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Abstract 
Equalizing the acoustical frequency response of a room at several 
points, using several loudspeakers, involves taking the inverse of a 
matrix frequency response. An exact inverse is generally not 
practical because the room transfer-function matrix is often nearly 
singular at some frequencies, causing high-Q equalizer peaks and 
making the room response unacceptable at points other than those 
where measurements are taken. We show how to diagnose and deal 
with the problem. The results presented were acquired using 
measurements taken in a car. 

I. Introduction 
A simple mathematical view of equalization is that, given a 
loudspeaker driving a room and an ear with an overall 
transfer function H(s) ,  one would put a gain H-’(s) in front of 
the loudspeaker to get an overall flat gain. This is impractical 
for a number of reasons: 
1. 

2. 

3. 

4. 

Causality: the room response includes several millisec- 
onds of pure delay, so H-’(s) would be non-causal. 
Notches: if H(s)  has a notch, perhaps because of a hard 
acoustic reflection, it cannot be inverted. Even if the 
notch is not infinitely deep, it may not be practical to in- 
vert it. 
Spatial variation: Correcting the response from a source 
to one point in a room is no guarantee that it is acceptable 
at other points[ 11. If, for example, a deep notch occurs at 
one location only, correcting it will cause a very audible 
sharp peak elsewhere. 
Order: Rooms have impulse responses thousands or tens 
of thousands of samples long, making any inverse filter a 
very high-order device. High order brings with it a heavy 
computing load, high accuracy requirements, and very 
slow or difficult adjustment to changes in room response. 

The “causality” problem can be resolved by accepting a 
“pseudo-inverse’’ HPi1  such that HH -I  approximates a delay 
of some 2 seconds, though now there is the practical problem 
of choosing a good estimate of z. This is a simple application 
of psychoacoustics, in the sense that the user may not much 
mind a flat delay. 
One way to address the “notch” problem is by putting an 
upper limit on the magnitude of HPi1 , on the principle that a 
small number of narrow notches are probably acceptable. 
This is a more dubious application of psychoacoustics, since 
there are obviously signals that will sound wrong. 
The “spatial variation” problem can be addressed by 
allowing N loudspeakers, so that there are N different 

P? 

b-dnSfer functions available to each point. Now if the room 
response is measured at M microphone locations we have an 
hZxN matrix of transfer functions H(s). This may help solve 
the “notch” problem in that not all responses will generally 
have notches at the same place, but adds new ways for the 
inverse to misbehave. 
This paper is concerned with analyzing what may happen 
and suggesting what do do about it. We use experimental 
data to make our points. 
The “order” problem can be addressed with powerful, 
high-precision, DSP chips or by use of psychoacoustic or 
acoustic knowledge to find acceptable reduced-order 
pseudo-inverses. 
111 general, the idea of a mathematical inverse has to be 
replaced with that of a pseudo-inverse, chosen by applying 
knowledge of the physical problem and of the way in which 
sound is perceived. 

II. Notation and Assumptions 
We define the room response as the vector m(s) (responses 
measured at the microphones), which in the frequency 
domain will be formed as the product of a matrix H(s) of 
bansfer and a vector Z(s) of sources (loudspeakers). 

Fig. 1 shows a simple setup, illustrating the procedure for 
data collection. 

m = HI 0%. 1) 

Fig. 1: Experimental setup (example) 
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In order to equalize the received signal for each of the 
rexeiving positions, we could make use of a set of gains 
which approximate the inverse of the transfer function H(s) 
for each frequency, avoiding the equalization with the direct 
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inverse of the transfer function matrix. This set of gains will 
be referred to as “desired gains d(s)” through this paper. 
The equalizer will then drive N loudspeakers with an 
approximate inverse of the room response: 

1 = H-’d m. 2) 
P S  

The microphone positions are assumed to represent room 
response nearby, but this requires that they be placed 
properly and the assumption is particularly weak at high 
frequencies where spatial coherence is low [2]. Roughly, the 
signal at a point is fairly representative of that within a 
moderate fraction of a wavelength [3]. A practical 
consequence of this is that these techniques are intended for 
equalizing at low to medium frequencies: by 300Hz the 
wavelength is down to about a metre and a great many 
microphones would be needed to measure the behaviour of a 
large room. 
At high frequencies it is more appropriate to use the 
dxectivity of drivers to control spatial variation, in which 
case DSP is used to invert the responses of drivers only 
rather than their interactions. 
The transfer function matrix is a function of frequency, or 
equivalently a matrix of functions of frequency. We usually 
choose to sample the response at a large number of 
frequencies, and think of the problem as one of inverting a 
large number of matrices of numbers - one matrix for each 
frequency. Since frequency responses have magnitude and 
phase, we are inverting a large number of complex-valued 
matrices. In practice some of those will be difficult to invert, 
and at the corresponding frequencies we expect to have 
difficulties. 

In. Eigenvalues and Eigenvectors 
We make extensive use of the eigenvalue-eigenvector 
decomposition of the room transfer function. We do this 
separately at each frequency sample. There are several ways 
in which H can be d~ficult to invert, with different physical 
causes and suggesting different treatment. The 
eigen-decomposition can be used to identify these nicely; 
we’ll start by looking at the decomposition and then continue 
by demonstrating special cases that correspond to real 
problems. 
This decomposition rewrites H in the form 

H = VDV-’ (Eq. 3) 
where D is a diagonal matrix whose entries are 
“eigenvalues” and V is a matrix whose i* column is the 
eigenvector corresponding to eigenvalue i .  If the “input” to 
H is the i” eigenvector, then the “output” is the same 
eigenvector scaled by the iuI eigenvalue. 
If an eigenvalue is zero, the matrix can’t be inverted because 
there is an input (the corresponding eigenvector) which 
produces zero output; and obviously once the signal has gone 
down to zero it can’t be built back up again. There is in fact 
no input whatever that can produce that output. 

After analyzing the eigenvalues and eigenvectors of matrix 
H ,  we isolate the eigenvector associated with the smallest 
eigenvalue by reordering V and D so that the smallest 
eigenvalue comes last; then we apply the Gram-Schmidt 
procedure to orthogonalize and normalize V.  The result is a 
matrix that can be used to identify “good” and “bad” 
components of the “desired gain”. By removing the “bad” 
component we can remove the need for high gains. 
The results of this analysis will be used to calculate the 
“desired gains” for the equalizer. 

IV. A simple example 
Suppose that a system with three loudspeakers and three 
microphones has, at some frequency a,, 

H“j) = (Eq. 4) 

This can’t be inverted because the rows aren’t linearly 
independent: row 3 is the sum of the first two. Physically, 
this says that no matter what loudspeaker (column of H) is 
used, microphone 3 always receives a signal that is the sum 
of those at microphones 1 and 2. If the desired signal were 

d =  I] 0%. 5) 

3 =  I] (Eq. 6 )  

which means that equal gains are desired to all microphones, 
then there would clearly be a problem: the desired pattern 
does not have mic 3 receiving a signal that is the sum of 
those at mics 1 and 2. 
On the other hand, the signal 

would be easy enough to produce and probably just as good 
from a practical point of view. The music will be louder at 
mic 3 than at the other two, but as long as that is forced to be 
true at all frequencies then all three frequency responses will 
be flat, and that is the main objective. 
We therefore want a systematic way to identify frequencies 
at which there will be a problem, a way to find a “good 
enough” 2 ,  and a way to force the same constraints to apply 
at all frequencies. 

V. Condition number 
Numerical analysts define the “condition number” of a 
matrix as a measure of how close it is to not having an 
inverse. It is the ratio of the magnitudes of the largest and 
smallest eigenvalues of the matrix; a small eigenvalue makes 
for large condition number and large gains in the inverse, 
which is not feasible to implement in practical terms. 
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We use the condition number to identify the frequencies that 
will cause problems in finding the inverse of the transfer 
function matrix H. Fig. 2 shows the peaks of the condition 
number to be dealt with for each frequency, from 
experimental data collected using four loudspeakers and four 
microphones. 

Fig. 2: Condition Number versus frequency 
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This plot clearly shows that there are big problems near 50 
and 1600Hz, and smaller problems at a handful of other 
frequencies. 
The condition number plot gives a simple way to identify the 
most critical frequencies. 

VI. Finding the “good” and “bad” components 
The matrix of (Eq. 4) can be decomposed (using the 
MATLAB [4] “eig” command for example) into 

The first two columns of V have the property that row 3 is 
the sum of the first two, and represent things that can be 
done; the third column is something that can’t be done. As a 
matter of interest, the first eigenvalue also is a lot better than 
the second, and the corresponding eigenvalues show why: a 
signal that’s in-phase at all three mics is going to be easier to 
produce than one in which mics 1 and 2 are 180 degrees 
apart. 
Now we want a systematic way to correct a given d to one 
that is easy to reproduce. A technique for doing this is to 
apply the Gram-Schmidt procedure to the columns of V to 
produce a new matrix 

0.75 -0.33 0.58 r 0.09 -0.81 -0.58 1 0 = -0.66 -0.48 0.58 

which converts between a representation of d in terms of 
what can be done with various combinations of eigenvectors 
and one that specifies what appears at mics. e’ in turn 
converts in the other direction so that if we write 

we will have removed the component of d that causes 
trouble. In our example, a vector of ones will be changed to 

0.667 
(Eq. 10) 

= [Ed 
which can be reproduced. The diagonal matrix in (Eq. 9) 
contains zeros to null out undesirable components and ones 
tal keep acceptable components. A similar technique could be 
used to select just the undesirable part of d, if that were of 
interest. 
Now a “pseudoinverse” of H can be obtained, which works 
properly provided it isn’t asked €or the impossible. For an 
invertible matrix we could have written 

H-’ = VD-’V-l 0%. 11) 

where inverting D just involves taking the reciprocal of each 
diagonal element. For a singular matrix, though, the zero 
ekment of D blows up in D-’. Still, if the matrix only has to 
produce the right answer for combinations of the “good” 
ei,genvectors then we could just replace the last element of 
D 1  with zero. Doing that gives us a “pseudo-inverse” of 
034.7) 

which works out to be 

-0.78 -0.96 1.17 
Hi: = [ 0.63 0.88 -1.04 (Eq. 13) 

1.67 2.07 -2.53 

VII. Results with Experimental Data 
The algorithm was applied for a set of data collected in a car, 
usiing two microphones (listening positions) and two sound 
soiurces. The graph of the condition number in figure 3 for 
such system shows that one major peak at around 310Hz 
indicates the presence of a small eigenvalue for the transfer 
function matrix at that frequency, which is responsible for a 
hard inversion for that matrix. 
Figure 4 then shows each element of the direct inverse of the 
transfer function matrix (dotted line) plotted together with 
the: new “pseudo” inverse (solid line). This new inverse is to 
be applied together with the desired vector as stated in (Eq.2). 
The desired vector was taken from the eigendecomposition 
of the transfer function matrix at the frequency presenting a 
peak for the condition number, as previously described. This 
deziired vector is a set of complex gains that will be applied 
to id1 frequencies, maintaining the overall response flat. 
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Fig. 3: Condition Number over frequency: two positions, two sources 
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Now, the two inverses of the transfer functim matrix versus 
frequency are presented. Note the peak for the direct inverse 
at around 310Hz, as expected from the condition number 
plot, and its correction with the new “pseudo” inverse. 

Fig. 4: Transfer function matnx inversa 
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Figure 5 shows the results of the equalization, which plots 
the spectrum of frequencies for each microphone position, 
before (dotted line) and after (solid line) the desired vector 
and the new “pseudo” inverse have been found and applied 
for equalization. 

Fig. 5:  Results for Equalization in two points 
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Constraints need not contradict each other in practice, 
though, because they may have a common cause. For 
example if one microphone has lower gain than the others, 
getting a large signal there while having small signals 
elsewhere will be difficult - but difficult at all frequencies. 
A single constraint will do all that is required. 

IX. Phase 
In the practical system the gain at each frequency is 
complex, meaning that it has both gain and phase. We have 
already said that flat gain differences between microphones 
are acceptable, and (Section I) that simple delays are 
acceptable. Taken together, we are willing to allow 

I ... I 

and the problem is to identify acceptable gains and delays. 
By repeatedly “projecting out” unacceptable components at 
the most critical frequencies, a practical 3 is obtained. 
We will also be able to accept, in practice, small deviations 
from flat frequency responses. This means that our job is to 
identify an overall best fit for 2 ,  but that we can tolerate 
minor adustments at different frequencies. 

X. Conclusions 
By using matrix transfer functions it is, in principle, possible 
to equalize a room at several points simultaneously. 
Difficulties arise in inverting the matrices involved, but these 
can be minimized by studying the eigenstructure of the 
transfer function matrix and by carefully generalizing the 
definition of “inverse” to allow a range of acceptable 
solutions, for example those with flat delays and minor gain 
variations. 

XI. References 

Each frequency with a bad condition number implies a 
constraint on what can be done with the system, and that 
constraint must then be applied at other frequencies in order 
to keep the transfer functions flat. If there are too many 
constraints we may be in trouble, because there will be no 
way in which to satisfy them all. 

81 0 


