
Solution to the Problem Set 6

Ehsan Karamad

March 12, 2013

1

ECE 316 CHAPTER 5 PROBLEM SET SOLUTIONS



1 Solution to Problem 5.2
Note that for the summation to converge to the integral we need a normalization factor,
1

2W . It follows that

1

2W
Gδ(f) =

1

2W

∞∑

n=−∞
g
( n

2W

)
e
−jπnf

W , (1)

By rewriting (1) in terms of Ts =
1

2W we have

Gδ(f) = Ts

∞∑

n=−∞
g(nTs)e

−j2πf(nTs). (2)

On the other hand, for a Reiman integrable function h(x) we have

lim
ε→0

ε
∞∑

n=−∞
h(nε)→

∫ ∞

−∞
h(x)dx. (3)

By using (3), and defining the function h(t) = g(t)e−j2πft based on (2), we have

lim
Ts→0

TsGδ(f) =

∫ ∞

−∞
h(t)dt =

∫ ∞

−∞
g(t)e−j2πftdt = G(f). (4)

!

2 Solution to Problem 5.3
First note that from basic calculus we have

∫ b

a
ecxdx =

ebc − eac

c
. (5)

For this problem, we have

a = −W (6)
b = W (7)

c = j2π
(
t− n

2W

)
(8)

x = f. (9)

Given (5) and by using (6)-(9) we find that

1

2W

∫ W

−W
ej2πf(t−

n
2W )df =

1

2W

ej2π(t−
n

2W )(W ) − ej2π(t−
n

2W )(−W )

j2π
(
t− n

2W

) . (10)
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Remember that ejx − e−jx = 2j sin(x). Then, it follows for (10) that

1

2W

∫ W

−W
ej2πf(t−

n
2W )df =

1

2W

2j sin
(
j2π

(
t− n

2W

)
(W )

)

j2π
(
t− n

2W

)

=
sin (2πWt− nπ)

2πWt− nπ
= sinc (2Wt− n) . (11)

Note that in (11), we had sinc(x) = sin(πx)
πx . !

3 Solution to Problem 5.5
a) g(t) = sinc(200t): Remember that the Fourier transform of a sinc function is a
rectangle. In this case, the rectangle is bandlimited to 100 Hz. Therefore, the Nyquist
frequency is 200 Hz corresponding to a Nyquist interval of 5 ms.

b) g(t) = sinc2(200t): From Fourier transform properties, we known that the Fourier
transform of product of two signals in time domain is the convolution of their Fourier
transforms in Frequency domains. Therefore, when two sinc functions are multiplied,
two rectangles are convolved in the frequency domain. Then, the result of the con-
volution will be bandlimited to 200 Hz and therefore, the Nyquist frequency and the
corresponding Nyquist interval are 400 Hz and 2.5 ms, respectively.

c) g(t) = sinc(200t) + sinc2(200t): This is similar to the previous part. Due to the
terms sinc2(200t), the signal will be bandlimited to 400 Hz.

4 Solution to Problem 5.6
We have

g(t) = cos(πt) ⇐⇒ G(f) =
δ(f − 0.5) + δ(f + 0.5)

2
. (12)

On the other hand, if a signal g(t) is sampled at Fs = 1
Ts

, assuming Gδ as the Fourier
transform of the corresponding signal, we have

Gδ(f) = Fs

∞∑

n=−∞
G(f − nFs). (13)

We use this formula to obtain the Fourier transforms in each part.
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a) Ts = 0.25 s: For this sampling interval, we have Fs = 4 Hz. Then, it follows
from (13) that

Gδ(f) = 4
∞∑

n=−∞
g(f − 4n)

= 2
∞∑

n=−∞
(δ(f − 0.5− 4n) + δ(f + 0.5 + 4n)) . (14)

For this case, there is no overlapping and the signal can be recovered by using an ideal
interpolating filter with a bandwidth slightly larger than 0.5 Hz.

b) Ts = 1 s: For this scenario, we have Fs = 1 s which is exactly equal to the
Nyquist frequency of the signal. Note that from the sampling theorem, the sufficient
condition for the sampled signal to be fully recovered is that it is sampled at a frequency
higher than the Nyquist frequency. If the sampling frequency is equal to the Nyquist
frequency, the sampling theorem might not hold.

Let’s define g(t) = cos(pit) = g+(t)+ g−(t) where g+(t) = 0.5ejπt and g−(t) =
0.5e−jπt. In line with this, also define G(f) = G+(f) + G−(f) where G+(f) =
0.5δ(f−0.5) and G−(f) = 0.5δ(f+0.5). Finally, define Gδ(f) = Gδ,+(f)+Gδ,−(f)
in the same manner. It follow for Gδ,+(f) that (using (13))

Gδ,+(f) = Fs

∞∑

n=−∞
G+(f − nFs) =

∞∑

n=−∞
0.5δ(f − 0.5− n). (15)

Similarly, we have for G−(f)

Gδ,−(f) =
∞∑

n=−∞
0.5δ(f + 0.5− n) =

∞∑

m=−∞
δ(f + 0.5 +m). (16)

It is easy to verify that Gδ,−(f) = Gδ,+(f). Then, For Gδ(f) it follows that

Gδ(f) = 2Gδ,+(f) =
∞∑

n=−∞
δ(f − 0.5− n). (17)

Remark: I broke the function Gδ(f) into two functions one corresponding to the left
spike and the other for the right spike. The reason to make this complicated was to help
you guys try g(t) = sin(pit). For such a case, all the steps taken are the same but we
have g+(f) = −g−(−f) and therefore, you will see that Gδ(f) = 0 in this case. This
is why the sampling frequency, in general, has to be larger than the Nyquist frequency.
In most cases the equality holds, but when the question is like this one, and you have a
delta function at the bandwidth of the signal, there might be some complications.

c) Ts = 1.5 s: For this case, we have Fs = 2
3 Hz. Clearly, we will experience

overlapping.

Gδ(f) =
1

3

∞∑

n=−∞

(
δ

(
(f − 0.5− 2

3
n

)
+ δ

(
f + 0.5− 2

3
n

))
. (18)
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After filtering the interval [−0.5− ε, 0.5 + ε] we get

Ĝ(f) =
1

3

(
δ(f + 0.5) + δ(f +

1

6
) + δ(f − 1

6
) + δ(f − 0.5)

)
, (19)

Leading to

ĝ(t) =
2

3

(
cos(πt) + cos(

πt

3
)

)
, (20)

i.e., an extra cosine term is added due to overlapping. !

5 Solution to Problem 5.7
The given signal is g(t) = sin(πt)

πt , i.e., a sinc function with a bandwidth of 0.5 Hz.
From the Nyquist theorem, any sampling rate Fs > 1 Hz will work. For this case,
Fs = 1 Hz also works.

In Frequency Domain: G(f) is a rectangle, i.e., G(f) = 1 if f ∈ [−0.5, 0.5] and
zero otherwise. By sampling at Fs = 1, the result will be Gδ(f) =

∑
n G(f − 1).

You can verify that Gδ(f) = 1 everywhere. Now to recover the signal, we need the
interpolation filter h(t) = sinc(t), i.e., the original signal itself is the interpolating
filter. As a consequence, the output will equal the initial signal.

In Time Domain: For any integer n, we have g(n) = 1 is n = 1 and g(n) = 0
of n &= 0. Therefore, after sampling, we have gδ(t) = δ(t), i.e., the sampled signal is
a single delta function in time domain and at t = 0. Since the interpolating filter is a
rectangle in frequency domain covering the integra [−0.5, 0.5], the impulse response
of the filter is the original signal. Then, the result of the convolution is the original
signal.

Conclusion: Any Fs ≥ 1 Hz works.
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1 Solution to Problem 5.8
From the Fourier series table we have if g(t) = rect(t), i.e., a rectangle in time domain
which is equal to 1 in [−0.5, 0.5] and zero everywhere else, then G(f) = sinc(f).
For this question, h(t) which is defined in (5.9) of the book, can be assumed to be
g(t) which is first scaled by 1

T in time domain, and then shifted to the right by T
2

seconds. Assuming gT (t) as the scaled version of g(t) by 1
T , we simple have h(t) =

gT (t− 0.5T ). It follows that

gT (t) = g(
t

T
)⇒ GT (f) = T sinc(fT ). (1)

On the other hand, H(f) = GT (f)e−jπfT = T sinc(fT )e−jπfT .
For the second part we have

lim
T→0

H(f)

T
= lim

T→0
sinc(fT )e−jπfT = 1, (2)

i.e., the Fourier transform tends to that of the unit delta function δ(t). Note that the
pule h(t)/T converges to a delta function as T → 0.

2 Solution to Problem 5.12
a) : By definition, the PAM signal is defined as

sPAM (t) =
∞∑

n=−∞
m(nTs)h(t− nTs) =

( ∞∑

n=∞
m(nTs)δ(t− nTs)

)
∗ h(t)

= sδ(t) ∗ h(t). (3)

where sδ(t) is the signal sampled using a spike train. For Sδ(f) we simply have

Sδ(f) = Fs

∞∑

n=−∞
M(f − nFs) =

∞∑

n=−∞

Am

2
(δ(f − 0.2− n) + δ(f + 0.2− n)) .

(4)

On the other hand, we have

SPAM (f) =
Am

2

∞∑

n=−∞
(H(0.2 + n)δ(f − 0.2− n) +H(−0.2− n)δ(f + 0.2− n)) .

(5)

with H(f) = T sinc(fT ) and T = 0.45.

b) : Without the equalizer, the ideal low-pass filter passes the frequencies between
−0.2 to 0.2 Hz. Then the output, namely, m̂(t), is

m̂(t) = H(0.2)Amcos(0.4πt) = 0.44Amcos(0.4πt). (6)

If we use an equalizer, the original signal is obtained, i.e., m̂(t) = m(t).
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Figure 1: Equalizer gain for the PAM signal.

3 Solution to Problem 5.13
From page 201, following equation (5.17), the distortion for PAM system can be equal-
ized by assuming the inverse filter for the pulse over the signal bandwidth. We known
that (see Problem 5.8), for the rectangular pulse of duration T , i.e., gT (t), the Fourier
transform is GT (f) = T sinc(fT ). Then, at the highest frequency of the signal which
is Fs/2, we have GT (Fs/2) = T sinc(FsT/2) = T sinc( T

2Ts
. The ideal low-pass filter

has a gain 1/T and therefore, the part equalizer has to fix is sinc( T
2Ts

. For the given
value of T/Ts = 0.25, the distortion is sinc(0.125) = 0.97 and therefore, the filter
gain has to be H(Fs/2) ) 1/0.97 ) 1.03. The required equalizing gain for different
values of T/Ts is plotted in Fig. 1

4 Solution to Problem 5.14
a) : The Nyquist rate for s1(t) and s2(t) is 160 Hz. Therefore, 2400

2R > 160 Hz leads
to R ≤ 3.
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Figure 2: Quantization of a sinusoid.

b) : The multiplexing should take place in the following order: every 1
2400∗3 = 1

7200
s there is a transmission as follows

• Time 0 to 1
2400 s: Transmit s3, s4, s1.

• Time 1
2400 s to 2

2400 s: Transmit s3, s4, s2.

• For the next 6 intervals of length 1
2400 s reaching time 1

300 s: Transmit s3, s4, X ,
where X is null.

• Repeat the same procedure every 1
300 s.

5 Solution to Problem 5.15
The first quantizer is a midtread quantizer with 7 levels. The second quantizer is a
midrise quantizer with 8 levels. Both quantizers require 3 bits for a binary representa-
tion. The results from two quantizers are illustrated in Fig. 2
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6 Solution to Problem 5.25
a) : The physical signals are limited in duration, which leads to unlimited bandwidth.
Therefore, by assuming a finite sampling frequency, there is always some distortions
due to overlapping. However, before sampling the signal, the signal is subject to a
low pass filter. Therefore, the distortion caused in the reconstructed signal is due to
canceling the high frequency components.

b) : Most signals, such as multimedia signals, can be well approximated by a ban-
dlimited version. Then, by sampling at a high enough rate, the signal can be recon-
structed with minimal errors which are not discernable by a human user, e.g., voice
signal transmission over a cellular network, PCM, etc.

7 Solution to Problem 5.26
We are multiplying the signal g(t) by a pulse train c(t) where the period of c(t) is
Ts = 1

fs
and the duration of pulse is T . Naturally, T < 1

fs
, so fsT < 1 (I think there

is a typo in the book). So we proceed with the assumption that fsT + 1.

a) : You can represent c(t) as c(t) = p(t) ∗ d(t) where p(t) is a single pulse with
duration T and d(t) is a delta train at intervals Ts, i.e., d(t) =

∑∞
k=−∞ δ(t − kTs).

Then, by the properties of Fourier transform C(f) = P (f)D(f). We know that (prob-
lem 5.8) P (f) = T sincfT . On the other hand, D(f) = fs

∑∞
k=−∞ δ(f −kfs). Then,

we find that C(f) =
∑∞

k=−∞ akδ(f − kfs) with ak = fsT sinc(kfsT ).
On the other hand, we are interested in the spectrum of gc(t) = g(t)c(t). Again,

from the Fourier transform, we have Gc(f) = G(f)∗C(f). Given that C(f) is a series
of delta functions in the frequency domain, the result of the convolution is immediate.
We obtain Gc(f) =

∑∞
k=−∞ akGc(f − kfs).

b) : Naturally, if fs satisfies the Nyquist theorem, and a0 &= 0, the signal can be
recovered by using the ideal low-pass filter with a bandwidth fs/2. Note that the pulse
train c(t) has a nonzero DC value with a0 = T/Ts, i.e., the duty cycle. The scenario
with a zero DC value for c(t) occurs in the next problem.

8 Solution to Problem 5.27
The output input relation between y(t) and x(t) can be expressed as y(t) = x(t)× c(t)
where c(t) is a periodic square waveform, where c(t) = 1, t ∈ [2kTs, 2kTs + Ts],
c(t) = −1, t ∈ [2kTs+Ts, 2kTs+2Ts]. First note that this is some form of modulation.
The easiest way to get x(t) from y(t) is to multiply y(t) with the same modulating
waveform c(t), i.e., y(t)c(t) = x(t)c(t)2 = x(t).
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To find the spectrum of Y (f) note that Y (f) = X(f) ∗ C(f). For C(f) we have

c(t) =
∞∑

k=−∞
ake

jkπ
Ts

t ⇒ C(f) =
∞∑

k=−∞
akδ(f −

2k

Ts
). (7)

For the given square wave, it turns out that a2k = 0 and a2k+1 is imaginary. Then, we
have

Y (f) =
∞∑

k=−∞
a2k+1X(f − k

Ts
). (8)

9 Solution to Problem 5.28
The input signal is bandlimited and has sinusoid tones at frequencies, f = kf0 where
k = 1, 2, ...,m. Assume X(f) =

∑m
k=−m akδ(f − kf0).

a) : Consider fs = (1− a)f0 and assume we have a single-tone signal z(t) such that
Z(f) = δ(f − kf0). After sampling z(t) we have

Zδ(f) =
∞∑

n=−∞
δ(f − kf0 − nfs). (9)

We have kf0 + nfs = (k + n)f0 − naf0. Then, for n = −k we will have a spike
at f = −naf0 = kf0. Similarly, if we assume Z(f) = δ(f + kf0), then the same
argument says that there is a spike at f = −kf0. Since we assumed an arbitrary k, this
is true for all k = 1, 2, 3, ... Therefore, for very small a, we have spikes at akf0.

Now if we filter-out only these spikes, and call the signal y(t), we have Y (f) =∑
k akδ(f − kaf0). If we normalize Y (f) by 1

a , then we can assume that Y (f) is
the output to the system y(t) = x(at) (it follows from the properties of the Fourier
transform).

b) : The highes frequency of Y (f) is at mf0. We can obtain Y (f) by filtering X(f)
after sampling using an ideal filter with a bandwidth of fs/2. Then, the highest fre-
quency component of Y (f) must be smaller than filter bandwidth, i.e.,

mf0 ≤
fs
2

=
(1− a)f0

2
⇒ a ≤ 1

2m+ 1
. (10)

c) : This follows from the argument of part a. Note that when a signal is expanded in
time, then it is compressed in frequency.

10 Solution to Problem 5.30
a) : You can find the transform by direct integration of the given waveform. I ex-
plain an alternative method (which is much faster, although it seems otherwise). First
reconstruct the signal as follows:
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• Take a rectangular pulse of duration T , say, p(t). Define the rectangular pulse
A(t) = p(t) ∗ p(t).

• Note that in time domain, we have A(t) = (t + T )u(t + T ) − 2tu(t) + (t −
T )u(t− T ).

• Add the signal A(t) with T times its derivative. Note that A′(t) = u(t + T ) −
2u(t) + u(t− T ).

• Shift the result, in time, to the right, by T .

• Divide the result of previous steps by T .

• You find the signal in Fig. 5.29 of the book. Then, we have h(t) = 1
T (A(t −

T ) + TA′(t− T )).

Using this method of constructing h(t) you can easily find the Fourier transform. We
simply have

H(f) =
1

T

(
A(f)e−j2πfT + j2πfTA(f)e−j2πfT

)

=
A(f)

T
(1 + j2πfT ) e−j2πfT

=
(P (f)2

T
(1 + j2πfT ) e−j2πfT

= T−1 (T sinc(fT ))2 (1 + j2πfT ) e−j2πfT

= T−1
(
T sinc(fT )e−jπfT

)2
(1 + j2πfT )

= T

(
1− exp−j2πfT

j2πfT

)2

(1 + j2πfT ) . (11)

Note that in the last step, I simply used the fact that by shifting the pulse from −T/2
to T/2, by T/2 to the right, you get a pulse starting from 0 and ending at T . For such
a pulse, the Fourier transform is 1−exp−j2πfT

j2πfT .

b) : The magnitude response is sketched in Fig. 3 and the phase response in Fig. 4.
The plots are for the case T = 1.

c) : At the frequency f = fs
2 = 1

2Ts
, we need to compensate for H( T

2Ts
. For

T/Ts = 0.1 we have |H(0.05)| ) 1.04 which is roughly the same as the zero-order
hold (Actually worse). There is also a phase compensation requirement as well. As
you can see from Fig. 4, the phase around origin is nonlinear!

Remark: If you look up the first-order hold filters in the literature, specifically, in
the digital control systems literature where these types of sampling and reconstruction
are crucial, you realize that the first-order-hold is defined differently! In fact, the first-
order hold filter remembers the A(t) explained in part a.
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Figure 3: Magnitude response.
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Figure 5: Signal and its samples.

d) : I assumed three different types of filters: 1) zero-order hold, 2) first-order hold
as defined here, and 3) the actual first-order hold in my opinion. Fig. ?? shows the
signal along with its samples only. Fig. 7, you see the signal, the samples, the output of
zero-order hold, and the first-order hold according to the definition of this problem and
in the following plot, the first-order hold system used in control systems literature. As
anticipated, the actual first-order hold system should outperform the zero-order hold
system.
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Figure 6: The output of reconstruction filter for zero and first-order hold systems (ac-
cording to the book).
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Figure 7: The output of reconstruction filter for zero and first-order hold systems (ac-
cording to the literature).
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