
ECE 416 c©2003 Bruno Korst-Fagundes Fall 2003

Experiment # 2

Filters

0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

1.5

−→
DelayDelay

Sum

h2 h3h1

x[n]

y[n]

Delay

h0
−→

20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

1.5

1 Purpose

The purpose of this experiment is to provide you with the basic understanding of some of the effects
introduced by a radio channel on a binary signal travelling through it. The binary signal carrying
the information will be represented by a square wave, and the band-limited channel by a digital
filter. In this experiment, you will vary the bandwidth (the pass band) of the channel by utilizing a
low-pass filter and a band-pass filter, and will verify the effects of the bandwidth variation on signal
integrity. This will be accomplished by looking at the signal in both time domain and frequency
domain.

A review on Fourier Series, Fourier Transform, convolution and the basics of digital filtering (FIR)
is recommended. In order to perform this experiment effectively, a good understanding of Simulink
and Matlab is required. Make sure you refresh your knowledge of Simulink and Matlab before you
start the experiment.

This experiment is to be conducted in three main steps: a) the design and simulation of a filter
in Matlab/Simulink, b) the generation and testing of the simulated system on a DSP platform,
and c) the modification of that system in real-time. These three steps should provide you with an
understanding of the concepts involved in this practice, as well as the general practical issues faced
in the actual implementation of a digital filter.

At the end of this experiment, you should have a basic understanding of:

• The role of the channel in a communication system;

• The effect of band limitation on binary transmission;

• How a digital filter is implemented.

1

2 Equipment

Hardware:

1. One Signal Generator;

2. One Oscilloscope;

3. One Spectrum Analyzer;

4. One TMS320C6711 board attached to a workstation;

5. Coaxial cables, BNC-to-BNC.

Software:

1. Matlab Release 13;

2. Simulink with ECE416 Toolbox;

3. Code Composer Studio, v.2.1.

3 Reviewing the Theory

The theoretical background needed for this experiment is well documented, and it can be found in
both basic and advanced texts in signals and systems and Digital Signal Processing. The textbook
[1] provides a review of Fourier Series. For the practical filtering implementation, you can refer
to [2], [3] and [4], if you want to learn more. The topics of interest are the representation of
signals in the time and frequency domains, the Fourier Series, the Fourier Transform and a basic
understanding of digital filter design and implementation. It is sufficient for you to understand
that the filtering process can be described, in a simplified manner, as a result of the convolution
between the input (sampled) signal and the coefficients (also called ”parameters”, or ”taps”) of the
digital filter, which in a direct implementation represent the impulse response of the filter.

In previous courses (such as Signals and Systems), the synthesis of a square wave was demonstrated
by the addition of its fundamental frequency and its odd harmonics, as described by a Fourier Series.
At that time, the Gibbs phenomenon was also introduced. Such feature appears in the synthesis of
periodic signals with discontinuities (i.e., square wave, saw-tooth wave, etc.). In this experiment,
a somewhat reverse process to that will be explored. Rather than building up a signal from its
harmonics, you will see what happens to a signal when some of its components are subtracted from
it. It is important, therefore, that you review the concepts introduced in previous courses.

4 Experiment

The experiment is divided in three parts: the design and simulation of a digital filter, the generation
of a working model on a DSP-based platform, and the modification of that model in real-time.

2

1. Designing and Simulating a Digital Filter

There are numerous software packages commercially available that will assist the Engineer
in designing Digital Filters. In this experiment, the Digital Filter Simulink block (called
FDA Tool) will make use of Matlab capabilities to generate the desired filter coefficients.
Throughout the experiment, you will use a Finite Impulse Response filter, or FIR. This is
the same type of filter you have studied during your lab preparation. Keep in mind that your
design should be simulating a system which operates at a sampling frequency of 48KHz.

Build a model for simulation, with input source, a filter (FDA Tool) and appropriate output
displaying blocks. For a signal source, use initially the DSP Sine Wave block, and at a second
run a Pulse Generator with a 1/2 period wide pulse to emulate a square wave. Starting with
a sinusoid, use an amplitude of 1Vp. You can visualize the results for the input signal in time
domain and in frequency domain by utilizing the Simulink blocks you used in Experiment
1. You may be required to resolve pending problems related to signal shape, as it is
handled by Simulink. The digital filter block is actually a filter design tool as well, so that
by double-clicking on it, one will find a digital filter design GUI.

The objective of this part of the experiment is to simulate a low pass filter with cut-off
frequency of 4KHz, and a band-pass filter with cut-off frequencies of 1KHz and 10KHz.
Design both filters with the same order (which also means the same number of coefficients).
There is no need to choose an order higher than 30. Also, to avoid complications in the second
part of the experiment, avoid the “minimum order” option. Choose the “window” method
for FIR design, and use a Kaiser window. If time allows at the end of the experiment, go back
into the filter design tool and explore different options. The trade-offs involved in designing
digital filters are a topic for a full course. Your simulation will introduce you to some of them.

The questions below are related to the filter design tool that you are utilizing.

• Present below the impulse response and the frequency response of the two filters you have
designed. What values represent the coefficients of your filter?

• Changing the order of your filter to 60, you will notice that the frequency response is
improved. At what expense is this improvement achieved? (look at the impulse response
and at the FIR block diagram on your lab preparation)

3

The questions below are related to the simulation of your system. If any of these steps is not
clear to you, do not hesitate to ask the TA or the Lab Engineer.

• This exercise is for you to verify the frequency response of your filters. Input a 1KHz
sinusoid to the low-pass filter that you have designed. Report the values at 500Hz, 1KHz,
3KHz, 5KHz, 10KHz and 15KHz. Repeat for the bandpass filter. Your best option is to
create a three-column table (Hz, VppLowPass, VppBandPass. Indicate if the results are
what you expected.

• Now use a 1KHz square wave as input to the low pass filter, and sketch the time domain
and frequency domain results. Explain the results.

4

• Repeat the procedure for 2KHz. Explain your results.

2. Building and Running a Model

In this part, you will insert the filter block (FDA Tool) into the “template” system that you
built in Experiment#1. You will find the sytem with all the proper parameters pre-set in the
work/template/direct.mdl. Run the model (i.e., “play”) under Simulink to check for any
signal shape incompatibility (don’t expect to see any output; this is just a check for signal
shape compatibility). In the Digital Filter block, choose initially the same low-pass filter
design you chose for the simulation part. Now the model is ready to be build and downloaded
to the DSP platform. Press the build button on your model window.

After the code for your model has been generated, Matlab will create a project and send it
into Code Composer Studio. You will have to compile (by pressing the “build all” button in
CCS) and load the executable file into the target hardware. Note that there are two build
processes in question: one is for Matlab to build a project (i.e., generate C files) based on
your block diagram and send it into Code Composer Studio; the other is the building of
an executable file in Code Composer Studio, by compiling, linking and assembling the files
generated from Matlab. The latter is done for a specific target hardware, which in your case
is the TMS320C6711 DSK.

Connect the signal generator to the inputs to the board, and the scope to the outputs.

Now you must load the executable file into the target hardware by selecting File/Load
Program. After this is done, you press on “Run”. You may not see any output on the first
time you do it. In case this happens, just load the program again and run it. You can run or
halt the program as you wish. Try to identify the routines in which the many parts of your
model are generated in software. See if you can find your filter coefficients, for instance.

• Using a sinusoid as your input signal (1Vpp), determine the cutoff frequency of your
filter. Draw a frequency response graph with a minimum of 5 points.

5

• Set your input signal to a 1KHz, 1Vpp, square wave. Draw the time domain output and
explain what it represents.

You have two options to visualize the signal in the frequency domain: one is to attach a
spectrum analyzer to the output of the target board; the second is to use the digital signal
processor to send data back into the Matlab workspace. F rom this point on, even though
you may have the spectrum analyzer attached to your target board, you will save the data
in Matlab and manipulate it to generate plots to answer questions. The data retrieved will
be the same data sent to the DAC, which eventually will be seen in the time domain on the
(real) oscilloscope. Now you will request that data be read from the DSP memory, and have
that data written into a Matlab variable.

Since the data comes from a limited space in memory, the Matlab variable will be a vector of
limited length. In your case, the length is pre-determined to be 1024 samples. After the data
is acquired, you can manipulate it mathematically to visualize it. You can also repeat the
procedure as many times as you wish, to visualize 1024 points of data at a time. Sometimes
you may observe a “discontinuity” on the signal retrieved. That is due to Matlab capturing
the data while the buffer (the space allocated in memory) is being written with new data. If
that happens, just capture the data once again. The length of 1024 is conveniently chosen

6

for you to utilize a 1024-point FFT.

From this point on to the end of this section, utilize a square wave input. You should
be aware of the fact that you have this signal input to two channels, and only one of the
channels will actually have a filter in it.

The procedure to be followed is presented below (you are to modify it to produce meaningful
plots for the report):

• Create a “.m” file with the following contents:

close all, cc=CCS_Obj;
x=read(cc,address(cc,’channel_a’),’double’,1024); % channel A
xx=read(cc,address(cc,’channel_b’),’double’,1024); % channel B
z=fft(x,1024);
zz=fft(xx,1024);
figure
subplot(2,1,1), plot(abs(z)), axis([0 512 0 300]) % using 1Vpp input
subplot(2,1,2), plot(abs(zz)),axis([0 512 0 300])
figure
subplot(2,1,1), plot(x), axis([0 150 -3 3])
subplot(2,1,2), plot(xx), axis([0 150 -3 3])

• Run the file

• Modify the file and run again as you wish, to visualize the data in the frequency domain.

This program reads directly from the memory on the target hardware. All samples that
are produced on two separate channels are stored in two buffers prior to being sent to the
digital-to-analog converter (DAC). These buffers are called ’channel a’ and ’channel b’.

In general lines, the program

• closes all previous graphs to avoid multiple plots on your workspace;

• assigns all hardware communication parameters to variable cc; it reads 1024 samples of
format ’double’ from address ’channel a’ on the target defined by variable cc and assigns
these values to variable x;

• does the same for ’channel b’ and assigns to variable xx;

• takes a 1024 point FFT on the 1024-sample long variable x, and assigns the results to
variable z;

• does the same for variable xx, assigning to variable zz;

• opens a new figure (a window which will hold the plot);

• creates the first (of two) plot, which will display the absolute value of the first 512 values
of z (as defined by the axis command);

• creates the second plot, which will display the absolute value of the first 512 values of
zz;

7

• opens another figure

• creates the first plot, to display the first 150 values of variable x (as defined in the ’axis’
command);

• creates the second plot, which will display the first 150 values of variable xx;

Note also that the display for the FFT (that’s variable “z” on the code) goes up to the “num-
ber” 512. This does not represent frequency; it represents the 512th point of the resulting
FFT. From theory, you should know that if you are performing an 1024 point FFT, the
corresponding frequency at the 1024th point is actually the sampling frequency. Remember
from the study of the sampling theorem that in the frequency domain, the spectrum of the
sampled signal is replicated at every integer multiple of the sampling frequency.

Use the code given above (modifying it when necessary) to respond to the following items:

• Using a 1000Hz, 1Vpp square wave, draw the output in both time domain and frequency
domain. Indicate the frequency components on the frequency domain plot.

• Compare the filtered output with the “direct” output. Explain what you see. Modify the
input frequency to 2KHz and compare the outputs again. Explain what you see.

8

5 Extra-class activity

As you know from the theory, the process of filtering in the digital domain is done through
the convolution between the sampled signal coming into a filter and the coefficients of that
digital filter, calculated according to a set of desired parameters. Up to this point, we have
placed three blocks together in Simulink (namely, the ADC, the digital filter, and the DAC)
and upon building our model, Simulink magically implemented the convolution.

If you would like to experiment further, break down the filtering block, by building a digital
filter using unit delays and gains, following FIR topologies easily found in literature (refer to
your preparation).

Another extra adventure you may want to try is to modify the C code of the generated project
and make your own project. This will help you to understand many details of writing code
for real-time applications.

6 Conclusion

In this experiment, you verified how a signal can be distorted by variations of the communi-
cation channel. Two digital filters represented the communication channels, while the signal
representing “data” was a square wave signal. A sine wave signal was also used throughout
the experiment, in order to allow for a verification of the characteristics of the digital filters
designed and implemented. You also became familiar with some of the key issues involved
in designing, simulating and implementing a digital filter. It is expected that you achieved
a practical understanding of the concepts studied not only in the theory, but also in other
courses of the curriculum.

References

[1] B.P. Lathi Modern Digital and Analog Communication Systems, 3rd Edition, Oxford University
Press, 1998

[2] Oppenheim, Willsky, with Young, Signals and Systems, 2nd Edition, Prentice Hall

[3] S. Orfanidis, Introduction to Signal Processing, Prentice Hall

[4] E. Ifeachor and B. Jervis, Digital Signal Processing - A Practical Approach, Addison Wesley

9

