programs can execute at full speed from this memory space. features as well as many others such as a hardware timer,

Programs may also be downloaded from slow external serial port, and block data transfer capabilities.
memory to on-chip RAM for full-speed operation. The VLSI A functional block diagram of the TMS$320C25, shown in
implementation of the TMS320C25 incorporates all of these Fig. 5, outlines the principal blocks and data paths within

SVNC
x1
X2/CLKIN

F
T .
]
—03
]
L—=—cixouT
N

1 1
PFC(16) TS
STAE —a—o R(16)
READY
sT0016)
« 16
g L] 16 \MUx/ sTi016)
Pl] 16 wPTC (el
— £
AOUDA ——— IFR(6)
wh—=—] £ | [wcsnw] = . o
55 —— CLKR
N—e . 6] 0 o
TACR —a—| 16 ———DX
CLKX
[*—FsXx
} ADORESS TACK ()
MP/MT 3 8 - 16) RSR(16) 1
W¥(2.00—~ XSR(16) []
oM L8 DRR(16)
1540 <" (T} 14096 - 16) .
DXR16)
INSTRUCTION ':c e
Yo . PRO(16]
IMR(6]
16 GREG(B)
x
i 16
: 4 Y.
H e fie 6 1s
H AROI16] [srrrenorer] TR(16)
3 AR1(16)
H | ARP(3) ll 7~ AR2(16) 7188 MULTIPLIER
: AR3(16) FROM IR
: . AR4(16) k L PRI32)
3 ARS(16) 9
H AR6(16)
H ART(16) L6
: ARB(3)
q] o
3 ARAU(T6] Mux/ e
H 7
; [0 1
i wox MUX
+ 6 16
H DATA/PROG
e RAM (256 - 16)
_____ | 8LOCK B0
DATA RAM
8LOCK 81 16
(256 = 16)
v for\ SHIFTERS(0-7) |
16 16 116

LEGEND:
ACCH - Accumulstor high IFR . Interrupt flag register [Program counter
ACCL - Accumulstor low MR - Interrupt mask register PFC Prefetch counter
ALU = Arithmetic logic unit IR . Instruction register RPTC - Repeat instruction counter
ARAU = Auxiery register arithmetic it MCS - Microcal stack GREG - Giobal memory sllocation register
ARS = AuxMary register pointer buffer QIR - Queue instruction register RSR - Serisl port receive shift register
ARP - Auxilery register pointer PR _ Product register XSR - Serisl port transmit shift register
op

= Data memory psge pointer PRD Period register for timer ARO-ART - Auxilisry registers
DRAR - Serisl port data receive register TIM - Timer STO.ST1 Status registers
DXR - Serisi port data transmit register TR - Temporary register

Fig. 5. TMS320C25 functional block diagram.

the processor. The diagram also shows all of the TMS320C25
interface pins.

In the following architectural discussions on the mem-
ory, central arithmetic logic unit, hardware multiplier, con-
trol operations, serial port, and I/O interface, please refer
to the block diagram shown in Fig. 5.

Memory Allocation: The TMS320C25 provides a total of
4K 16-bit words of on-chip program ROM and 544 16-bit
words of on-chip data RAM. The RAM is divided into three
separate Blocks (B0, B1, and B2). Of the 544 words, 256 words
(block BO) are configurable as either data or program mem-
ory by CNFD (configure data memory) or CNFP (configure
program memory) instructions provided for that purpose;
288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS$320C25 to
handle a data array of 512 words while still leaving 32 loca-
tions for intermediate storage. The TMS320C25 provides
64K words of off-chip directly addressable data memory
space as well as a 64K-word off-chip program memory space.

A register file containing eight Auxiliary Registers (ARO-
AR?), which are used for indirect addressing of data mem-
ory and for temporary storage, increase the flexibility and
efficiency of the device. These registers may be either
directly addressed by an instruction or indirectly addressed
by a 3-bit Auxiliary Register Pointer (ARP). The auxiliary reg-
isters and the ARP may be loaded from either data memory
or by an immediate operand defined in the instruction. The
contents of these registers may also be stored into data
memory. The auxiliary register file is connected to the Aux-
iliary Register Arithmetic Unit (ARAU). Using the ARAU
accessing tables of information does not require the CALU
for address manipulation, thus freeing it for other opera-
tions.

Central Arithmetic Logic Unit (CALU): The CALU contains
a 16-bit scaling shifter, a 16 x 16-bit parallel multiplier, a 32-
bit Arithmetic Logic Unit (ALU), and a 32-bit accumulator.
The scaling shifter has a 16-bit input connected to the data
bus and a 32-bit output connected to the ALU. This shifter
produces a left-shift of 0 to 16 bits on the input data, as pro-
grammed in the instruction. Additional shifters at the out-
puts of both the accumulator and the multiplier are suitable
for numerical scaling, bit extraction, extended-precision
arithmetic, and overflow prevention.

The following steps occur in the implementation of a typ-
ical ALU instruction:

1) Data are fetched from the RAM on the data bus.

2) Data are passed through the scaling shifter and the
ALU where the arithmetic is performed.

3) The result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). The accumulator has a carry bit
to facilitate multiple-precision arithmetic for both addition
and subtract instructions.

Hardware Multiplier: The TMS320C25 utilizes a 16 x 16-
bit hardware multiplier, which is capable of computing a
32-bit product during every machine cycle. Two registers
are associated with the multiplier:

+ a16-bit Temporary Register (TR) that holds one of the
operands for the multiplier, and
+ a 32-bit Product Register (PR) that holds the product.

The output of the product register can be left-shifted 1 or
4 bits. This is useful for implementing fractional arithmetic
or justifying fractional products. The output of the PR can
also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiple/accumulates without overflow.
An unsigned multiply (MPYU) instruction facilitates
extended-precision multiplication.

1/O Interface: The TMS320C25 1/O space consists of 16
input and 16 output ports. These ports provide the full 16-
bit parallel I/O interface via the data bus on the device. A
single input (IN) or output (OUT) operation typically takes
two cycles; however, when used with the repeat counter,
the operation becomes single-cycle. I/O devices are mapped
into the 1/0 address space using the processor’s external
address and data buses in the same manner as memory-
mapped devices. Interfacing to memory and 1/O devices of
varying speeds is accomplished by using the READY line.

A Direct Memory Access (DMA) to external program/data
memory is also supported. Another processor can take
complete control of the TMS320C25’s external memory by
asserting HOLD low, causing the TMS320C25 to place its
address, data, and control lines in the high-impedance state.
Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes
of DMA are available on the device. In the first, execution
is suspended during assertion of HOLD. In the second
““concurrent DMA” mode, the TMS320C25 continues to
execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive
applications.

TMS320C25 Software

The majority of the TMS320C25 instructions (97 out of 133)
are executed in a single instruction cycle. Of the 36 instruc-
tions that require additional cycles of execution, 21 involve
branches, calls, and returns that result in a reload of the
program counter and a break in the execution pipeline.
Another seven of the instructions are two-word, long-
immediate instructions. The remaining eight instructions
support I/O, transfers of data between memory spaces, or
provide for additional parallel operation in the processor.
Furthermore, these eight instructions (IN, OUT, BLKD,
BLKP, TBLR, TBLW, MAC, and MACD) become single-cycle
when used in conjunction with the repeat counter. The
functional performance of the instructions exploits the par-
allelism of the processor, allowing complex and/or numer-
ically intensive computations to be implemented in rela-
tively few instructions.

Addressing Modes: Since most of the instructions are
coded in a single 16-bit word, most instructions can be exe-
cuted in a single cycle. Three memory addressing modes
are available with the instruction set: direct, indirect, and
immediate addressing. Both direct and indirect addressing
are used to access datamemory. Immediate addressing uses
the contents of the memory addressed by the program
counter.

When using direct addressing, 7 bits of the instruction
word are concatenated with the 9 bits of the data memory
page pointer (DP) to form the 16-bit data memory address.
With a 128-word page length, the DP register points to one
of 512 possible data memory pages to obtain a 64K total data
memory space. Indirect addressing is provided by the aux-

iliary registers (ARO-AR7). The seven types of indirect
addressing are shown in Table 4. Bit-reversed indexed
addressing modes allow efficient 1/O to be performed for
the resequencing of data points in a radix-2 FFT program.

Table 4 Addressing Modes of the TMS320C25

Addressing Mode

OP A direct addressing

OP * (,NARP) indirect; no change to AR.

OP * +(,NARP) indirect; current AR is incremented.

OP * —(,NARP) indirect; current AR is decremented.

OP *0+(,NARP) indirect; ARO is added to current AR.

OP *0-(,NARP) indirect; ARO is subtracted from
current AR.

indirect; ARO is added to current AR
(with reverse carry propagation).

indirect; ARO is subtracted from
current AR (with reverse carry
propagation).

Operation

OP *BRO+(,NARP)
OP *BRO—(,NARP)

Note: The optional NARP field specifies a new value of the ARP.

TMS320C25 System Configurations

The flexibility of the TMS320C25 allows systems config-
urations to satisfy a wide range of application requirements
[16). The TMS320C25 can be used in the following config-
urations:

* a stand-alone system (a single processor using 4K
words of on-chip ROM and 544 words of on-chip RAM),

* parallel multiprocessing systems with shared global
data memory, or

* host/peripheral coprocessing using interface control
signals.

A minimal processing system is shown in Fig. 6 using
external data RAM and PROM/EPROM. Parallel multipro-
cessing and host/peripheral coprocessing systems can be
designed by taking advantage of the TMS320C25’s direct
memory access and global memory configuration capabil-
ities.

In some digital processing tasks, the algorithm being
implemented can be divided into sections with a distinct
processor dedicated to each section. In this case, the first
and second processors may share global data memory, as
well as the second and third, the third and fourth, etc. Arbi-

tration logic may be required to determine which section *

of the algorithm is executing and which processor has
access to the global memory. With multiple processors ded-

SERIAL
COMMUNICATION

TMS320C28

icated to distinct sections of the algorithm, throughput can
be increased via pipelined execution. The TMS320C25 is
capable of allocating up to 32K words of data memory as
global memory for multiprocessing applications.

THe THIRD GENERATION OF THE TMS320 FAmiLy

The TMS320C30 [26]-[27] is Texas Instruments third-gen-
eration member of the TMS320 family of compatible digital
signal processors. With a computational rate of 33 MFLOPS
(million floating-point operations per second), the
TMS320C30 far exceeds the performance of any program-
mable DSP available today. Total system performance has
been maximized through internal parallelism, more than
twenty-four thousand bytes of on-chip memory, single-cycle
floating-point operations, and concurrent /0. The total sys-
tem cost is minimized with on-chip memory and on-chip
peripherals such as timers and serial ports. Finally, the user’s
system design time is dramatically reduced with the avail-
ability of the floating-point operations, general-purpose
instructions and features, and quality development tools.

The TMS320C30 provides the user with a level of per-
formance that, at one time, was the exclusive domain of
supercomputers. The strong architectural emphasis of pro-
viding a low-cost system solution to demanding arithmetic
algorithms has resulted in the architecture shown in Fig. 7.

The key features of the TMS320C30 [26], [27] are as fol-
lows:

* 60-ns single-cycle execution time, 1-um CMOS.

* Two 1K X 32-bit single-cycle dual-access RAM blocks.

* One 4K x 32-bit single-cycle dual-access ROM block.

* 64 x 32-bit instruction cache.

* 32-bit instruction and data words, 24-bit addresses.

= 32/40-bit floating-point and integer multiplier.

 32/40-bit floating-point, integer, and logical ALU.

* 32-bit barrel shifter.

+ Eight extended-precision registers.

+ Two address-generators with eight auxiliary registers.

* On-chip Direct Memory Access (DMA) controller for
concurrent /O and CPU operation.

* Peripheral bus and modules for easy customization.

« High-level language support.

* Interlocked instructions for multiprocessing support.

* Zero overhead loops and single-cycle branches.

The architecture of the TMS320C30 is targeted at 60-ns
and faster cycle times. To achieve such high-performance

S::g":l ! DATA RAM o
(OPTIONAL) | (OPTIONAL) DEVICES

Fig. 6. Minimal processing system with external data RAM and PROM/EPROM.

PROGRAM RAM RAM now
CACHE 8L0CK 0 8LOCK 1 BLOCK 0
(64 X 32) (1K X 32) (K X 32) (4K X 32) ROV
OROLD
b OROLDA-
i g 0y gg gy o
FOLDA oW
STRE 32-8IT DATA BUSES v 100(310)
o 3 U 8 ﬁ x oAn20)
0(31-0)
A(23-0) — e o raxo
i [—e DX0
SERIAL
ESEY —of | INTEGER/ INTEGER/ SOURCE AND DESTINATION : leel ronr [T CUX0
FLOATING-POINT | FLOATING-POINT ADORESS GENERATORS o fe— F8n0
W30 —= g MULTIPLIER A : e oo
ek =] N CONTROL REGISTERS " fe— cLxno
XF1-0) -y 32.81T BARREL SHIFTER . .
MC/NF—et o :
x1e— o EXTENDED-PRECISION " | o oxy
L REGISTERS (RO-R7) N SEMAL e cixx
X2/CLI o) PORT
veetr-o—ef b ADORESS ADORESS A e rsm
Vg5(10-0) — : GENERATOR O | GENERATOR 1 : e om
vesp «—1 AUXILIARY REGISTERS s le—e CLXRY
AR7)
o > =T
CONTROL REGISTERS (12)
LA

Fig. 7. TMS320C30 functional block diagram.

goals while still providing low-cost system solutions, the
TMS320C30 is designed using Texas Instruments state-of-
the-art 1-um CMOS process. The TMS320C30 s high system
performance is achieved through a high degree of paral-
lelism, the accuracy and precision of its floating-point units,
its on-chip DMA controller that supports concurrent 1/0,
and its general-purpose features. At the heart of the archi-
tecture is the Central Processing Unit (CPU).

The CPU

The CPU consists of the following elements: floating-
point/integer multiplier; ALU for performing floating-point,
integer, and logical operations; auxiliary register arithmetic
units; supporting register file, and associated buses. The
multiplier of the CPU performs floating-point and integer
multiplication. When performing floating-point multipli-
cation, the inputs are 32-bit floating-point numbers, and the
result is a 40-bit floating-point number. When performing
integer multiplication, the input data is 24 bits and yields
a 32-bit result. The ALU performs 32-bit integer, 32-bit log-
ical, and 40-bit floating-point operations. Results of the mul-
tiplier and the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The TMS320C30 has the
ability to perform, in a single cycle, parallel multiplies and
adds (subtracts) on integer or floating-point data. It is this
ability to perform floating-point multiplies and adds (sub-
tracts) in a single cycle which give the TMS320C30 its peak
computational rate of 33 MFLOPS.

Floating-point operations provide the user with a con-
venient and virtually trouble-free means of performing
computations while maintaining accuracy and precision.
The TMS320C30 implementation of floating-point arith-

metic allows for floating-point operations at integer speeds.
The floating-point capability allows the user to ignore, to
alarge extent, problems with overflow, operand alignment,
and other burdensome tasks common to integer opera-
tions.

The register file contains 28 registers, which may be oper-
ated upon by the multiplier and ALU. The first eight of these
registers (RO-R7) are the extended-precision registers,
which support operations on 40-bit floating-point numbers
and 32-bit integers.

The next eight registers (ARO-AR?) are the auxiliary reg-
isters, whose primary function is related to the generation
of addresses. However, they also may be used as general-
purpose 32-bit registers. Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in
asingle cycle. The ARAUs operate in parallel with the mul-
tiplier and ALU. They support addressing with displace-
ments, index registers (IR0 and IR1), and circular and bit-
reversed addressing.

The remaining registers support a variety of system func-
tions: addressing, stack management, processor status,
block repeat, and interrupts.

Data Organization

Two integer formats are supported on the TMS$320C30:
a 16-bit format used for immediate integer operands and
a 32-bit single-precision integer format.

Two unsigned-integer formats are available: a 16-bit for-
mat for immediate unsigned-integer operands and a 32-bit
single-precision unsigned-integer format.

The three floating-point formats are assumed to be nor-
malized, thus providing an extra bit of precision. The first

