ECE316 University of Toronto

Communication Systems

Chapter 3 Problem Set Supplement

1. Consider the situation where we must transmit *two* DSB-SC signals with carrier frequencies f_1 and f_2 . The overall modulated signal is given by:

$$s(t) = A_c m_1(t) \cos(2\pi f_1 t) + A_c m_2(t) \cos(2\pi f_2 t).$$

The two message signals $m_1(t)$ and $m_2(t)$ have Fourier transforms $M_1(f)$ and $M_2(f)$, respectively, that are shown in Figure 1; note that both $m_1(t)$ and $m_2(t)$ have bandwidth W. Assume that $f_1 \gg W$ and $f_2 \gg W$.

Figure 1: Fourier transforms of message signals $m_1(t)$ and $m_2(t)$ denoted $M_1(f)$ and $M_2(f)$, respectively.

- (a) Assuming $f_2 f_1 > 2W$, plot the Fourier transform of s(t) denoted S(f). Give a block diagram of a system that recovers $m_1(t)$ and $m_2(t)$ separately from s(t).
- (b) Now, assuming $f_2 f_1 = \frac{3}{2}W$, plot S(f) and give the block diagram of a system that recovers $m_1(t)$ and $m_2(t)$ separately from s(t). It can be done!
- 2. Consider a QAM signal of the form

$$s(t) = A_c m_1(t) \cos(2\pi f_c t) + A_c m_2(t) \sin(2\pi f_c t).$$

The QAM receiver has a phase error as illustrated in Figure 2.

Similar to the discussion in class, obtain the output signals $g_1(t)$ and $g_2(t)$. Note that

- $2\cos A\cos B = \cos(A-B) + \cos(A+B)$ $2\sin A\sin B = \cos(A-B) - \cos(A+B)$ $2\sin A\cos B = \sin(A+B) + \sin(A-B)$
- 3. Recall that the frequency response of the Hilbert transform is given by $\mathcal{H}(f) = -j \operatorname{sgn}(f)$; that is positive frequency components of the signal that pass through the Hilbert transform are phase shifted by -90° and the negative frequency components are phase shifted by $+90^{\circ}$. The magnitude of the frequency components are unaffected. Show that the Hilbert transform of $g(t) = \cos(2\pi f_c t)$ is given by $\hat{g}(t) = \sin(2\pi f_c t)$.

Figure 2: QAM Receiver.

4. The bandwidth of a signal g(t) is W. What is the bandwidth of $\hat{g}(t)$, the Hilbert transform of g(t)?