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Abstract—This paper addresses the optimal channel quanti-
zation codebook design for limited feedback multiple-antenna
multiuser channels. The base station is equipped withM
antennas and servesM single-antenna users, which share a
total feedback rate B. We assume real space channels for
convenience; the extension of the analysis to complex spaceis
straightforward. The codebook optimization problem is cast in
form of minimizing the average downlink transmission power
subject to the users’ outage probability constraints. Thispaper
adopts a product codebook structure for channel quantization
comprising a uniform (in dB) channel magnitude quantization
codebook and a spatially uniform channel direction quantization
codebook. We first formulate a robust power control problem
that minimizes the sum power subject to the worst-case SINR
constraints over the channel quantization regions. By using an
upper bound solution to this problem, we then optimize the
quantization codebooks given the target outage probabilities and
the target SINR’s. In the asymptotic regime of B → ∞, the
optimal number of channel direction quantization bits is shown
to beM−1 times the number of channel magnitude quantization
bits. It is further shown that the users with higher requested QoS
(lower target outage probabilities) and higher requested downlink
rates (higher target SINR’s) should receive larger shares of
the feedback rate. The paper also shows that, for the target
parameters to be feasible, the total feedback bandwidth should
scale logarithmically with γ̄, the geometric mean of the target
SINR values, and1/q̄, the geometric mean of the inverse target
outage probabilities. Moreover, the minimum required feedback
rate increases if the users’ target parameters deviate fromthe
average parameters̄γ and q̄. Finally, we show that, asB increases,
the multiuser system performance approaches the performance
of the perfect channel state information system as1/q̄ · 2−

B

M2 .

I. I NTRODUCTION

The availability of channel state information (CSI) at the
transmitter is critical for the operation of the multiuser spatial
multiplexing systems. The base station needs this information
to distinguish the users spatially and perform power control.
In practice, this information is provided either by training
the base station on the reverse links in TDD systems or by
quantizing the user channels and sending back the quantized
information in FDD systems. The design and optimization of
the channel quantization codebooks, therefore, is essential in
the implementation of the FDD systems.

The multiple-antenna multiuser system with imperfect CSI
at the transmitter is a well investigated topic in the literature
[1]–[5]. In order to preserve the multiplexing gain of the
sum rate, the author of [2] shows that the feedback rate
should scale linearly with the SNR (in dB). The authors of

[3] show that one needs the channel magnitude information
in addition to the quantized channel direction informationin
order to realize the multiuser diversity gain of the sum ratein
a large network of users. The magnitude information, however,
is assumed to be perfect in [3]. The joint scheduling and
beamforming problem with a total feedback rate constraint
across users is studied by [4]. Finally, the authors of [5] study
the throughput optimization problem considering both training
and CSI feedback overheads.

A majority of the literature in the area of multiuser feedback
design considers the sum rate as the performance metric and,
for tractability reasons, does not allow power adaptation over
time and across the users. In practical systems, however,
temporal and spatial power adaptation are essential as the
users request instantaneous downlink data rates with specific
QoS constraints. Therefore, the base station needs not only
the channel direction information for spatial identification of
the users, but also the channel magnitude information for
power control and/or rate control. It is therefore necessary to
study the joint direction and magnitude quantization codebook
design and optimization.

To address this problem, we formulate the system design
problem as minimization of the average sum power subject
to the outage probability constraints at the users’ side. Such
formulation is appropriate for fixed-rate delay-sensitivetype
of traffic. This paper adopts a product codebook structure
comprising a spatially uniform direction quantization code-
book and a uniform (in dB) channel magnitude quantization
codebook; the asymptotic optimality of such uniform (in dB)
magnitude codebooks is shown in [6]. The product structure
has several practical advantages [7] and it is shown to be a
sufficient structure for effective interference management in
the multiuser systems [8].

Assuming zero-forcing beamforming vectors, this paper
starts by formulating the robust power control problem subject
to the worst-case SINR constraints over the sector-type quan-
tization regions imposed by the product quantization structure.
Using an upper bound solution to this problem, we then
study the optimization of the quantization codebooks for the
given target SINR’s and outage probabilities. The analysisis
asymptotic in the total feedback rate. We show that

1) The optimal number of direction quantization bits is
M−1 times the number of magnitude quantization bits,
whereM is the number of base station antennas.



2) The share of thekth user from the total feedback band-
width is controlled bylog γk andlog 1/qk, whereγk and
qk are the user’s target SINR and outage probability. As
a general rule, a user with a higher QoS (lower target
outage probability) and higher target rate (higher target
SINR) needs a higher channel quantization resolution
and therefore requires a larger share of the total feedback
rate.

3) For the outage probability constraints to be feasible,
the total feedback bandwidth should scale withlog γ̄
and log 1/q̄, where γ̄ and q̄ are the geometric means
of the target SINR’s and target outage probabilities.
Moreover, the minimum required feedback rate increases
if the users’ target parameters deviate from the average
parameters̄γ and q̄, i.e. there is a feedback rate penalty
for serving users with different target parameters. The
higher the deviation, the higher is the penalty.

4) As the total feedback rateB increases, the performance
of the limited CSI system approaches the performance
of the perfect CSI system as1q̄ · 2− B

M2 .

The proofs of the theorems in this paper are omitted due
to the space limits. Also, all the computations in the paper
are for the real space. Extension of the results to the complex
space is straightforward.

II. PERFECTCSI SYSTEM: OUTAGE IS INEVITABLE

This section provides a quick review of spatial multiplexing
system and shows that outage is inevitable even with perfect
CSI at the base station. The discussions are adopted from [8].

Consider a multiuser downlink channel withM antennas at
the base station andM users each with a single antenna. Let
hk ∈ R

M , vk ∈ R
M , Pk, andγk denote respectively, the user

channel, the beamforming vector, the allocated power, and the
target SINR for thekth user,1 ≤ k ≤ M . The minimization of
the transmission sum power subject the user SINR constraints
is formulated as follows:
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Pk,vk
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where the receiver noise power is assumed to be1 for all users.
A suboptimal solution for problem (1) is to use zero-forcing

(ZF) beamforming vectorsvk to eliminate the interference
and find the power valuesPk that satisfy the constraints
with equality. This solution is asymptotically optimal in the
high SNR regime. An important matter to consider with this
solution is that the transmission powers need to be very
high when the users’ channels are closely aligned, as the
ZF beamforming vectors would be almost perpendicular to
the corresponding channels in such cases. Therefore, it is not
possible to always satisfy the SINR constraints with a bounded
average power and, as a result, a certain degree of outage
should be tolerated by the users.

Fig. 1. Sector-type quantization regionS(R, r, ũ, φ).

To see this rigorously, defineθk = ∠(hk,H−k), where0 ≤
θk ≤ π

2 , andH−k = span({hl|l 6= k}). Assume that the users’
channels are i.i.d. with uniformly distributed directionsand
independent channel magnitudes (with arbitrary distributions).
The average sum power of ZF method is given by

PCSI = E {PZF,sum} =

M
∑

k=1

γkE
{

1/‖hk‖2
}

E
{

1/sin2(θk)
}

.

As θk is uniformly distributed in[0, π2 ], the expectation of
1/ sin2(θk) becomes unbounded. To avoid unbounded transmit
power, the users should therefore tolerate certain degreesof
outage. A reasonable approach is to declare outage for user
k, i.e. setPk = 0, when 0 ≤ θk ≤ θ◦k, whereθ◦k ≪ 1 is
the smallest acceptable angle betweenhk andH−k. With this
assumption the average sum power is given by

PCSI =
2

π

M
∑

k=1

γk cot(θ
◦
k)E

{

1/‖hk‖2
}

≈ 2ρCSI

π

M
∑

k=1

γk
θ◦k

, (2)

where

ρCSI

def
= E

{

1/‖hk‖2
}

(3)

for i.i.d. users. The corresponding outage probabilities are
pout,k = 2θ◦k/π for 1 ≤ k ≤ M .

III. ROBUST POWER CONTROL WITH SECTOR-TYPE

CHANNEL UNCERTAINTY REGIONS

The optimization of the multiuser spatial multiplexing sys-
tem with quantized channel information is a two-fold problem:
1) optimizing the power control and beamforming functions
for fixed quantization codebooks; 2) optimization of the quan-
tization codebooks. In this section we study the first problem;
the codebook optimization will be discussed later.

For product quantization codebooks that are considered in
this paper, the quantization (or channel uncertainty) regions
are the sector-type regions shown in Fig. 1:

S(R, r, ũ, φ) =
{

h ∈ R
M
∣

∣

√
r ≤ ‖h‖ <

√
R, ∠(h, ũ) < φ

}

,

where ũ is the quantized direction andφ is the uncertainty
angle.

Define the uncertainty regionsSk = S(Rk, rk, ũk, φk) for
users1 ≤ k ≤ M . We are interested in minimizing the sum



power subject to the worst-case SINR constraints over these
regions:

min
Pk

M
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k=1

Pk (4)

s.t. inf
w∈Sk
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The beamforming vectorsvk are assumed to be the zero-
forcing vectors for the quantized directions̃uk and the op-
timization is only over the power control functions.

This problem can be transformed to a SDP problem and
therefore efficiently solved [9]. In order to obtain a closed-
form answer for the sum power, we resort to a suboptimal
solution that leads to an upper bound on the sum power. This
bound is used in the later sections for the optimization of
the quantization codebooks. A byproduct of this upper bound
solution is a sufficient feasibility condition for the original
problem in (4).

Define θk = ∠(ũk, Ũ−k), which is a similar definition as
in Section II, except that the exact channelshk ’s are replaced
with the quantized directions̃uk’s. First, we bound the SINR
terms as follows:

inf
w∈Sk
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∣
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(b)
=

Pkrk sin
2 (θk−φk)

(
∑M

l=1 Pl)rk sin
2 φk+1

, (6)

whereŵ = w/‖w‖ in (5). The equality (a) holds since the
SINR term is monotonic in‖w‖, i.e. the minimum occurs on
the smaller hypersphere in Fig. 1. The equality (b) is a direct
result of the definitions ofθk, Sk, and the fact thatvk ’s are
the zero-forcing directions for̃uk ’s.

Now, by setting the last term in (6) to be equal toγk, one
achieves a set of linear equations inPk ’s and by solving these
equations we have the following upper bound for the sum
power:

Pub =

∑M
k=1 αk/βk

1−∑M
k=1 αk

, (7)

whereαk =
(

1 + sin2 (θk−φk)
γk sin2 φk

)−1

andβk = rk sin
2 φk.

The method used above for deriving the upper bound (7) is
similarly used by [8] for spherical channel uncertainty regions
instead of sector-type regions.

By guaranteeing
∑M

k=1 αk<1 in (7), one can prove the fol-
lowing sufficient feasibility condition for the original problem
in (4).

Theorem 1:To ensure the feasibility of the problem in (4),
it is sufficient to have

tanφk

sin θk
<

1

1 +
√

(M − 1)γk
. (8)

For small values of uncertainty anglesφk, this is equivalent
to

φk <
sin θk

1 +
√

(M − 1)γk
. (9)

Since we are interested in computing the expected value of
the sum power, we use the following approximation for the
sum-power upper bound so that the expectation operation can
be conveniently applied:

Theorem 2:For φk≪1, 1 ≤ k ≤ M , we have

Pub =
∑

k

ek +
∑

k

fkφk +
∑

k

o(φk), (10)

where

ek =
γk
rk

(1+ζ2k), fk =
2γk
rk

(ζk+ζ3k), ζk = cot θk. (11)

The assumption ofφk ≪ 1 is justified in Section V.B.
In the following sections, we use the sufficient condition

(9) and the sum-power upper bound approximation (10) to
optimize the channel quantization codebook.

IV. QUANTIZATION CODEBOOK OPTIMIZATION : THE

GENERAL FORM

In this section, we present the codebook optimization prob-
lem in its general form. To clarify the arguments, we start by
some basic definitions.

By a quantization codebookC={S(1), S(2), · · · , S(N)} of
sizeN , we mean a partition ofRM into N disjoint quantiza-
tion regionsS(n), 1≤n≤N . For every quantization codebook
C, we also define aquantization functionS(h) : RM → C
that returns the quantization region thath ∈ R

M belongs to.
Now for M users1≤k≤M , considerM codebooksCk of

sizesNk and the corresponding quantization functionsSk(hk),
wherehk is the kth user’s channel. Define the orderedM -
tuples

H = [hT
1 ,h

T
2 , · · · ,hT

M ] ∈ R
M2

,

S(H) = [S1(h1),S2(h2), · · · ,SM (hM )] ∈
M
∏

k=1

Ck.

For a given total number of quantization (feedback) bitsB,
target SINR valuesγk, and target outage probabilitiesqk, the
quantization codebook optimization problem is formulatedas
follows:

min
Ck,Nk,

Pk(S(H)),
vk(S(H))

EH

[

M
∑
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Pk(S(H))

]
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s.t.
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where the optimization is over the quantization codebooksCk,
codebook sizesNk, the power control functionsPk(S(H)) :
∏M

k=1 Ck → R+, and the beamforming functionsvk(S(H)) :
∏M

k=1 Ck → UM , whereUM is the unit hypersphere inRM .
An exact solution to this problem is intractable. Our ap-

proach in solving this problem is a suboptimal one where we
fix the outage regionsof the users (with volumesqk) and
design the system such that outage is prevented in all other
regions. Define the outage regionΩk ⊂

∏

k Ck for userk such
that prob[S(H) ∈ Ωk] = qk and letIk be theno-outage flag
for userk: Ik = I(S(H) ∈ Ωc

k), whereI(·) is 1 if its logical
argument is true and0 otherwise.

Let us fix the codebook sizesNk for now. In order to prevent
outage whenIk = 1, we need to design the codebooks, the
power control function, and the beamforming functions such
that the target SINR’s are guaranteed for the worst case:

min
Ck,

Pk(S(H)),
vk(S(H))

EH

[

M
∑

k=1

Pk(S(H))

]

(13)

s.t. inf
w∈Sk(hk)

Pk(S(H))
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T
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2

∑

l 6=k

Pl(S(H)) |wTvl(S(H))|2+1
> γkIk,

for all H ∈ R
M2

andk = 1, 2, · · · ,M.

Note that this formulation returnsPk(S(H))=0 if userk is in
outage, i.e.Ik = 0.

The robust formulation in (13), although still intractable,
reveals two main sources of outage:

• Magnitude outage: If the quantization regionSk(hk)
includes the zero vectorw = 0, the constraint will not
be feasible for userk and the user will be in outage.

• Direction outage: Assume that there exists a vectorwi ∈
Si(hi) such thatwj = cwi ∈ Sj(hj) for some arbitrary
constantc and distinct usersi 6= j. It is easy to verify that
the SINR constraintsPi|wT

i vi|2/Pj |wT
i vj |2 > γi and

Pj |wT
j vj |2/Pi|wT

j vi|2 > γj cannot coexist ifγi, γj > 1.
Therefore, the users will also be in outage if their quan-
tization regions are in near alignment with each other.

To present a tractable solution to the problem in (13), we
resort to the product codebook structures as described in the
next section.

V. CHANNEL MAGNITUDE AND DIRECTION

QUANTIZATION

This section describes the product codebook structure and
explicitly specifies the outage regions. For a given target
outage probabilityq, the magnitude and direction outage
regions are defined in a way thatq = q̇ + q̈, where q̇ and q̈
are respectively referred to as magnitude and direction outage
probabilities.

A. Channel Magnitude Quantization

For each user1 ≤ k ≤ M , we use a magnitude quantization
codebooksYk = {y(1)k , y

(2)
k , · · · , y(Ṅk)

k } for quantizing the

channel magnitude variableYk
def
= ‖hk‖2, where y

(n)
k are

the magnitude quantization levels anḋNk is the magnitude
codebook size.

Given a magnitude outage probabilityq̇, we fix the interval
[

0, y
(1)
k

)

as the magnitude outage region. The first quantization
level is therefore fixed as

y
(1)
k = F−1

k (q̇k), (14)

whereF−1
k (·) is the inverse cdf ofYk

def
= ‖hk‖2. The follow-

ing definitions are used in describing the product codebook
structure.

Define Ċk as the set of all quantization intervals except the
outage interval:

Ċk =
{

J
(1)
k , J

(2)
k , · · · , J (Ṅk)

k

}

, (15)

whereJ (n)
k =

[

√

y
(n)
k ,

√

y
(n+1)
k

)

and y
(Ṅk+1)
k

def
= ∞. Note

that the definition uses the square root of the levels as the
quantization levelsy(n)k are defined for quantizing‖hk‖2.

Finally, for Yk ≥ y
(1)
k , define thequantized magnitudẽYk

as the quantization level inYk that is in the immediate left
of Yk. The quantized variablẽYk is exactly the same as the
parameterrk in the discussion of the robust power control
problem in Section III.

The ultimate goal of this paper is to optimize the magnitude
and direction quantization codebooks such that the average
sum power is minimized. For this purpose, as it will be
clarified in Section VI, we use the expectation of the upper
bound in Theorem 2 as the average sum-power upper bound.
According to (11), the average termsE[ek] andE[fk] include
the termE[1/rk]. We are therefore interested in a magnitude

quantization codebookY that minimizesE
[

1/Ỹk

]

.
It is shown in [6] that, in the asymptotic regime where

Ṅk → ∞, the optimal magnitude levels inY form a geometric
sequence, i.e. the asymptotically optimal levels are uniformly
spaced in dB scale. As it is shown in [6], this optimality is
not affected by the channel magnitude distribution as long as
some regularity conditions are satisfied. Moreover, assuming
Ṅk ≫ 1, we have the following for such an optimal codebook
Y:

E

[

1

Ỹk

]

< ρCSI

(

1 + Ṅ
−ζk(Ṅk)
k

)

, (16)

whereρCSI is defined in (3) and the functionζk(Ṅk), as defined
in [6], is a function that depends on the probability distribution
function ofYk and has the property

lim
Ṅk→∞

ζk(Ṅk) = 1. (17)

B. Channel Direction Quantization

For channel direction quantization, we useM -dimensional
Grassmannian codebooksUk for users1≤k≤M :

Uk =
{

u
(1)
k ,u

(2)
k , · · · ,u(N̈k)

k

}

,

whereu(n)
k vectors areM -dimensional unit-norm Grassman-

nian codewords and̈Nk is the direction quantization codebook



size. The direction quantization regions are formed by map-
ping each channel vectorhk to a vector̃uk(hk) ∈ Uk that has
the smallest angle withhk:

ũk(hk) = arg min
u∈Uk

∠(hk,u). (18)

We refer toũk(hk) as the quantized direction for the channel
realizationhk. The corresponding quantization regions, ac-
cording to the Gilbert-Varshamov bound argument [10], can
be covered by the following spherical caps:

C̈k =
{

B
(1)
k , B

(2)
k , · · · , B(N̈k)

k

}

(19)

whereB(n)
k =

{

w

∣

∣

∣
‖w‖ = 1, ∠(w,u

(n)
k ) < arcsin δk

}

, and
δk is the minimum chordal distance ofUk. This covering (en-
largement) of the regions increases the required transmission
power, which is in the direction of our analysis of deriving
sum-power upper bounds.

In order to use the results in Section III, we defineφk,
which are referred to asuncertainty anglesin Section III, as
follows:

φk
def
= arcsin δk. (20)

We will need the following bound in optimizing the product
codebook structure in Section VI.

Lemma 1:For aM -dimensional real Grassmannian code-
book of sizeN̈ and minimum chordal distanceδ, we have the
following for large enoughN̈ :

δ < 4λMN̈− 1

M−1 , (21)

whereλM =
(√

πΓ((M+1)/2)
Γ(M/2)

)
1

M−1

and Γ(·) is the gamma
function.

Proof: Proof is based on the Hamming bound as in [10].

By combining (20) and Lemma 1, we have the following for
small φk and large enougḧNk:

φk < 4λMN̈
− 1

M−1

k . (22)

To address thedirection outage, we assume that the beam-
forming vectors are the zero-forcing vectors for the quantized
directionsũk=ũ(hk). We say that userk is in direction outage
if 0 ≤ θk ≤ θ◦k, whereθk = ∠(ũk, Ũ−k) as defined in Section
III, and θ◦k ≪ 1 is the minimum acceptable angle betweenũk

andŨ−k. This implicitly defines the direction outage regions.
Moreover, by assuming thatθk is approximately uniform1 in
[0, π/2], the direction outage probabilityis given by

q̈k ≈ 2

π
θ◦k. (23)

For all other no-outage cases, i.e.θk ≥ θ◦k, all the SINR
constraints should be feasible. By using the sufficient feasi-
bility condition in (9) and noting that userk is not aware of

1This holds if the codebooksUk undergo sufficient random rotations.

θk and the codebook structures are fixed, the parametersφk

should be set for the worst case as follows:

φk <
θ◦k

1 +
√

(M − 1)γk
. (24)

This justifies the assumption ofφk ≪ 1 in Theorem 2. Now,
by considering the potential range ofφk in (22) and using (24),
we have the following sufficient condition on̈Nk in order to
guarantee the SINR targets for the no-outage cases:

N̈k ≥
(

4λM

θ◦k

(

1 +
√

(M − 1)γk

)

)M−1

. (25)

VI. PRODUCT CODEBOOK OPTIMIZATION AND

ASYMPTOTIC BIT-SHARING RULES

By recalling the definitions in Sections IV and V, the product
codebooks for users1≤k≤M are formed as follows:

Ck = (Ċk × C̈k) ∪Ok, (26)

whereĊk and C̈k are the magnitude and direction codebooks
in (15) and (19) andOk = {h|‖h‖2 < y

(1)
k }. Moreover, the

no-outage flag for userk is

Ik = I
(

θk > θ◦k ∧ ‖h‖2 > y
(1)
k

)

, (27)

where I(·) is the logic true function. Finally, the outage
probability of userk is given by

qk = q̇k + q̈k ≈ Fk(y
(1)
k ) +

2

π
θ◦k. (28)

Now, for every realization of the random channelsH =
[h1,h2, · · · ,hM ], we can bound the instantaneous solution
of (13) with the upper bound solution (10) by replacing the
variablesγk, rk, ζk with the random variablesγkIk, Ỹk, and
cot θk, where the random variables̃Yk and θk are defined in
Sections V.A and V.B.

If we ignore the last term in (10) and take the expectation
of Pub with respect toIk, Ỹk, θk, and use (16) and (22), we
achieve the following upper bound:

E [Pub]<
2ρ

CSI

π

M
∑

k=1

γk
θ◦k

(

1+Ṅ
−ζk(Ṅk)
k +

4λM

θ◦k
N̈

− 1

M−1

k

)

(29)

≈2ρ
CSI

π

M
∑

k=1

γk
θ◦k

(

1+Ṅ−1
k +

4λM

θ◦k
N̈

− 1

M−1

k

)

, (30)

where we have assumeḋNk, N̈k ≫ 1 and used (17) in deriving
(30).

Assume a total feedback rate constraintB such that
∏M

k=1 N̈kṄk ≤ 2B. We want to minimize the average sum-
power upper bound in (30) with respect to this rate con-
straint, the target outage constraints (28), and the sufficient
(no-outage) constraints (25), in the asymptotic regime of
B, Ḃk, B̈k ≫ 1, whereḂk

def
= log Ṅk and B̈k

def
= log N̈k.

In order to satisfy the outage target constraints, we fix
y
(1)
k and θ◦k such thatFk(y

(1)
k ) = 2

π θ
◦
k = qk

2 , i.e. we make
the simplifying assumption that the magnitude and direction
outage are equally likely. It can be shown that any other linear



division of qk betweenq̇k and q̈k only affects the optimal̈Bk

andḂk by a fixed bounded number of bits, i.e. the variableη
in equations (31) and (32).

By minimizing (30) subject to
∑

k Ḃk+B̈k = B we have
the following result:

Theorem 3:Define

Ḃave=
1

M2
B − M−1

M
log

1

q̄
− η (31)

B̈ave=
M−1

M2
B +

M−1

M
log

1

q̄
+ η, (32)

whereη = M−1
M log 16λM

π(M−1) and q̄= M

√
∏

k qk. The optimal

values ofḂk and B̈k are given by

Ḃk=Ḃave+ log
γk
γ̄

+ log
q̄

qk
(33)

B̈k=B̈ave+ (M−1) log
γk
γ̄

+ 2(M−1) log
q̄

qk
, (34)

whereγ̄= M

√
∏

k γk.
Corollary 1: For each userk, the optimal number of mag-

nitude and direction quantization bits are related as follows:

B̈k = (M−1)Ḃk + (M−1) log
1

qk
+Mη. (35)

In the asymptotic regime ofB → ∞, the number of direction
quantization bitsB̈k is thereforeM − 1 times the number of
magnitude quantization bitṡBk. Moreover, the total number
of quantization bits for userk is given by

Bk = Ḃk + B̈k =
1

M
B+M log

γk
γ̄

+(2M−1) log
q̄

qk
, (36)

which shows that thekth user’s share of the total feedback
rate is controlled bylog γk and log 1/qk.

By forcing the optimal values ofN̈k = 2B̈k to satisfy
the sufficient (no-outage) constraint in (25), we achieve the
following minimum required total feedback rateB:

Theorem 4:Assumeγk > 1. For the target SINR’sγk to
be feasible with outage probabilitiesqk, the following total
feedback rateB is sufficient:

B >
1

2
M2 log γ̄ + (M2−M) log

1

q̄
+M2 log∆ + b, (37)

where γ̄ and q̄ are the geometric means ofγk ’s and qk ’s
respectively,

∆ = max
1≤k≤M

qk/
√
γk

q̄/
√
γ̄

,

andb=1
2M

2 + 3
2M

2 logM+M2η with η is defined in Theo-
rem 3.

Theorem 4 shows that the system feedback link capacity
should increase logarithmically with̄γ andq̄. Comparing with
the users that have similar target parametersγk = γ̄ and
qk = q̄, the users with different target parameters impose
an additional requirement,M2 log∆, on the total feedback
rate. The more the target parameters deviate from the average
parameters̄q and γ̄, the higher is this requirement.

Finally, by substituting the optimal values of̈Bk andḂk in
(30), we have the following result which shows the scaling of
the average sum power withB:

Theorem 5:For a system withM antennas at the base
station and a total feedback rateB, we have

E [Pub] < PCSI

(

1 +
κ

q̄
· 2− B

M2

)

, (38)

wherePCSI is defined in (2),̄q= M

√
∏

k qk, and

κ =
16M

π(M−1)

(

π3/2(M − 1)Γ((M + 1)/2)

16Γ(M/2)

)1/M

.

VII. C ONCLUSIONS

This paper studies the channel quantization codebook op-
timization for multiuser spatial multiplexing system withM
antennas at the base station and a total feedback rateB. It
is shown that in the asymptotic regime ofB → ∞, the
optimal number of direction quantization bits isM − 1 times
the number of magnitude quantization bits. As a general rule,
a user with a higher QoS (lower target outage probability)
and higher target rate (higher target SINR) needs a higher
channel quantization resolution. The paper also shows thatthe
total required feedback rate increases logarithmically with the
geometric mean of the target SINR’sγ̄ and the geometric mean
of the inverse outage probabilities1/q̄. The more the users’
target parameters deviate from the mean parametersγ̄ and q̄,
the more is the required feedback. The paper also derives the
scaling of the system performance with the feedback rate.

REFERENCES

[1] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M.
Andrews, “An overview of limited feedback in wireless communication
systems,”IEEE J. Select. Areas Commun., vol. 26, no. 8, pp. 1341-1365,
Oct. 2008.

[2] N. Jindal, “MIMO broadcast channels with finite rate feedback,” IEEE
Trans. Inform. Theory, vol. 52, no. 11, pp. 5045-5059, Nov. 2006.

[3] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna downlink chan-
nels with limited feedback and user selection,”IEEE J. Select. Areas
Commun., vol. 25, no. 7, pp. 1478-1491, Sep. 2007.

[4] K. Huang, R. W. Heath, and J. G. Andrews, “Space division multiple
access with a sum feedback rate constraint,”IEEE Trans. Sig. Proc., vol.
55, no. 7, pp. 3879-3891, Jul. 2007.

[5] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inform. Theory, to appear.

[6] B. Khoshnevis and W. Yu, “High resolution quantization codebook
design for multiple-antenna fading channels,” to appear inProc. 25th
Biennial Symposium on Communications (QSBC), Kingston, Canada,
May 2010.

[7] B. Khoshnevis and W. Yu, “Joint power control and beamforming
codebook design for MISO channels with limited feedback,”Global
Communications Conference (Globecom), Honolulu, HI, Nov. 30-Dec.
4, 2009.

[8] B. Khoshnevis and W. Yu, “Structure of channel quantization codebook
for multiuser spatial multiplexing systems,” to appear inProc. IEEE
International Conference on Communications (ICC), Cape Town, South
Africa, May 2010.

[9] B. Khoshnevis and Wei Yu, “Quantization codebook designfor multiple-
antenna channels—part II: multiser system,” preprint.

[10] D. J. Love and R. W. Heath, “Grassmannian beamforming for multiple-
input multiple-output wireless systems,”IEEE Trans. Inform. Theory,
vol. 49, no. 10, pp. 2735-2747, Oct. 2003.


