1:N] 79
0, ke[N+1:M]

R

Vit Up— B2y 00 k€N

X, = k k hs [k+1] [ ] (80)
0, ke[N+1:M]

where V},’s and U}’s are independently generated according to Unif[C (4, Q)] for some positive real number

§ and positive integer @ specified later. We note that H(S;) < C and E[X?] < P for k € [1: M] are

°9 < M is because Z]kw:l Uy,; for each j € [1: N] is distributed over C(5, M Q) and C(4, Q) is a subset of C(5, M Q).
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satisfied if

2log(4Q +1) < C (81)
76Q < VP, (82)
where 4 = 2 + B2. Then, the channel outputs are given as follows:

N
Vi=) Vi+ 2 (83)

k=1

ol al hk - gpr—1)

Yy = ;gkvk + ; <gk " e ) Uk + Zo. (84)

Because S7 = (), from Theorem 3, the following secrecy rate is achievable:
R<I(V;Yilh) — I(V; Yz h, g). (85)

To derive a lower bound on the RHS of (85), let us derive a lower and an upper bounds on the first and
the second terms in the RHS of (85), respectively. We will apply Lemma 1 with 7 <= N and hence we

1—e
choose ) = P2+9 and § = 71291/2 for some ¢ > 0 with v = 57! to satisfy the power constraint (82).

Now, the first term in the RHS of (85) is bounded as follows:

I(ViYilh) = H(V) — H(V|Y1,h) (86)
% 10g(2Q + 1N — oflog P) 87)

(1—¢N
> m log P — o(log P), (88)

where (a) is due to Lemma 1 with the substitution of Y <= Y7, 7 < N, 6 < 1. Next, by applying similar

steps used to derive (77), we can show

I(V:Vajh,g) < YD

By choosing e sufficiently small, we conclude from (81), (88), and (89) that (a,ds) = (%, 1) is

achievable. [ ]

B. Proof of the achievability part of Theorem 2 for the case without the knowledge of location of

wiretapped links

For the case without the knowledge of location of wiretapped links, we superpose a linear combination

of fictitious message symbols to each element of Sy in the S-BCJ and S-CoJ schemes.
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1) S-BCJ-SNC scheme achieving (o, ds) = (3=, 2=1): Let F = (Fy : k € [1: W(M - 1)])
denote the vector of W (M — 1) fictitious message symbols each independently generated according to
Unif[C(6, Q)] for some positive real number § and positive integer ) to be specified later. To mask each
element transmitted over the source-relay links in the S-BCJ scheme, we generate a vector L = (L :
kell:M],j€[l:M-1]) of linear combinations of fictitious message symbols by computing L = FT,
where I" is an W (M —1) x M (M — 1) matrix that satisfies the properties in Lemma 2, i.e., each element
of I' is a non-negative integer smaller than p, where p is the smallest prime number greater than or equal
to M(M — 1), and every W (M — 1) columns of I" are linearly independent. Note that the domain of
each element of L is a subset of C(6, W(M — 1)(p — 1)Q).

Now, we apply Theorem 4 with the following choice of p(v)p(s[1.ar|v) er[l:M] p(xg|sk, h):

V=i ke[l:M),je[l: M—1] (90)
Vii+Lg;:5€ll:M—1]), k€|l:N

5, = (Vi + L :j € ) € ] ©1)
(Lpj:je[l:M—1]), ke[N+1:M]

Zje[l:Mfl] Nk,j(vk,j + Lk,j) + Zje[l:N] %Uk,a‘v ke[l:N]

D ieptar—1) PrjLig + 3 e - Unigs ke[N+1:M]

where Vj, ;’s and Uy, ;’s are independently generated according to Unif[C(d, Q)] and py, ;’s and v;’s are

Xy = 92)

independently and uniformly chosen from the interval [—B, B]. py ;’s are carefully chosen to cancel out
the fictitious message symbols at the destination as follows. We first note that because any W (M — 1)
columns of T' are linearly independent, for a € [1: N] and b € [1: M — 1], there exists (o4 px; : k €
[N+1:M],j€[l:M—1]) such that

Lap= Y. > Ol (93)

kE[N+1:M] je[1:M—1]

To beam-form each of F},’s in the null space of the destination’s channel, pj, ; for £ € [N 4+ 1 : M] and
j€[l:M—1]is chosen as

pri=— >, > ZZMa,bUa,bk,j- (94)

a€[l:N] be[1:M —1]

Let pmax denote the maximum of py ;’s. We note that H(Sy) < C and E[X?] < P for k € [1: M] are

satisfied if

(M = 1)log2(W(M - 1)(p-1)+1)Q+1) <C (95)
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76Q < VP, (96)
where
3 =max{(M = 1)BW(M —1)(p — 1) + 1), (M — 1) pmaxW (M — 1)(p — 1)} + NB*. 97

Then, the channel outputs are given as

N M-1 M N

Yi=Y > Vi + ) vilkj+ 2 (98)
k=1 j=1 k=1 j=1
N M-1 N M

=3 bt + 30 | S|+ ©
k=1 j=1 j=1 k=1
N M-1 G W(M—-1)
k

Yo=Y grmnsVies + Z Z Ui+ Y kFr+ 2, (100)

k=1 j=1 k=1 j=1 fu k=1
where x}’s are determined from i ;’s, pg ;’s, h, g, and I.
From Theorem 4, the following secrecy rate is achievable:

where the maximization is over all 7" C [1 : M] such that |T'| = W. To derive a lower bound on the
RHS of (101), let us derive a lower and an upper bounds on the first and the second terms in the RHS

of (101), respectively. We will apply Lemma 1 with 7 <= M N and hence we choose ) = P+ and

0= 7P > for some € > 0 with v = 4~ to satisfy the power constraint (96). Then, by applying the same
boundlng techniques used to obtain (70), we can obtain

—€e)N(M —
2(MN +¢)

I(V;Yi|h) > u D log P — o(log P). (102)

Next, let us derive an upper bound on the second term in the RHS of (101). We first fix an arbitrary
T C [1: M] such that |T'| = W. Note that

I(V; Y2, Stlh,g) = I(V; St|h, g) + I(V; Y2|ST, h, 8). (103)
We first bound the first term in the RHS of (103) as follows:

I(V;Sr|h,g) = H(S7) — H(S7[V) (104)
< W - 1)o@V (M~ Do~ 1)+ )@+ 1)~ H(Sr]V) (105)
=W(M —1)log2(W(M -1)(p—1)+1)Q+1)—H(Ly;: keT,je[M-1])

(106)
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O (M = 1) log(2(W(M — 1)(p— 1) + 1)Q + 1) — H(F) (107)

= W(M —1)log2(W(M —1)(p—1)+1)Q + 1) — W(M —1)1og(2Q + 1)  (108)

2W(M-1)(p-1)+1)Q+1
2Q + 1

= o(log P), (110)

= W(M —1)log (109)

where (a) is because St consists of W (M —1) elements where the domain of each element is a subset of
C(o,(W(M—-1)(p—1)+1)Q) and (b) is because any W (M — 1) columns of I" are linearly independent.
Next, the second term in the RHS of (103) is bounded as follows:

I(Va Y2|ST7h7 g) = I(V7 U7 Fa Y2|ST7h7 g) - I(U7 Fa Y2|V7 ST7h7 g) (111)
< I(V,U, F;Ys|S7,h,g) — I[(U; Y2|F,V,Sr,h, g) (112)
Y IV, U, F;s|Sr, b, g) — H(U) + H(U|Ys.er. b, g) (113)
(1-—¢)MN
=7 F:Y. hg —-—~—2—logP+HU|Ys.,h 114
(‘/:Uv b 2|ST7 ’g) 2(MN—|—€) Og + (U‘ Q,fo) 7g) ( )
@I(VUF-Y|S h,g) 0= OMN, P + o(log P) (115)
>~ yUs, i Yoo, N, g 2(MN+6) 0og o(log
(1—e)MN
< h(Yslh,g) — h(Z3) — ~——2——log P log P 11
< (Yalh,g) ~ h(Z2) — yrur S log P+ oflog ) (116)
1 1 (1—eMN
< —logP — - log2me — ~———~-——log P log P 117
< 5log 5 log 2me SN 1) og P + o(log P) (117)
e(MN +1)
where U = (U : k€ [1: M],j€[1:N]), Yoeg = 22/[:1 Z;V:1 B2 Uy j + Za, (a) is because U is

independent from F,V,Sp,h and g, and (b) follows from Lemma 1 with Y < Y5 .4, 7 <= MN and
0 < 1. Since the above bounds do not depend on the choice of 7', we obtain

e(MN +1)
2(MN +e¢)

By choosing e sufficiently small, it follows from (95), (102), (119) that (a,ds) = (%=L, %) is

max I(V;Ys,S7|h,g) < log P + o(log P). (119)

achievable.

2) §-CoJ-SNC scheme achieving (o, ds) = (%,1): Let F = (Fy : k € [1: 2W]) denote 2WW fictitious
message symbols each independently generated according to Unif[C (4, )] for some positive real number
d and positive integer () to be specified later. We generate a vector L = (Ly : k € [1 : 2M]) of linear

combinations of fictitious message symbols by evaluating L = F'T', where I' is an 2W x 2M matrix that

June 1, 2016 DRAFT



24

satisfies the properties in Lemma 2, i.e., i.e., each element of I' is a non-negative integer smaller than
p, where p is the smallest prime number greater than or equal to 2M, and every 2W columns of I' are
linearly independent. Note that the domain of each element of L is a subset of C(d,2W (p — 1)Q).

Now, we apply Theorem 4 with the following choice of p(v)p(s(i:an|v) [Txep:an P(2k|sk, h):

V=(W:ke[l:N) (120)
5, = {(Vk + Uy + Log—1, Uy, + Lok), ke[l:N] a2
(Lok—1, Lok), ke[N+1:M]

kg1
Vi + Ui + Lop—1 — [;fk]N (Upg41]y + Lox), ke[l:N]

X, — (122)

p2k—1Lak—1 + par Lok, ke[N+1:M]
where Vi’s and Uy’s are independently generated according to Unif[C(, Q)] and px’s are chosen to
cancel out the fictitious message symbols at the destination as follows. We first note that because any
2W columns of T' are linearly independent, for k& € [1 : 2], there exists (oy; : j € [2N + 1 : 2M])
such that

L= Y owL;. (123)

jE[2N+1:2M)]

To beam-form each of F},’s in the null space of the destination’s channel, pa;_1 and py; for j € [N+1: M]|

are chosen as

hk h k+1 N
prj1=— Y 7, O2k-112j-1 ~ > [h_] O2k|2j—1 (124)
ke[1:N] 7 ke[1:N] J
Ry Pkt
P2j = — 7. O2k=112j — Z [;] O2k|2j- (125)
ke[1:N] 7 ke[1:N] J

Let pmax denote the maximum of py’s. We note that H(Sy) < C and E[X?] < P for k € [1: M] are

satisfied if

2log(4(W(p—1)+1)Q+1) < C (126)
76Q < VP, (127)

where
5 =max{2 4 2W(p—1) + B2 1+ 2W(p — 1)), 4pmax W (p — 1)}. (128)
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Then, the channel outputs are given as follows:

N

Vi=> WmVi+2Z (129)
k=1
N N hk’g[k . 2w

Yo=Y aVi+ ), (gk— hMN) Us+ Y xiFx + Za, (130)
k=1 k=1 AN k=1

where x1’s are determined from pg’s, h, g, and T'.

From Theorem 4, the following secrecy rate is achievable:
R < I(V;Yi[h) — max I(V; Y3, Srlh, g), (131)

where the maximization is over all 7" C [1 : M] such that |T| = W. As in the S-CoJ scheme, we will

apply Lemma 1 with 7 <= N and hence we choose Q = P 5+ and § = ”’12;/2 for some ¢ > 0 with

v = A~! to satisfy the power constraint (127). Now, by applying the same bounding techniques used to

obtain (88), the first term in the RHS of (131) is bounded as follows:
(1-¢)N
I(V;Y1|h) > ———1log P — o(log P). 132
(,1|)_2(N+6)0g o(log P) (132)
Next, let us derive an upper bound on the second term in the RHS of (131). We first fix an arbitrary
T C[1: M] such that |[T'| = W. Note that

I(V7Y27 ST|h7g) = I(Va ST‘hag) + I(V7 U7F7 Y2|ST7h7g) - I(U7F7Y72“/7 ST>h7g)> (133)

where U = (U : k € [1: NJ]). Then, by applying similar bounding techniques used to obtain (110), the
first term in the RHS of (133) can be bounded as follows:

I(V; Stlh, g) < o(log P). (134)

Next, the second term in the RHS of (133) is bounded as follows:

< %log P+ o(log P). (136)

Finally, the third term in the RHS of (133) is bounded as follows:

I(U, F; Y|V, St,h,g) = H(U, F|V,S7) — H(U, F'|Y2,V, S, h, g) (137)
“ HU,F, V)~ H(V,Sr) — HU, F|Ya, V. 57, h. g) (138)
2 H) + H(F) — H(Sy) — H(U, F[Ys,V, Sr.h. ) (139)
(§) H(U)— H(U, F|Ys,V,Sr,h,g) — o(log P) (140)
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= H(U)_ H(UD/Q7 V7 ST7 h7g)_ H(F‘U7 Y27 ‘/7 ST7 hag)_ O(IOg P) (141)

where (a) is because St is a function of U, F', and V, (b) is because U, F, V are mutually independent,
and (c) is by applying similar steps used to obtain (110).
To bound H(U|Y2,V, S, h,g), we note that Sp can be represented as a vector of length 2 given

as
St = VAMT + UAU7T + FT'p (142)

where Ay and Ay are N x 2 matrices that are determined from our choice of S;’s and I'r is a
2W x 2W submatrix of I' corresponding to the choice of 7. Because any 2W columns of I" are linearly

independent, the inverse matrix F;l of I'p exists and hence we can represent F' as follows:
F = (St —VAyr —UAyr)T (143)

Now, by substituting (143) for F' in Y5, Y5 can be represented as a function of V, U, St and Z,. Hence,
the effective channel output Y5 ¢, where the contribution from V' and St are canceled out, is a linear

combination of U’s and Z5. By applying Lemma 1 with Y < Y5 ¢, 7 <= N, and 6 <= 1, it follows that
H(UY2,V,57,h,g) = H(U[Yzes, h, g) (144)
< o(log P). (145)

Furthermore, due to (143), it follows that

H(F|U,Y»,V,Sr,h,g)=0 (146)
Therefore, we have
I(U,F;Y,|V, Sr.h,g) > H(U) — o(log P) (147)
(1—¢)N
=———~* _log P — o(log P). 14
AN 1 s P —olleg P) (148)
From (134), (136), (148), we obtain
e(N+1)
. < - s .
I(V;Y2,Srh,g) < SN+ o) log P + o(log P) (149)

By choosing e sufficiently small, it follows from (126), (132), (149) that (a, ds) = (%, 1) is achievable.
|
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Proof of Theorems 3 and 4: Let us restrict relay operations to be symbol-wise, i.e., at time ¢ €
[l : n], relay £ € [1 : M| (randomly) maps (Sk(t),h(t)) to Xj(t) according to p(xj|sk,h). Then,
for the case with the knowledge of location of wiretapped links, the wiretapped diamond-relay channel
can be considered as the wiretap channel with channel input (Si : k£ € [1 : M]), legitimate channel
output (Y7, h), eavesdropper channel output (Y2, S7, h,g), and channel distribution marginalized from
p(h,g) er[le}p(stk, h)p(y1,y2|2(1:01), h, g). Then, Theorem 3 is immediate from [7]. For the case
without the knowledge of location of wiretapped links, Theorem 4 can be proved in a similar manner by
assuming there are multiple eavesdroppers each of which observes every different St such that |T'| = W.

|

Proof of Lemma 1: According to the Khintchine-Groshev theorem of Diophantine approximation [26],
for any € > 0 and almost all Aj,---, A except a set of Lebesque measure zero, there exists a constant

k. such that

A _— 150
Z qu| maxk’qkr 1+e ( )

holds for all (q1,--- ,q,) # 0 € Z". Hence, the minimum distance dpin(A1,- -+, A\r) between the points
in {>°7_; Akar = ai € C(6,0Q)} is bounded as follows:

ok
dmin(/\ly"' 7AT) Z WTe—l—l—e (151)
for almost all A1, ---, A\, except a set of Lebesque measure zero.
Now, when (A, ---,A;) is known to the receiver, let A(A1,---, A;) denote the estimate of A which
is chosen as follows:
121(/\1, <+, A7) = argmin ‘Y Z)\kak‘ (152)
((z(,ilec&?cz)) k=1
Then, for the choice of QQ = P79 and 6 = 7]2/2,
- ds . (A A
P(A(A1, -+, M) #A) <E [exp < mm( 178 d T)> ] (153)
(a) 62k2
S =) oy
21.2 pe
vkzP
< exp (—802(761+6)> ) (155)
where (a) is because the probability that A\q,--- , \; are included in a set of Lebesque measure zero is

zero by assumption.
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According to the Fano’s inequality, it follows that

H(AIY, M\, Ar) < H(AJAM, -+, ) (156)
<1+ P(A(\, -+, Ar) # A)log(JA| - 1) (157)
72 2 pe
= o(log P), (159)
which concludes the proof. [ |

Proof of Lemma 2: Let us show that the generator matrix I' of a Reed-Solomon code [36] with block
length k, message length j, and alphabet size p satisfies the aforementioned properties. First, because
I" is over the prime field GF(p), its element is an integer in the range 0,--- ,p — 1, and hence the first
property is satisfied. For the second property, we first note that the sum, the difference and the product
over GF(p) are computed by taking the modulo p of the integer result. Since a Reed-Solomon code is an
MDS-code, any j columns of I' are linearly independent over GF(p), which means that the determinant
of any j x j submatrix of I' evaluated over the prime field GF(p) is nonzero. This implies that the
determinant of any j x j submatrix of I' evaluated over real numbers is nonzero, and hence the second

property is satisfied. [ ]
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