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Abstract—This paper studies the structure of the channel
quantization codebook for multiuser MISO systems with limited
channel state information at the base-station. The problemis
cast in the form of minimizing the sum power subject to the
worst-case SINR constraints over spherical channel uncertainty
regions. This paper adopts a zero-forcing approach for beam-
forming vectors design, and uses a robust optimization technique
via semidefinite programming (SDP) for power control as the
benchmark performance measure. We then present an alternative
less complex and practically feasible method for computingthe
power values and present sufficient conditions on the uncertainty
radius so that the resulting sum power remains close to the SDP
solution. The proposed conditions guarantee that the interference
caused by the channel uncertainties can be effectively controlled.
Based on these conditions, we study the structure of the channel
quantization codebooks and show that the quantization codebook
has a product form that involves spatially uniform quantization
of the channel direction, and independent channel magnitude
quantization which is uniform in dB scale. The structural insight
obtained by our analysis also gives a bit-sharing law for dividing
the quantization bits between the two codebooks. We finally show
that the total number of quantization bits should increase as
log(SINRtarget) as the target SINR increases.

I. I NTRODUCTION

A base-station with multiple antennas can potentially serve
multiple users simultaneously, a capability usually referred to
as spatial multiplexing. To perform this effectively, however,
the base-station requires certain degrees of channel stateinfor-
mation (CSI) in order to safely distinguish users spatiallyand
perform power control accordingly. CSI is typically obtained
at the remote terminals and fedback to the base-station via a
rate-limited feedback link. The fact that exact CSI may not
be available in practice motivates the study of the downlink
spatial multiplexing systems with imperfect CSI at the base
station.

For fixed-rate delay-constrained types of communication,
a reasonable problem formulation is to minimize the total
transmission power subject to signal-to-interference-plus-noise
ratio (SINR) constraints at the users’ side. Assuming perfect
CSI at the base-station, this problem is extensively studied in
the literature and several algorithms are proposed for finding
the optimum powers and beamforming vectors [1], [2].

The counterpart of this problem for the imperfect CSI case
can be cast in the form of a robust optimization problem that
minimizes the sum power subject to the worst-case SINR con-
straints over the channel uncertainty regions. The uncertainty
regions are usually assumed to be ellipsoidal regions around

the nominal user channels. This problem and similar robust
precoding problems have attracted a lot of attention lately
and numerous algorithms and reformulations are proposed.
The authors of [3] fix the beamforming vectors and show
that the robust minimization of power, subject to the users’
mean-squared-error (MSE) constraints, can be transformedto
a convex problem and hence the powers can be computed
efficiently. In [4], the authors provide a rank-relaxation method
to transform the robust SINR-constrained problem to a con-
vex semidefinite programming (SDP) problem. Similarly, the
authors of [5] propose different levels of relaxation leading to
SDP problems with different levels of complexity. The same
authors also present robust formulations for MSE-constrained
problem [6]. Finally, the authors of [7] propose an ellipsoid
method for solving the robust SINR-constrained problem.

Although the robust design problems studied in these papers
can usually be transformed to or approximated by a con-
vex problem and therefore result in computationally feasible
beamforming and power control algorithms, these approaches
are not necessarily easy to implement in practice and more
importantly they do not provide insight to the structure of
the problem solution. Structural insights are important because
one of the key questions in the design of spatial multiplexing
systems for advanced wireless standards is the problem of
channel quantization codebook design. The lack of structural
insights limits the applicability of the aforementioned robust
optimization studies to this area.

This paper aims to make progress in the design of channel
quantization codebooks. We focus on multiuser multiple-input
single-output (MISO) systems, and base our approach on a
simple suboptimal solution to the beamforming and power
control problem resulting from the bounding of the SINR
terms. The beamforming vectors are assumed to be zero-
forcing directions for the quantized directions and the power
levels are determined in a robust manner such that the target
SINR constraints are satisfied for the worst-case interfer-
ence scenarios. This approach provides us with a sufficient
condition on the radius of uncertainty balls such that the
multiuser interference can be effectively controlled. Based
on this condition, we derive the structure of the channel
quantization codebook for effective interference management.
We show that

• the channel quantization codebook should have a product
structure, consisting of a channel direction quantizer



which is uniform spatially and a channel magnitude
quantizer which is uniform in dB scale;

• the number of quantization bits devoted to spatial direc-
tion quantization should be(M −1) times the number of
bits devoted to magnitude quantization, whereM is the
number of base-station antennas;

• the total number of the quantization bits (per user) should
scale as logarithm of the target SINR.

II. B EAMFORMING AND POWER CONTROL WITH PERFECT

CSI: OUTAGE IS INEVITABLE

Consider a downlink MISO channel withM antennas at
the base station (BS) andM users each with a single antenna.
Let hi ∈ R

M denote the user channels for1 ≤ i ≤ M . Let
Pi, vi, andγi denote the power, the unit beamforming vector,
and the SINR constraint for useri. The minimization of the
total transmit power subject to the user SINR constraints is
formulated as follows:
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Pi,vi
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where the noise power at all users is assumed to be1. Note that
the computations in this paper are done in the real space for
simplicity. Extension to the complex space is straightforward.

It is well known that this problem can be transformed to
a convex second order cone programming (SOCP) problem
[2]. It can also be solved via an iterative power-beamforming
update algorithm based on the uplink-downlink duality [1].A
simple alternative to these optimal solutions is to use the zero-
forcing (ZF) beamforming vectors to remove the interference
and compute the power levels to satisfy the SINR constraint
with equality. We will adopt the ZF suboptimal solution
throughput this paper.

An important matter to consider with this formulation is
that if the user channels are independent with uniformly
distributed directions and the BS is required to satisfy the
SINR constraints for all channel realizations, it is not difficult
to see that the average transmission power will be unbounded.
This happens because when the channels for different users
are in near alignment with each other, it is difficult to separate
them spatially.

To see this rigorously, defineθi = ∠(hi,H−i), where

H−i = span({hk|k 6= i}).

Assume that the users’ channel directionshi/|hi‖ are spatially
uniform and are independent of the channel magnitudes‖hi‖.
Then θi is uniformly distributed in[0, π

2 ] and is independent
of ‖hi‖. The average sum power of ZF method is therefore
given by

Pave= E {PZF,sum} =

M
∑

i=1

γiE
{

1/‖hi‖2
}

E
{

1/sin2(θi)
}

.
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Fig. 1. Sum power vs. the target SINR. Sum power is averaged over 104

channel realizations;M = 3; the user channels are i.i.d.hi ∼ N (0, IM ).

As θi is uniformly distributed in[0, π2 ], the expectation of
1/ sin2(θi) becomes unbounded.

To avoid this, we have to accept a certain degree of outage.
A reasonable approach is to declare outage when

0 ≤ θi ≤ θ0, (2)

whereθ0 is the smallest acceptable angle betweenhi andH−i

for all i. Throughout this paper, we will refer to this condition
as theθ0-condition. If this condition is violated for somei,
the BS declares an outage.

Noting that θi is uniform on [0, π2 ], it is easy to verify
that the average sum power and the system outage probability
values are as follows:

Pave=
2 cot(θ0)

π

M
∑

i=1

γiE
{

1/‖hi‖2
}

≈ 2M

π

P̄

θ0

pout≤
2M

π
θ0

where P̄ = 1
M

∑M
i=1 γiE

{

1/‖hi‖2
}

and the approximation
holds for smallθ0.

By fixing the probability of system outage or equivalently
θ0, one can perform a fair comparison of the ZF solution and
the optimal solution of [1], [2]. As shown in Fig. 1, the ZF
solution approaches the optimal solution at high-SINR regime.

III. B EAMFORMING AND POWER CONTROL WITH CSI
UNCERTAINTY

In practice, the CSI available to BS is associated with
some degree of uncertainty. This can result from channel
quantization in frequency-division-duplex (FDD) systemsor
from estimation errors and outdated estimations in the reverse
channel training in time-division-duplex (TDD) systems. In
order to maintain the quality of the communication in spite of
the uncertainty, the BS should find the beamforming vectors



and power levels by solving the following robust optimization
problem:

min
Pi,vi
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whereSi is the uncertainty region associated withith user’s
channel. In this paper we assume spherical regions:

Si = {h| ‖h− ĥi‖ ≤ ri},
whereĥi is the nominal user channel andri is the uncertainty
radius.

An analytic solution to this problem is not yet available.
However, if we fix the beamforming vectorsvi (e.g. via a
zero-forcing approach, wherevi’s are the normalized columns
of Ĥ−T andĤ = [ĥ1| · · · |ĥM ] ) finding the power valuesPi

can be shown to reduce to the following SDP problem:

min
Pi,λi

M
∑
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� 0,

Pi ≥ 0, λi ≥ 0, i = 1, 2, · · · ,M.

Problem (4) is in fact a special case of the SDP problem de-
rived in [4] for ellipsoid uncertainty regions. The equivalence
of the problem (3) and (4) is proven by using theS-procedure
[8].

Although the SDP problem can be numerically solved in
an efficient manner, it is not necessarily feasible in practice.
Moreover, it does not provide any insight into the structureof
the problem solution and therefore cannot be directly used to
derive the channel quantization codebooks. To overcome this,
we resort to less complex methods which act as upper and
lower bounds for the SDP solution.

A. Upper Bound Solution

To achieve an upper bound on the total transmission power,
we bound the SINR terms as follows:
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By putting the last term equal to the target SINRγi, and
solving for Pi values, one can achieve an upper bound on
the sum power. To simplify (5), we use the following lemma.

Lemma 1: Let S = {h| ‖h−ĥ‖ ≤ r} andv be an arbitrary
vector. Then

sup
h∈S

|hT
v|=|ĥT

v|+ r,

inf
h∈S

|hT
v|=max(|ĥT

v| − r, 0).

Let yi = ‖ĥi‖ andθi = ∠(ĥi, Ĥ−i), where

Ĥ−i = span({ĥk|k 6= i}).

Also let vi be the zero-forcing directions for the nominal
channel directionŝhi. Then|ĥT

i vi| = yi sin θi, which for now
we assume to be larger thanri. We also have|ĥT

i vk| = 0 for
k 6= i, sincevi’s are the ZF vectors for̂hi’s. By combining
these with Lemma 1 and putting (5) equal toγi, we get to the
following set of linear equations forPi’s:

Pi(yi sin θi − ri)
2

(
∑

k 6=i Pk)r2i + 1
= γi,

After a few computations, the following upper bound on the
sum power is achieved:

Pub,sum=

∑

i αi

1−∑

i r
2
i αi

, (6)

whereαi =
γi

(yi sin θi−ri)2+γir2i
.

B. Lower Bound Solution

We can bound the SINR term by ignoring the interference:

inf
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By putting this bound equal to the target SINRγi, we achieve
the following lower bound for the sum power:

Plb,sum=
∑

i

γi
(yi sin θi − ri)2

. (8)

We clearly havePlb,sum< PSDP,sum< Pub,sum. The following
theorem guarantees the closeness of these sum-power values
if the uncertainty radii are small compared to the channel
magnitudes.

Theorem 1: Let c < M
M−1 . If

ri ≤
sin θi

1 +
√

M
c γi

yi, (9)

then
Pub,sum

Plb,sum
≤ 1

1− c
1+c/M

≈ 1 + c, (10)

where the approximation holds for smallc. SincePlb,sum <
PSDP,sum < Pub,sum, the same bound works forPub,sum

PSDP,sum
and

PSDP,sum

Plb,sum
.

Proof: From (9), we haveγir2i ≤ c
M (yi sin θi − ri)

2 and

γir
2
i

(yi sin θi − ri)2 + γir2i
≤ c/M

1 + c/M
.
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Therefore,

Pub,sum=

∑

i
γi

(yi sin θi−ri)2+γir2i

1−∑

i
γir2i

(yi sin θi−ri)2+γir2i

≤
∑

i
γi

(yi sin θi−ri)2

1−M c/M
1+c/M

=
Plb,sum

1− c
1+c/M

.

According to Theorem 1, if the uncertainty radii are small,
the upper bound and lower bound solutions will be close to
the optimal SDP solution. Fig. 2 compares the performance of
the three solutions, when condition (9) is satisfied. The figure
shows that the upper bound power solutions can be used as
low-complexity approximations to the optimal SDP solutions.

On the other hand, the closeness of the SDP solution to
the lower bound solution means that the interference can
be safely ignored. Therefore, the condition (9) provides a
sufficient condition for successful interference removal by
zero-forcing, even in the presence of channel uncertainty.
This condition is utilized in the next section to derive the
structure of the appropriate channel quantization codebooks
for operating close to the no-interference regime.

IV. STRUCTURE OF THECHANNEL QUANTIZATION

CODEBOOK

In this section, we study the structure of the channel
quantization codebook. We assume that the quantization (un-
certainty) regions are approximately spherical and that the
channel direction is uniformly distributed over the unit sphere
in R

M .
The criterion used for codebook design is qualitative rather

than quantitative. We are looking for a codebook structure that
guarantees a performance close to the no-interference regime.
For this purpose, we adopt the condition (9) of Theorem 1. For

the cases that the system in not in outage, we haveθi > θ0
according to theθ0-condition. Since useri is not aware of
θi, the codebook structure should be designed for the worst
interference caseθi = θ0. We therefore use the following rule
as the scaling law between the uncertainty radius (quantization
region radius) and the channel magnitude:

r = βy, (11)

whereβ = sin θ0

1+
√

M

c
γ

. Recall thaty = ||ĥ||, andr is the radius

of the uncertainty ball. Also note thatβ ≪ 1 if θ0 ≪ 1. The
user indexi is dropped in this section for simplicity.

A key observation based on (11) is that the radius of the
uncertainty ball should scale linearly with the magnitude of
the channel quantization codeword. This suggests that the
channel quantization codebook should have a product structure
as shown in Fig. 3, where the channel magnitude and the
channel direction can be quantized independently.

The channel magnitude quantizer can be designed as fol-
lows. First, we choose the quantization range based on the
outage probability, i.e. choose real numbersb > a > 0 such
that

Prob {‖h‖ ∈ [a, b]c} ≪ pout,

where the outage probability is governed by the value ofθ0
as described in Section II, withhi’s replaced bŷhi’s.

Now, let y(n) denote the center of the quantization spheres
for 1 ≤ n ≤ Np, whereNp is the number of quantization
levels in the direction of the channel magnitude. From Fig. 3,
we have

y(n+1) − y(n) = r(n) + r(n+1).

By applying (11),y(n)’s form a geometric sequence:

y(n) =
a

1 + β

(

1 + β

1− β

)n

.

This means that the magnitude quantization levels are uni-
formly spaced in dB scale.

The number of quantization bits for magnitude quantization
is given by:

Bp = log2 Np=log2

(

ln(b/a)

ln((1 + β)/(1− β))

)

≈log2(ln(b/a)) + log2
1

β
≈ log2

1

β
, (12)

where the approximations hold for smallβ (and reasonable
values ofa andb).

For the channel direction quantizer, the codebook structure
of Fig. 3 suggests that the direction quantization vectors
should be independent of the channel magnitude quantizer. The
number of direction quantization pointsNb can be computed
via a sphere packing argument:

Nb=

1
2

(

(

y(n) + r(n)
)M −

(

y(n) − r(n)
)M

)

(

r(n)
)M

=
1

2βM

(

(1 + β)M − (1− β)M
)

≈ M

βM−1
,



Fig. 3. Approximate channel quantization codebook structure with spherical
quantization regions.

where we use the fact that the volume of a sphere inM -
dimensional space is proportional to its radius to theM th
power. The approximation in the last step above holds for
small β. The 1

2 factor comes from the fact we only need to
quantize half the space, i.e.h and−h are equivalent for our
purposes. Therefore forβ≪1:

Bb = log2(Nb) ≈ (M − 1) log2
1

β
. (13)

By combining (12) and (13) we achieve the following bit-
sharing rule between the channel magnitude and direction
quantization codebooks:

Bb ≈ (M − 1)Bp. (14)

Although this result directly relies on the assumption that
the quantization regions are spherical, it reflects a funda-
mental principle in the multi-user communications: in order
to effectively mitigate the interference and operate closeto
the no-interference regime, every dimension of the(M − 1)-
dimensional channel direction space should be quantized al-
most as finely as the channel magnitude. This is in direct
contrast to the single-user case. For the single-user system, in
the asymptotic regime where SNR tends to infinity, more bits
should be used for magnitude quantization, since the mismatch
between the channel direction and the quantized directionscan
be compensated with a bounded power [9].

To summarize, the channel quantization codebook should be
expressed as the product of a uniform direction quantization
codebook and a uniform (in dB scale) magnitude quantization
codebook. The number of bits devoted to channel direction
quantization should be(M − 1) times the number of bits
devoted to channel magnitude quantization, whereM is the
number of base-station antennas.

We end this section by deriving the dependence of the total
number of quantization bits on the target SINR. Achieving a
higher target SINR requires further mitigation of interference

and consequently more precise CSI. From the definition ofβ,
we haveβ≈ κ√

γ , whereκ=
√

c
M sin θ0. Therefore,

B = Bb +Bp ≈ M log2
1

β
≈M log2

1

κ
+

M

2
log2 γ

≈M

2
log2 γ, (15)

asγ → ∞. Thus the total number of quantization bits should
scale linearly with the target SINR (in dB scale). A similar
result is reported in [10], although for a different problem
setup. The scaling rule (15) also dictates how the feedback link
bandwidth should be divided among the users with different
target SINR constraints in a FDD system.

V. CONCLUSIONS

This paper studies the robust power control and beam-
forming problem for the multiuser downlink MISO system
with channel uncertainties at the BS. We assume a zero-
forcing beamforming design and propose a simple and prac-
tical method for power control with channel uncertainty.
Further, we give a sufficient condition that guarantees effec-
tive mitigation of multiuser interference in spite of channel
uncertainty. We use this condition to study the structure of
the channel quantization codebook for operating near the no-
interference regime. The codebook structure turns out to be
the product of a uniform direction quantizer and a uniform
(in dB scale) channel magnitude quantizer. We also present a
bit-sharing law between the two codebooks. Finally, we show
that the total number of the quantization bits should scale as
log(SINRtarget) as the target SINR increases.
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