February 28-March 2, 2006 • Dallas, TX

010010001000011000001000001000

SPRP410

SEE THE FUTURE

New Communications Curriculum With TI DSP Hardware at the University of Toronto

Bruno Korst

Comm. Syst. Engineer

University of Toronto bkf@comm.utoronto.ca

Technology for Innovators[™]

🐳 Texas In<u>strume</u>nts

War

Mandate

Create the facility tailored for the courses

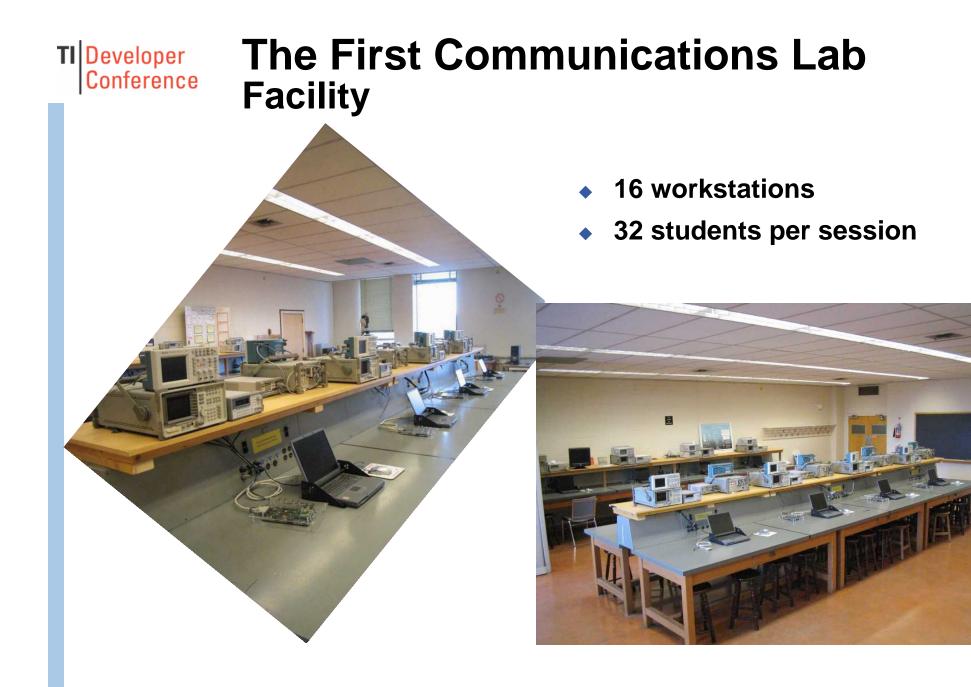
The Communications Lab

- Workstations, Experiments, Design Projects
- Demonstrations, Summer Intern, DEEP (High School)
- Student Feedback

Future Goals

Demo

Develop lab components for communications / DSP courses

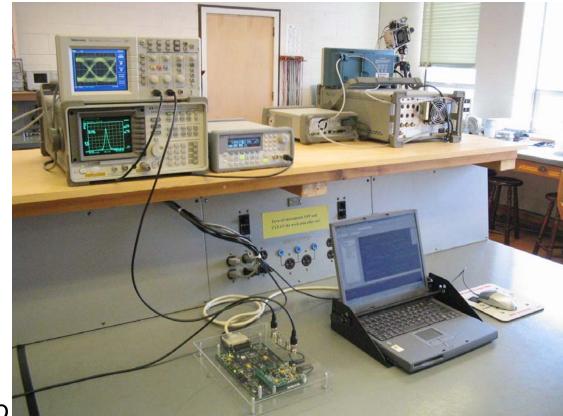

- Communication Principles
- Digital Communications
- Digital Signal Processing
- Multimedia & Image Processing

Provide students with superior learning experience

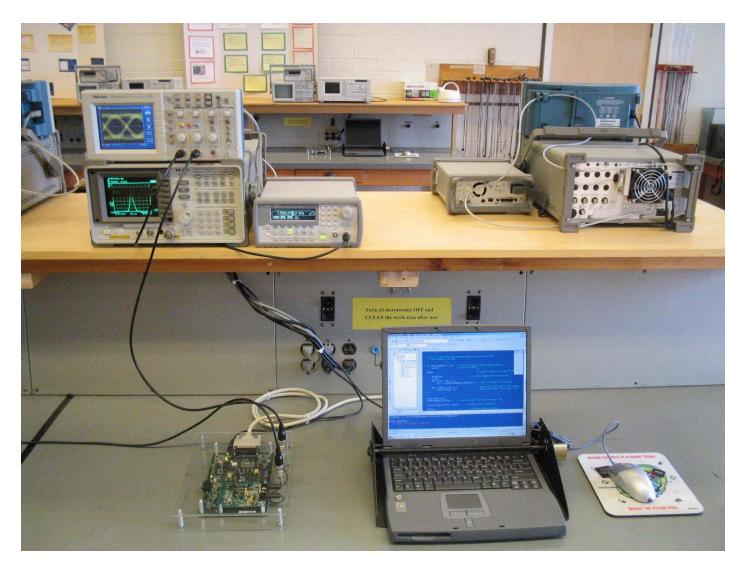
- Large number of stations
 - Flexible lab hours, teaching material and guidance provided
- State of the art hardware using TI platforms
 - TMS320C6713 for design projects
- Exposure to latest industry software tools
 - Code Composer Studio[™] IDE (with or without Simulink[®]/Matlab[®])
- Opportunity to develop projects on latest hardware available to the industry

😼 Texas Instruments

Technology for Innovators[™]


The First Communications Lab Workstations

16 Workstations


- 1 Notebook PC
- 1 TI c6711 DSK
 - Audio daughtercard
- 1 Oscilloscope
- 1 Signal Generator
- 1 Spectrum Analyzer

Software

- Matlab / Simulink
 - TI interface
- Code Composer Studio

TI Developer Conference The First Communications Lab Workstations

Technology for Innovators[™]

Communications Lab New Facility

New room for 20 workstations

Technology for Innovators[™]

8

The Communications Lab Experiments

Five experiments per course

One experiment every two weeks

Format: Preparation and Outline/Report

- Preparation done at home
 - Background math and design of block diagrams
- Results reported in the lab
 - Results obtained from system which students designed in their preparation.

Always Simulation & Implementation

- Simulink with some Matlab code
- Implementation automatic or on code provided

The Communications Lab Experiments

Reports prepared during experiment

- 90% of the session time spent on simulation/implementation
- 10% remaining reporting results
- TAs may ask questions (and mark them) during the session. Most TAs prefer to give the marks at the end of every session

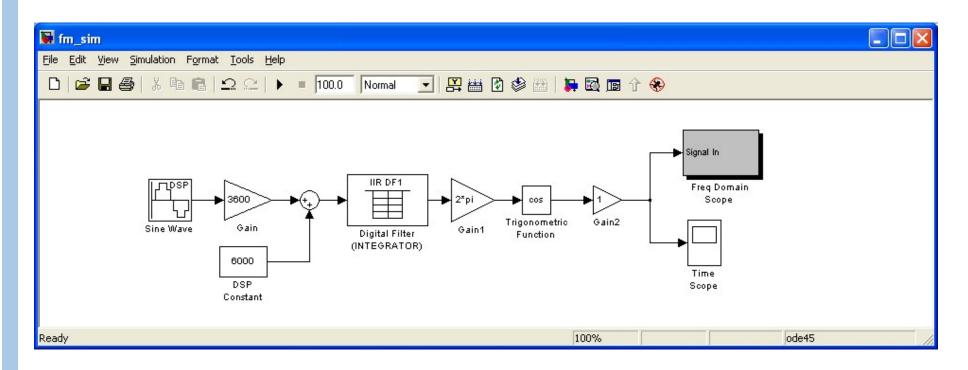
Maximum of 2 students per station

 Large groups (>2) for the workstations utilized are unproductive

The Communications Lab Experiments

Course: Introduction to Communication Systems

- Code Composer Studio and Simulink
 - Initial exposure to software / hardware tools
- Introduction to Digital Filters
 - "look at it as a band-limited channel"
- Amplitude Modulation
 - Modulation and demodulation (prototype board)
- Frequency Modulation
 - Modulation and demodulation (PLL on DSP platform)
- Uniform PCM (sampling and quantization)

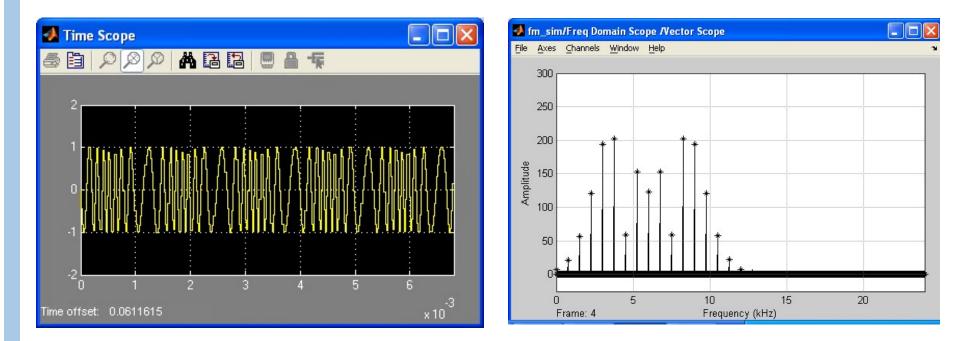

The Communications Lab Experiments

Course: Digital Communications

- Non-Uniform PCM (u-Law / A-Law)
- Noiseless Pulse Transmission
 - The role of Matched Filters
- Noisy Pulse Transmission
 - The role of the Square Root Raised Cosine filter
- QAM (16-QAM)
 - Eye Diagram and Constellation Diagram
- Error Control Codes
 - BER, generator matrix/syndrome

The Communications Lab Experiments

Sample: Frequency Modulation – Simulation

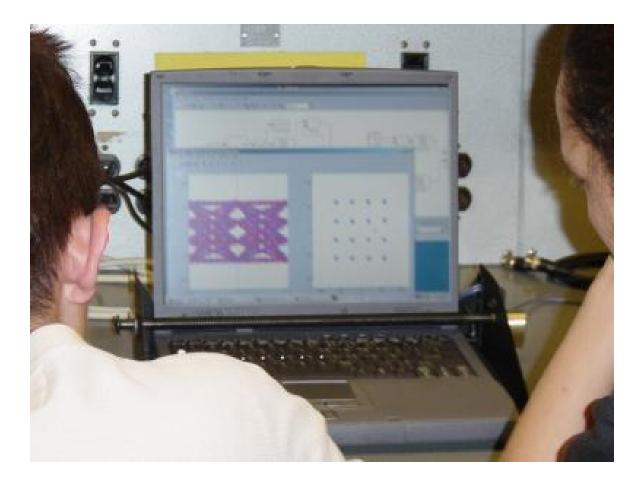


Challenge: rework the FM equation to implement it

- iB

TI Developer Conference The Communications Lab Experiments

Sample: FM – results from simulation



(implementation on c6713 DSK demo at the end)

The Communications Lab Experiments

Sample: Eye Diagram – Constellation (simulation)

Technology for Innovators[™]

The Communications Lab Experiments

Course: Digital Signal Processing (under development)

- Sampling and Quantization
- Finite Impulse Response
- Infinite Impulse Response
- Fast Fourier Transform
- Introduction to Image Processing

TI Developer Conference The Communications Lab Experiments

Course: Multimedia & Image Processing (under development)

- Sampling and Quantization
- Colour Image Processing
- Discrete Cosine Transform
- Wavelets I
- Wavelets II

The Communications Lab Design

A variety of projects have been supported

- Loudspeaker Linearization
- CAP Modem Design
- Optimal Reception in Multiuser Environment
- Phase Correction Algorithm for Power Circuits
- Head-Related Transfer Function Implementation

TI Hardware (DSK) and guidance is provided

TI Developer Conference Other Activities

- Demonstrations on demand
 - Courses which do not have a lab component require in-class demos:
 - Sampling and Quantization (Uniform)
 - Pulse Transmission (noisy and noiseless)
 - 16 QAM eye diagram and constellation
 - Visitations from academia / industry
 - Open-house prospective students

TI Developer Conference Other Activities

Summer Student Intern

- Every summer a student/volunteer is recruited
 - 3rd year student (paid) or 2nd year volunteer
- Student tasks:
 - Assist in the preparation of future experiments
 - Work on a particular project of interest
 - Efficient Implementation of Head Related Transfer Function
- Work provides early exposure to TI platform/programming environment

TI Developer Conference Other Activities

Da Vinci Engineering Enrichment Programme

- Geared towards Senior High School students
- Projects are primarily related to audio and acoustics
 - Very first exposure to "real" DSP programming
 - Math is kept to a minimum. Ex: Echo/Delay, FIR filtering
- Intention to use TI High School material in the future

TI Developer Conference Student satisfaction

- Surveys with > 100 students
 - Introduction to Communication Systems Course
 - Lab Setting
 - Setting was considered very adequate
 - Students appreciate groups of two
 - Teaching Methodology
 - "Lab Outline / Report" is an all-time favourite
 - TAs and students prefer marking in the lab
 - Avg 15 students per TA is desireable

TI Developer Conference Student Satisfaction

- Surveys with > 100 students (cont'd)
 - Relevance of Experiments
 - Students indicate their appreciation for lab experiments synchronized with topic studied in the theory
 - Experiments helped significantly their understanding of the topic (meaning: better marks in exams)
 - Perception of future use
 - By working with HW used in the industry, students experience a "closer to reality" lab.
 - They appreciate becoming familiar with a useful tool for their professional practice.

TI Developer Conference Future Goals

- Achieve full compatibility with latest TI development platform
- Add dedicated hardware components to specific courses: image processing, audio processing, telephony, etc.
- Expand towards project-only courses
- Offer industry-oriented courses

- FM Modulator
- Platform: TI TMS320C6713 DSK
- SW: Simulink with TI interface, Code Composer Studio.
- Details
 - Students should work out the math to design the block diagram and simulate it.
 - Students should realize the limitations of the CODEC and account for that.

New Communications Curriculum With TI DSP Hardware at the University of Toronto

Bruno Korst

Communication Systems Engineer University of Toronto bkf@comm.utoronto.ca

SEE THE FUTURE

CREATE YOUR OWN

Technology for Innovators[™]

W Texas Instruments

26