Final Exam Review

Reference

	Nelelence.
Final Exam Review	
	Sections:
	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7
Professor Deepa Kundur	3.1, 3.2, 3.3, 3.4, 3.5, 3.6
r Tolessor Deepa Kulluur	4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8
	5.1, 5.2, 5.3, 5.4, 5.5
University of Toronto	6.1, 6.2, 6.3, 6.4, 6.5, 6.6
	7.1, 7.2, 7.3, 7.4, 7.5, 7.6
	S. Havkin and M. Moher. Introduction to Analog & Digital Communications. 2n

S. Haykin and M. Moher, Introduction to Analog & Digital Communications, 2nd ed., John Wiley & Sons, Inc., 2007. ISBN-13 978-0-471-43222-7.

Professor Deepa Kundur (University of Toronto)

Final Exam Review

1 / 103

Professor Deepa Kundur (University of Toronto)

Final Exam Review

2 / 103

Binary Modulation Schemes

 $c(t) = \frac{A_c}{\cos(2\pi f_c t + \phi_c)}$

- ▶ Binary amplitude-shift keying (BASK): carrier amplitude is keyed between two possible values (typically $\sqrt{E_b}$ and 0 to represent 1 and 0, respectively); carrier phase and frequency are held constant.
- Binary phase-shift keying (BPSK):carrier phase is keyed between two possible values (typically 0 and π to represent 1 and 0, respectively); carrier amplitude and frequency are held constant.
- ▶ Binary frequency-shift keying (BFSK): carrier frequency is keyed between two possible values (typically f_1 and f_2 to represent 1 and 0, respectively); carrier amplitude and phase are held constant.

Chapter 7: Digital Band-Pass Modulation Techniques

Preliminaries

$$c(t) = A_c \cos(2\pi f_c t + \phi_c)$$

- T_b represents the bit duration
- E_b represents the energy of the transmitted signal per bit
- In digital communications the carrier amplitude is normalized to have unit energy in one bit duration; thus we set

$$A_c = \sqrt{\frac{2}{T_b}}$$

The carrier frequency f_c = k/T_b for k ∈ Z to ensure an integer number of carrier cycles in a bit duration.

Professor Deepa Kundur (University of Toronto)

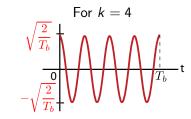
Final Exam Review

5 / 103

Carrier for Digital Communications

Therefore

$$c(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t + \phi_c).$$



Professor Deepa Kundur (University of Toronto)

Final Exam Review

6 / 103

Binary Amplitude-Shift Keying (BASK)

Let $\phi_c = 0$ and the carrier frequency is f_c .

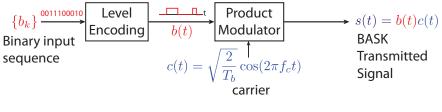
$$b(t) = \begin{cases} \sqrt{E_b} & \text{for binary symbol 1} \\ 0 & \text{for binary symbol 0} \end{cases}$$
$$c(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t + \phi_c) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t)$$

$$s(t) = b(t) \cdot c(t)$$

=
$$\begin{cases} \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t) & \text{for symbol 1} \\ 0 & \text{for symbol 0} \end{cases}$$

BASK Transmitter and Receiver

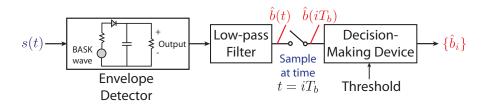
Transmitter



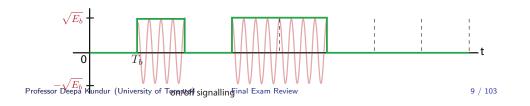
Transmitted BASK Signal

BASK Transmitter and Receiver

(Non-coherent) Receiver



Output of Ideal Envelope Detector

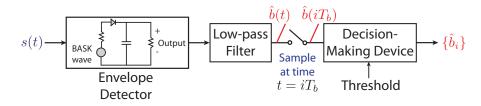


Binary Phase-Shift Keying (BPSK)

$$s_i(t) = \begin{cases} \sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) & \text{for symbol 1 } (i=1) \\ \sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t + \pi) & \text{for symbol 0 } (i=2) \end{cases}$$
$$= \begin{cases} \sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) & \text{for symbol 1 } (i=1) \\ -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) & \text{for symbol 0 } (i=2) \end{cases}$$

BASK Transmitter and Receiver

(Non-coherent) Receiver



Output of Sampler and Decision-Making Device

BPSK Transmitter and Receiver

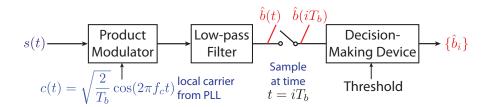
Transmitter



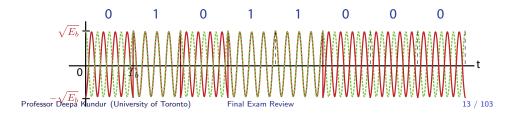
Transmitted BPSK Signal

BPSK Transmitter and Receiver

(Coherent) Receiver

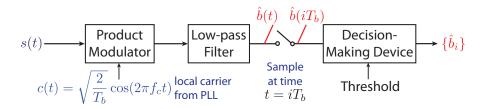


Inputs to Product Modulator

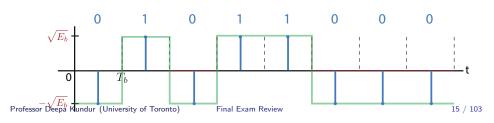


BPSK Transmitter and Receiver

(Coherent) Receiver

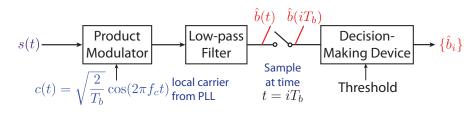


Output of Lowpass Filter and Sampler

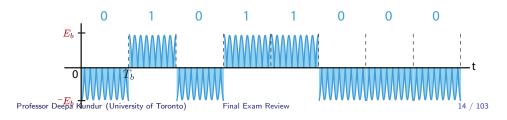


BPSK Transmitter and Receiver

(Coherent) Receiver



Output of Product Modulator



DPSK

DPSK = Differential Phase Shift Keying

Differential Phase Shift Keying = Differential Encoding + PSK

- \blacktriangleright To send "0", we advance the carrier phase by π
- ► To send a "1", we leave the carrier phase unchanged

<u>Consequence</u>: DPSK detector must measure the relative phase difference between waveforms received in two consecutive intervals.

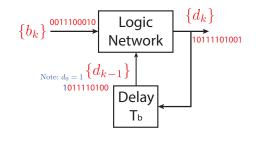
Professor Deepa Kundur (University of Toronto) Final Exam Review

Differential Encoding

 $d_k = d_{k-1} \oplus \overline{b_k}$

To produce d_k , need:

- 1. d_{k-1} (previous differentially encoded bit)
- 2. b_k (current input bit)

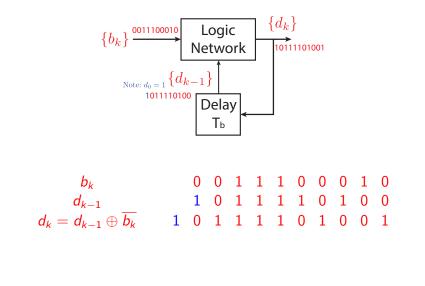


Professor Deepa Kundur (University of Toronto)

Final Exam Review

17 / 103

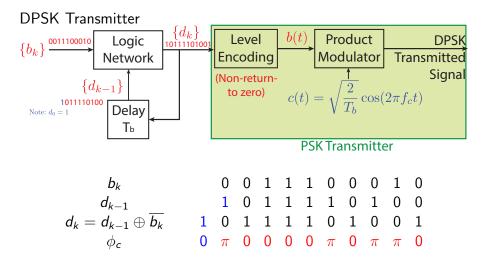
Differential Encoding



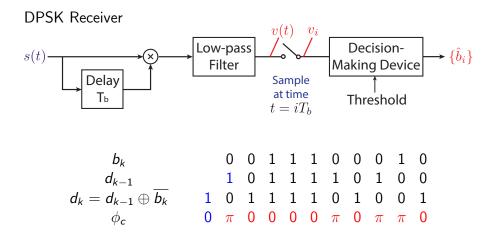
Final Exam Review

Professor Deepa Kundur (University of Toronto)

DPSK Transmitter and Receiver

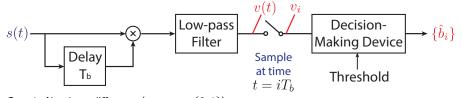


DPSK Transmitter and Receiver



DPSK Transmitter and Receiver

DPSK Receiver



Case 1: No phase difference (note: $\gamma \in \{0,1\}$)

$$v(t) = LPF\left[\frac{2}{T_b}\cos(2\pi f_c t + \gamma \pi) \cdot \cos(2\pi f_c t + \gamma \pi)\right]$$
$$= LPF\left[\frac{2}{T_b}\cos^2(2\pi f_c t + \gamma \pi)\right] = LPF\left[\frac{1}{T_b}\left[1 + \cos(4\pi f_c t + \gamma \pi)\right]\right] = +\frac{1}{T_b} > 0$$

Case 2: Phase difference of π

$$v(t) = LPF\left[\frac{2}{T_b}\cos(2\pi f_c t) \cdot \cos(2\pi f_c t + \pi)\right]$$
$$= LPF\left[\left[-\frac{2}{T_b}\cos^2(2\pi f_c t)\right] = LPF\left[-\frac{1}{T_b}\left[1 + \cos(4\pi f_c t)\right]\right] = -\frac{1}{T_b} < 0$$

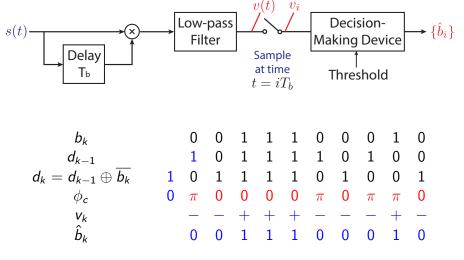
Professor Deepa Kundur (University of Toronto)

Final Exam Review

21 / 103

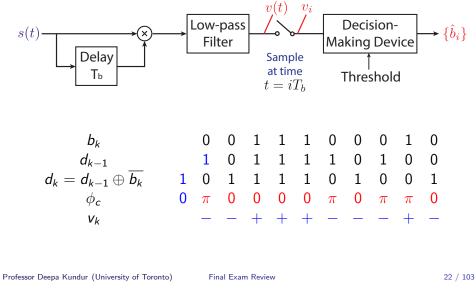
DPSK Transmitter and Receiver

DPSK Receiver



DPSK Transmitter and Receiver

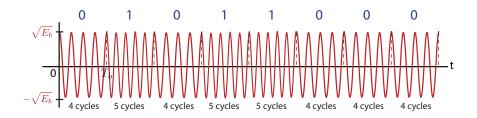
DPSK Receiver



Binary Frequency-Shift Keying (BFSK)

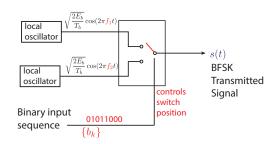
Let $\phi_c = 0$, $|f_1 - f_2| = \frac{1}{T_b}$ and $f_i = \frac{k_i}{T_b}$ (integer number of cycles in a bit duration).

$$s_i(t) = \begin{cases} \sqrt{rac{2E_b}{T_b}}\cos(2\pi f_1 t) & ext{for symbol 1} (i=1) \\ \sqrt{rac{2E_b}{T_b}}\cos(2\pi f_2 t) & ext{for symbol 0} (i=2) \end{cases}$$

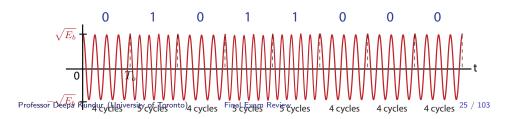


BFSK Transmitter and Receiver

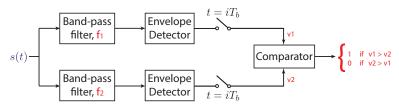
Transmitter



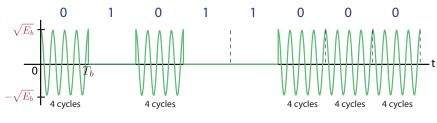
Transmitted BFSK Signal



BFSK Transmitter and Receiver

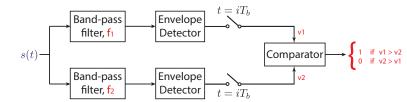


Output of Lower Band-pass Filter

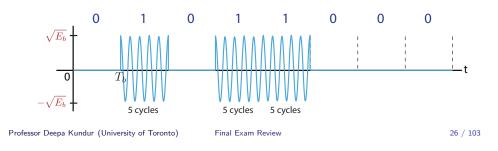


BFSK Transmitter and Receiver

Receiver

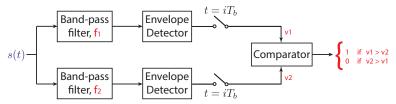


Output of Upper Band-pass Filter

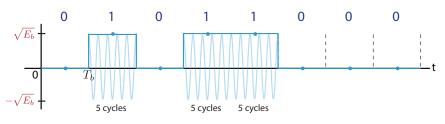


BFSK Transmitter and Receiver

Receiver



Output of Upper Envelope Detector and Sampler (v_1)

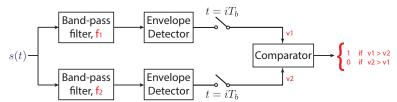


Final Exam Review

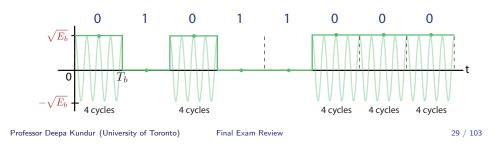
Professor Deepa Kundur (University of Toronto)

BFSK Transmitter and Receiver

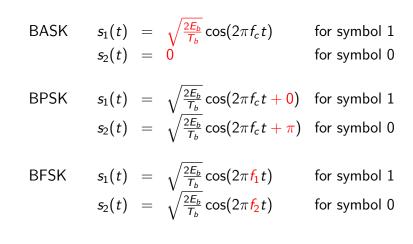
Receiver



Output of Lower Envelope Detector and Sampler (v_2)

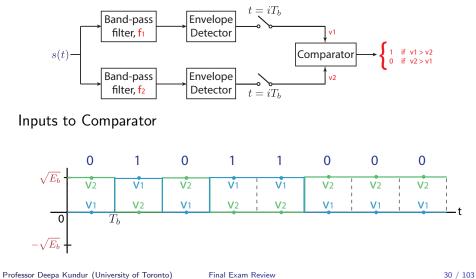


Summary

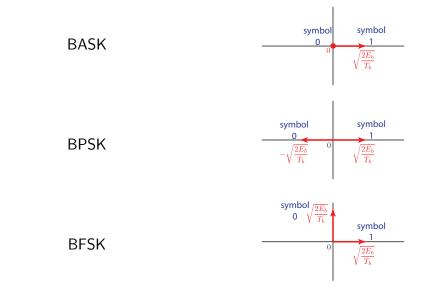


BFSK Transmitter and Receiver

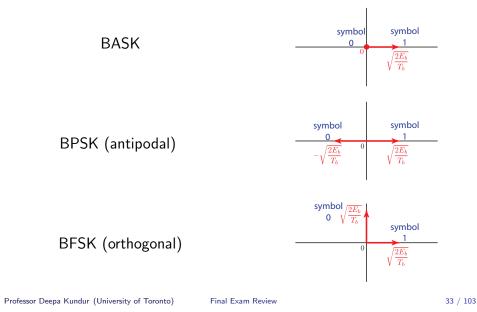
Receiver



Summary: Phasor Diagrams



Summary: Phasor Diagrams



Chapter 2: Fourier Representation of Signals and Systems

M-ary Digital Modulation Schemes For $M = 2^m$ and $T = mT_b$,

► *M*-ary Phase-Shift Keying

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos\left(2\pi f_c t + \frac{2\pi}{M}i\right)$$

- $i = 0, 1, \dots, M 1, 0 \le t \le T.$
- ▶ *M*-ary Quadrature Amplitude Modulation

$$s_i(t) = \sqrt{\frac{2E_0}{T}} \frac{\mathbf{a}_i \cos(2\pi f_c t)}{T} - \sqrt{\frac{2E_0}{T}} \frac{\mathbf{b}_i \sin(2\pi f_c t)}{T}$$

 $i = 0, 1, \dots, M - 1, 0 \le t \le T.$

M-ary Frequency-Shift Keying

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos\left(\frac{\pi}{T}(n+i)t\right)$$

Final Exam Review

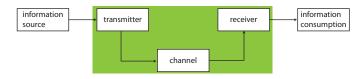
$$i = 0, 1, \dots, M - 1, 0 \le t \le T.$$

Professor Deepa Kundur (University of Toronto)

34 / 103

Communication Systems: Foundational Theories

- Modulation Theory: piggy-back information-bearing signal on a carrier signal
- Detection Theory: estimating or detecting the information-bearing signal in a reliable manner
- Probability and Random Processes: model channel noise and uncertainty at receiver
- Fourier Analysis: view signal and system in another domain to gain new insights



The Fourier Transform (FT)

$$G(f) = \int_{-\infty}^{\infty} g(t) e^{-j2\pi ft}$$
$$g(t) = \int_{-\infty}^{\infty} G(f) e^{+j2\pi ft}$$

Notation:

$$g(t) \rightleftharpoons G(f)$$

$$G(f) = \mathbf{F}[g(t)]$$

$$g(t) = \mathbf{F}^{-1}[G(f)]$$

FT Synthesis Equation

$$g(t) = \int_{-\infty}^{\infty} G(f) e^{j2\pi ft} dt$$

• g(t) is the sum of scaled complex sinusoids

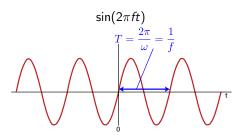
•
$$e^{j2\pi ft} = \cos(2\pi ft) + j\sin(2\pi ft) \equiv \text{complex sinusoid}$$

Professor Deepa Kundur (University of Toronto)

Final Exam Review

$$e^{j2\pi ft} = \cos(2\pi ft) + j\sin(2\pi ft)$$

 $\cos(2\pi ft)$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$



Professor Deepa Kundur (University of Toronto)

(University of Toronto) Final Exam Review

38 / 103

FT Analysis Equation

$$G(f) = \int_{-\infty}^{\infty} g(t) e^{-j2\pi ft} dt$$

- The analysis equation represents the inner product between g(t) and $e^{j2\pi ft}$.
- The analysis equation states that G(f) is a measure of similarity between g(t) and e^{j2πft}, the complex sinusoid at frequency f Hz.

37 / 103

|G(f)| and $\angle G(f)$

$$g(t) = \int_{\infty}^{\infty} G(f) e^{j2\pi f t} df$$
$$= \int_{\infty}^{\infty} |G(f)| e^{j(2\pi f t + \angle G(f))} df$$

- ► |G(f)| dictates the relative presence of the sinusoid of frequency f in g(t).
- ► ∠G(f) dictates the relative alignment of the sinusoid of frequency f in g(t).

Professor Deepa Kundur (University of Toronto) Final Exam Review

41 / 103

Low, Mid and High Frequency Signals

Q: Which of the following signals appears higher in frequency?

- 1. $\cos(4 \times 10^6 \pi t + \pi/3)$
- 2. $\sin(2\pi t + 10\pi) + 17\cos^2(10\pi t)$

A: $\cos(4 \times 10^6 \pi t + \pi/3)$.

Professor Deepa Kundur (University of Toronto)

Final Exam Review

42 / 103

Importance of FT Theorems and Properties

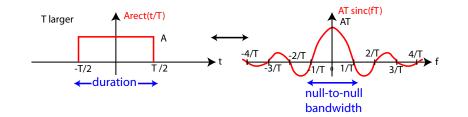
- The Fourier transform converts a signal or system representation to the frequency-domain, which provides another way to visualize a signal or system convenient for analysis and design.
- The properties of the Fourier transform provide valuable insight into how signal <u>operations</u> in the <u>time-domain</u> are described in the <u>frequency-domain</u>.

FT Theorems and Properties

Property/Theorem	Time Domain		Frequency Domain
Notation:	g(t)	\rightleftharpoons	G(f)
	$g_1(t)$	\rightleftharpoons	$G_1(f)$
	$g_2(t)$	\rightleftharpoons	$G_2(f)$
Linearity:	$c_1g_1(t) + c_2g_2(t)$	\rightleftharpoons	$c_1G_1(f) + c_2G_2(f)$
Dilation:	g(at)	\rightleftharpoons	$\frac{1}{ a}G\left(\frac{f}{a}\right)$
Conjugation:	$g^{*}(t)$	\rightleftharpoons	$G^*(-f)$
Duality:	G(t)	\rightleftharpoons	g(-f)
Time Shifting:	$g(t-t_0)$	\rightleftharpoons	$G(f)e^{-j2\pi ft_0}$
Frequency Shifting:	$e^{j2\pi f_c t}g(t)$	\rightleftharpoons	$G(f-f_c)$
Area Under $G(f)$:	g(0)	=	$\int_{-\infty}^{\infty} G(f) df$
Area Under $g(t)$:	$\int_{-\infty}^{\infty} g(t) dt$ $\frac{d}{dt} g(t)$	=	G(0)
Time Differentiation:	$\frac{d}{dt}g(t)$	\rightleftharpoons	$j2\pi fG(f)$
Time Integration :	$\int_{-\infty}^{t} g(\tau) d\tau$	\rightleftharpoons	$\frac{1}{j2\pi f}G(f)$
Modulation Theorem:	$g_1(t)g_2(t)$	\rightleftharpoons	$\int_{-\infty}^{\infty} G_1(\lambda) G_2(f-\lambda) d\lambda$
Convolution Theorem:	$\int_{-\infty}^{\infty}g_{1}(au)g_{2}(t- au)$	\rightleftharpoons	$G_1(f)G_2(f)$
Correlation Theorem:	$\int_{-\infty}^{\infty} g_1(t) g_2^*(t-\tau) dt$	\rightleftharpoons	$G_1(f)G_2^*(f)$
Rayleigh's Energy Theorem:	$\int_{\infty}^{\infty} g(t) ^2 dt$	=	$\int_{\infty}^{\infty} G(f) ^2 df$

Time-Bandwidth Product

time-duration of a signal \times frequency bandwidth = constant



<u>Note</u>: the <u>constant</u> depends on the definitions of duration and bandwidth and can change with the shape of signals being considered

Professor Deepa Kundur (University of Toronto)

Final Exam Review

45 / 103

Dirac Delta Function

Definition:

- 1. $\delta(t) = 0, t \neq 0$ 2. The area under $\delta(t)$ is
- unity:

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

<u>Note</u>: $\delta(0) =$ undefined

$$x(t) \xrightarrow{\text{LTI System}} y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$
 impulse response

$$X(f) \xrightarrow{\text{LTI System}} Y(f) = X(f) \cdot H(f)$$
frequency response

- For systems that are <u>linear time-invariant</u> (LTI), the Fourier transform provides a decoupled description of the system operation on the input signal much like when we diagonalize a matrix.
- This provides a filtering perspective to how a linear time-invariant system operates on an input signal.

Final Exam Review

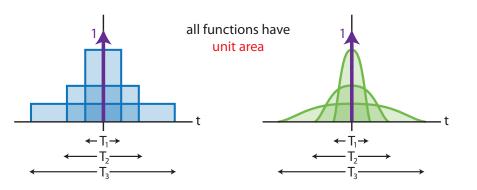
The LTI system scales the sinusoidal component corresponding to frequency f by H(f) providing frequency selectivity.

Professor Deepa Kundur (University of Toronto)

46 / 103

Dirac Delta Function

 can be interpreted as the limiting case of a family of functions of unit area but that become narrower and higher



Dirac Delta Function

► Sifting Property:

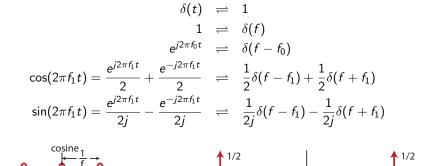
$$\int_{-\infty}^{\infty} g(t) \delta(t - t_0) dt = g(t_0)$$

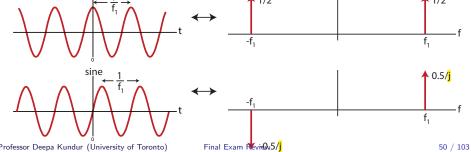
• Convolution with $\delta(t)$:

$$g(t)\star\delta(t-t_0)=g(t-t_0)$$

Final Exam Review

The Fourier Transform and the Dirac Delta





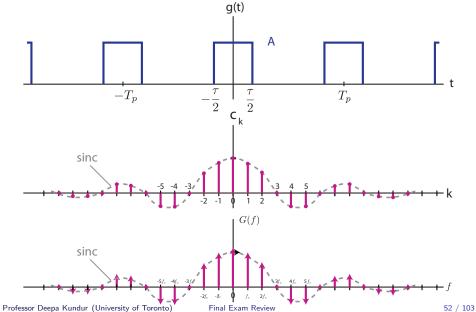
Professor Deepa Kundur (University of Toronto)

49 / 103

Professor Deepa Kundur (University of Toronto)

Fourier Transforms of Periodic Signals

$$g(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_0 t} \quad \rightleftharpoons \quad G(f) = \sum_{n=-\infty}^{\infty} c_n \delta(f - n f_0)$$



Chapter 3: Amplitude Modulation

Amplitude Modulation

- In modulation need two things:
 - 1. a modulated signal: carrier signal: c(t)
 - 2. a modulating signal: message signal: m(t)
- carrier:

• $c(t) = A_c \cos(2\pi f_c t)$; phase $\phi_c = 0$ is assumed.

- message:
 - m(t) (information-bearing signal)
 - assume bandwidth/max freq of m(t) is W

Professor Deepa Kundur (University of Toronto)

Final Exam Review

53 / 103

Professor Deepa Kundur (University of Toronto)

Final Exam Review

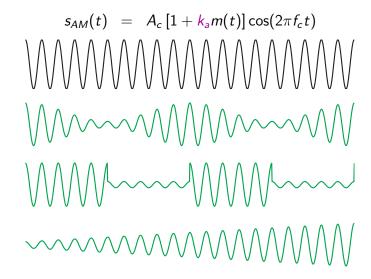
54 / 103

Amplitude Modulation

Three types studied:

- 1. Amplitude Modulation (AM) (yes, it has the same name as the class of modulation techniques)
- 2. Double Sideband-Suppressed Carrier (DSB-SC)
- 3. Single Sideband (SSB)

Amplitude Modulation

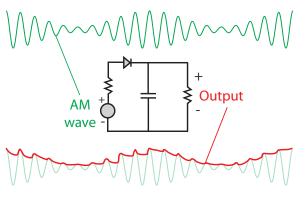


Final Exam Review

Amplitude Modulation Techniques

<u>AM</u>: For:

- 1. $1 + k_a m(t) > 0$ (envelope is always positive); and
- 2. $f_c \gg W$ (message moves slowly compared to carrier)
- m(t) can be recovered with an envelope detector.



Final Exam Review

Professor Deepa Kundur (University of Toronto)

Amplitude Modulation Techniques DSB-SC:

$$s_{DSB}(t) = A_c \cos(2\pi f_c t) m(t)$$

$$S_{DSB}(f) = \frac{A_c}{2} [M(f - f_c) + M(f + f_c)]$$

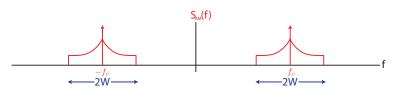
- Iower power
- ► $B_T = 2W$
- higher complexity

57 / 103

Amplitude Modulation Techniques

<u>AM</u>:

$$\begin{aligned} s_{AM}(t) &= A_c \left[1 + k_a m(t) \right] \cos(2\pi f_c t) \\ S_{AM}(f) &= \frac{A_c}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{k_a A_c}{2} \left[M(f - f_c) + M(f + f_c) \right] \end{aligned}$$



- highest power
- ► $B_T = 2W$
- Iowest complexity

Professor Deepa Kundur (University of Toronto)

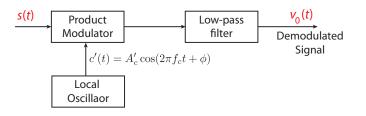
Final Exam Review

58 / 103

Amplitude Modulation Techniques

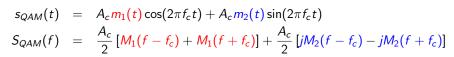
DSB-SC:

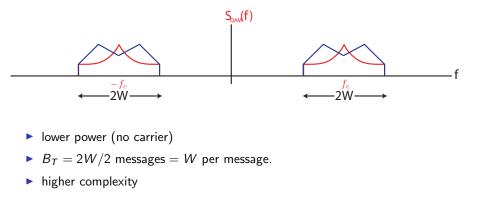
- An envelope detector will not be able to recover m(t); it will instead recover |m(t)|.
- <u>Coherent demodulation</u> is required.



Amplitude Modulation Techniques

QAM:





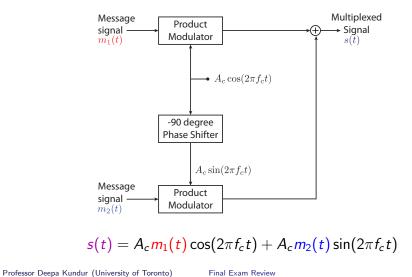
Final Exam Review

Professor Deepa Kundur (University of Toronto)

61 / 103

Amplitude Modulation Techniques

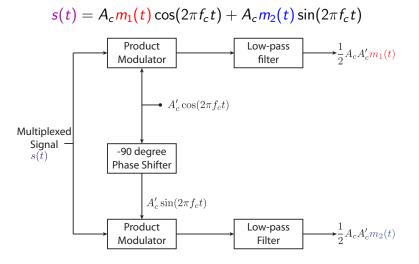
QAM Transmitter:



62 / 103

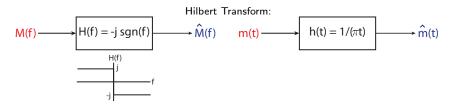
Amplitude Modulation Techniques

QAM Receiver:

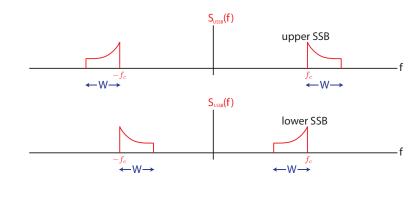


Amplitude Modulation Techniques SSB:

$$\begin{split} s_{USSB}(t) &= \frac{A_c}{2} m(t) \cos(2\pi f_c t) - \frac{A_c}{2} \hat{m}(t) \sin(2\pi f_c t) \\ S_{USSB}(f) &= \begin{cases} \frac{A_c}{2} \left[M(f - f_c) + M(f + f_c) \right] & |f| \ge f_c \\ 0 & |f| < f_c \end{cases} \\ s_{LSSB}(t) &= \frac{A_c}{2} m(t) \cos(2\pi f_c t) + \frac{A_c}{2} \hat{m}(t) \sin(2\pi f_c t) \\ S_{LSSB}(f) &= \begin{cases} 0 & |f| > f_c \\ \frac{A_c}{2} \left[M(f - f_c) + M(f + f_c) \right] & |f| \le f_c \end{cases} \end{split}$$



Amplitude Modulation Techniques SSB:



- Iowest power
- $\blacktriangleright B_T = W$
- highest complexity

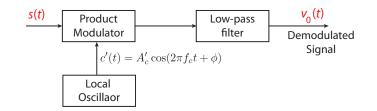
Professor Deepa Kundur (University of Toronto)

Final Exam Review

Amplitude Modulation Techniques

<u>SSB</u>:

• Coherent demodulation works here as well.

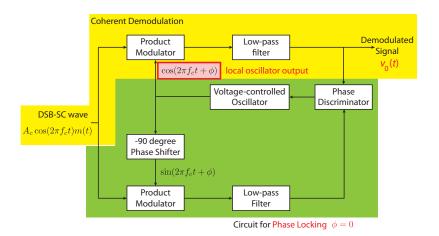


Professor Deepa Kundur (University of Toronto)

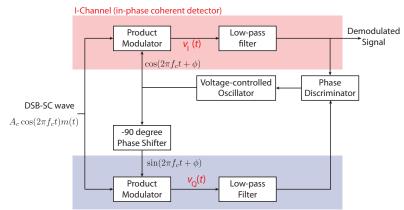
Final Exam Review

66 / 103

Costas Receiver



Costas Receiver



Q-Channel (quadrature-phase coherent detector)

65 / 103

Angle Modulation

Phase Modulation (PM):

$$\theta_i(t) = 2\pi f_c t + k_p m(t)$$

$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt} = f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$$

$$s_{PM}(t) = A_c \cos[2\pi f_c t + k_p m(t)]$$

Frequency Modulation (FM):

$$\theta_{i}(t) = 2\pi f_{c}t + 2\pi k_{f} \int_{0}^{t} m(\tau) d\tau$$

$$f_{i}(t) = \frac{1}{2\pi} \frac{d\theta_{i}(t)}{dt} = f_{c} + k_{f} m(t)$$

$$s_{FM}(t) = A_{c} \cos \left[2\pi f_{c}t + 2\pi k_{f} \int_{0}^{t} m(\tau) d\tau\right]$$

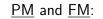
69 / 103

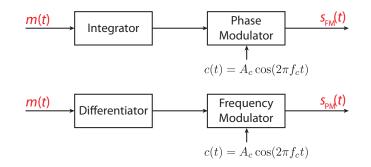
Final Exam Review

70 / 103

Angle Modulation

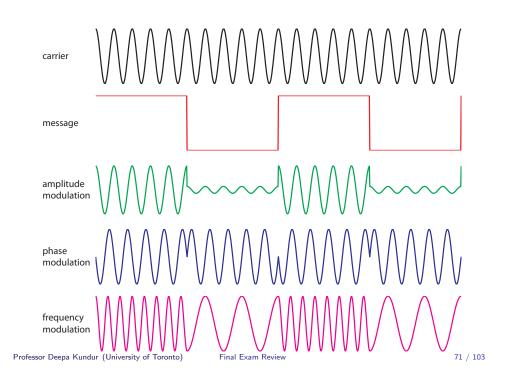
Professor Deepa Kundur (University of Toronto)





Final Exam Review

Professor Deepa Kundur (University of Toronto)



Chapter 4: Angle Modulation

Final Exam Review

Properties of Angle Modulation

- 1. Constancy of transmitted power
- 2. Nonlinearity of angle modulation
- 3. Irregularity of zero-crossings
- 4. Difficulty in visualizing message
- 5. Bandwidth versus noise trade-off

Narrowband FM

• Suppose $m(t) = A_m \cos(2\pi f_m t)$.

$$f_{i}(t) = f_{c} + k_{f}A_{m}\cos(2\pi f_{m}t) = f_{c} + \Delta f\cos(2\pi f_{m}t)$$

$$\Delta f = k_{f}A_{m} \equiv \text{frequency deviation}$$

$$\theta_{i}(t) = 2\pi \int_{0}^{t} f_{i}(\tau)d\tau$$

$$= 2\pi f_{c}t + \frac{\Delta f}{f_{m}}\sin(2\pi f_{m}t) = 2\pi f_{c}t + \beta\sin(2\pi f_{m}t)$$

$$\beta = \frac{\Delta f}{f_{m}}$$

$$s_{FM}(t) = A_{c}\cos[2\pi f_{c}t + \beta\sin(2\pi f_{m}t)]$$

For narrow band FM, $\beta \ll 1$.

Professor Deepa Kundur (University of Toronto)

Final Exam Review

73 / 103

Professor Deepa Kundur (University of Toronto)

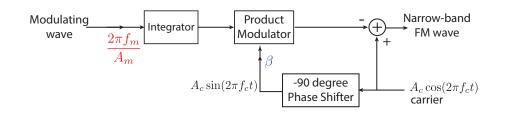
Final Exam Review

74 / 103

Narrowband FM

Modulation:

$$s_{FM}(t) \approx \underbrace{A_c \cos(2\pi f_c t)}_{\text{carrier}} -\beta \underbrace{A_c \sin(2\pi f_c t)}_{-90^\circ \text{shift of carrier}} \underbrace{\sin(2\pi f_m t)}_{A_m \int_0^t m(\tau) d\tau}$$
DSB-SC signal



Carson's Rule

A significant component of the FM signal is within the following bandwidth:

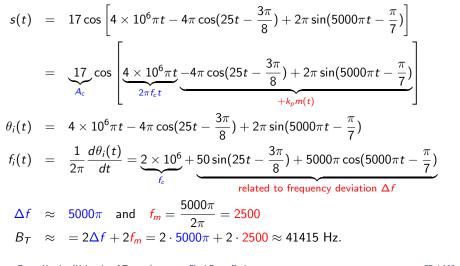
$$B_T \approx 2\Delta f + 2f_m = 2\Delta f \left(1 + \frac{1}{\beta}\right)$$

where Δf is the maximum frequency deviation and f_m is the highest frequency in the modulating signal.

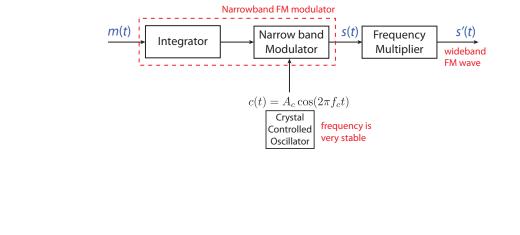
- For $\beta \gg 1$, $B_T \approx 2\Delta f = 2k_f A_m$
- For $\beta \ll 1$, $B_T \approx 2\Delta f \frac{1}{\beta} = \frac{2\Delta f}{\Delta f/f_m} = 2f_m$

Carson's Rule

Example: Find the bandwidth of the following signal:



Generation of FM Waves: Armstrong Modulator

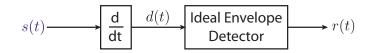


Professor Deepa Kundur (University of Toronto)

Final Exam Review

77 / 103

Demodulation of FM Waves



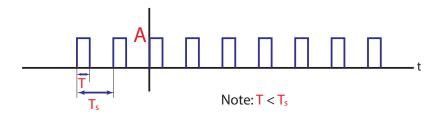
- Frequency Discriminator: uses positive and negative slope circuits in place of a differentiator, which is hard to implement across a wide bandwidth
- Phase Lock Loop: tracks the angle of the in-coming FM wave which allows tracking of the embedded message

Chapter 5: Pulse Modulation

78 / 103

Pulse Modulation

the variation of a regularly spaced constant amplitude pulse stream to superimpose information contained in a message signal



- ► Three types:
 - 1. pulse amplitude modulation (PAM)
 - 2. pulse duration modulation (PDM)
 - 3. pulse position modulation (PPM)

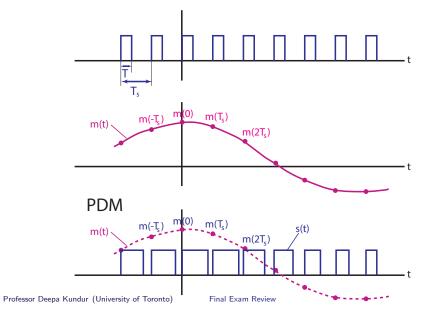
Professor Deepa Kundur (University of Toronto)

Final Exam Review

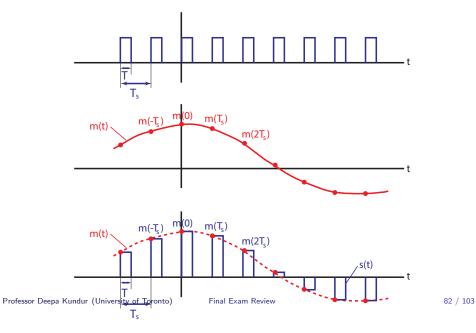
81 / 103

83 / 103

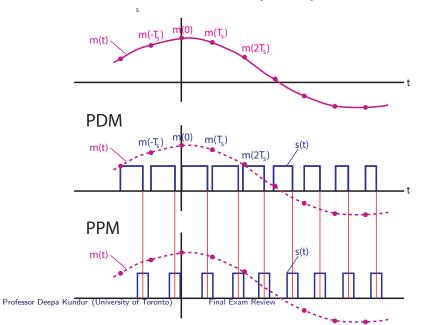
Pulse Duration Modulation (PDM)



Pulse Amplitude Modulation (PAM)



Pulse Position Modulation (PPM)



Summary of Pulse Modulation

Let g(t) be the pulse shape.

► <u>PAM</u>:

$$s_{PAM}(t) = \sum_{n=-\infty}^{\infty} k_a m(nT_s) g(t - nT_s)$$

where k_a is an amplitude sensitivity factor; $k_a > 0$.

► <u>PDM</u>:

$$s_{PDM}(t) = \sum_{n=-\infty}^{\infty} g\left(\frac{t-nT_s}{k_d m(nT_s)+M_d}\right)$$

where k_d is a duration sensitivity factor; $k_d |m(t)|_{max} < M_d$.

► <u>PPM</u>:

$$s_{PPM}(t) = \sum_{n=-\infty}^{\infty} g(t - nT_s - k_p m(nT_s))$$

where
$$k_p$$
 is a position sensitivity factor; $k_p |m(t)|_{max} < (T_s/2)$.

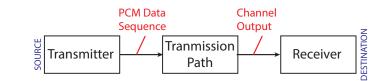
Professor Deepa Kundur (University of Toronto)

Final Exam Review

85 / 103

Pulse-Code Modulation

Most basic form of digital pulse modulation

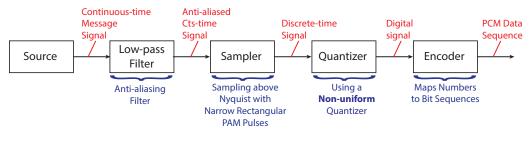


Professor Deepa Kundur (University of Toronto)

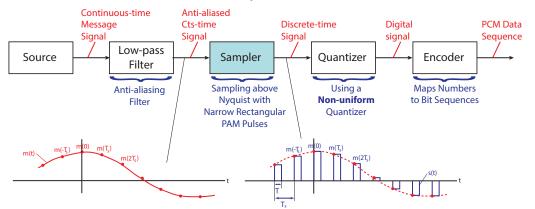
Final Exam Review

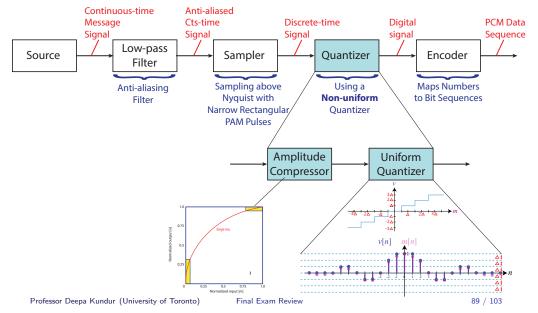
86 / 103

PCM Transmitter



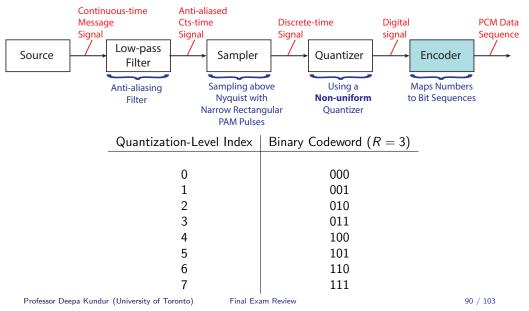
PCM Transmitter: Sampler



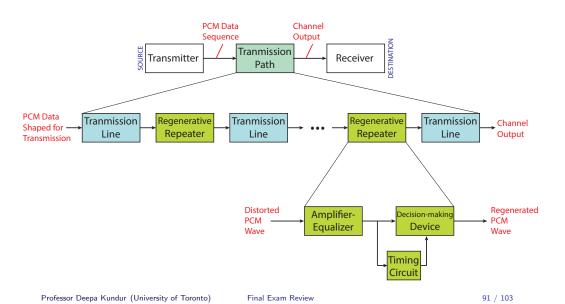


PCM Transmitter: Non-Uniform Quantizer

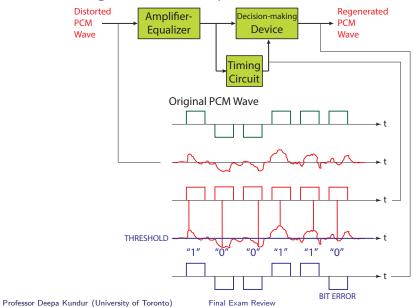
PCM Transmitter: Encoder



PCM: Transmission Path



PCM: Regenerative Repeater



PCM: Receiver

Two Stages:

- 1. Decoding and Expanding:
 - 1.1 regenerate the pulse one last time
 - 1.2 group into code words
 - 1.3 interpret as quantization level
 - 1.4 pass through expander (opposite of compressor)
- 2. <u>Reconstruction</u>:
 - 2.1 pass expander output through low-pass reconstruction filter (cutoff is equal to message bandwidth) to estimate original message m(t)

D	D	12	(Instruction (Truccus))	Fin
Professor	Deepa	Nundur	(University of Toronto) F	-10

nal Exam Review

93 / 103

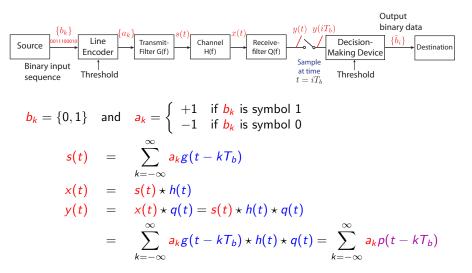
Chapter 6: Baseband Data Transmission

Professor Deepa Kundur (University of Toronto)

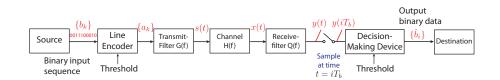
Final Exam Review

94 / 103

Baseband Transmission of Digital Data



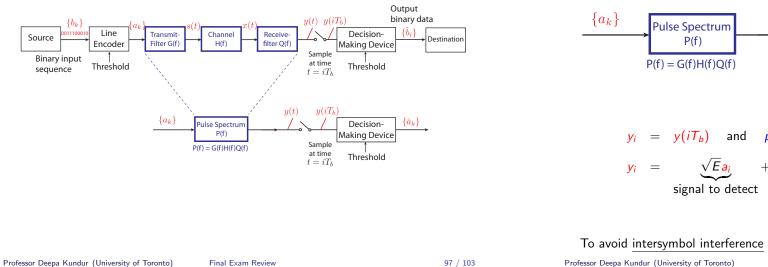
Baseband Transmission of Digital Data



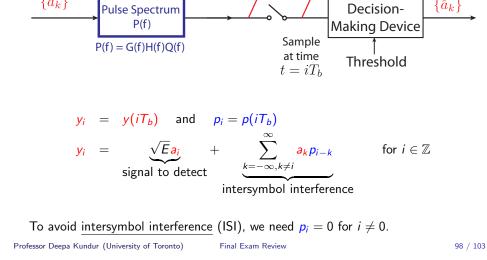
$$\therefore \mathbf{y(t)} = \sum_{k=-\infty}^{\infty} \mathbf{a}_k p(t - kT_b)$$

where $p(t) = g(t) \star h(t) \star q(t)$
 $P(f) = G(f) \cdot H(f) \cdot Q(f).$

Baseband Transmission of Digital Data



Baseband Transmission of Digital Data



y(t)

 $y(iT_b)$

The Nyquist Channel

- Minimum bandwidth channel
- Optimum pulse shape:

$$p_{opt}(t) = \sqrt{E} \operatorname{sinc}(2B_0 t)$$

$$P_{opt}(f) = \begin{cases} \frac{\sqrt{E}}{2B_0} & -B_0 < f < B_0 \\ 0 & \text{otherwise} \end{cases}, \quad B_0 = \frac{1}{2T_b}$$

Note: No ISI.

 $p_i = p(iT_b) = \sqrt{E}\operatorname{sinc}(2B_0 iT_b)\sqrt{E}\operatorname{sinc}\left(2 \cdot \frac{1}{2T_b} iT_b\right) = \sqrt{E}\operatorname{sinc}(i) = 0 \text{ for } i \neq 0.$ Disadvantages: (1) physically unrealizable (sharp transition in freq domain); (2) slow rate of decay leaving no margin of error for sampling times.

99 / 103

Raised-Cosine Pulse Spectrum

- ▶ has a more graceful transition in the frequency domain
- more practical pulse shape:

$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi \alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

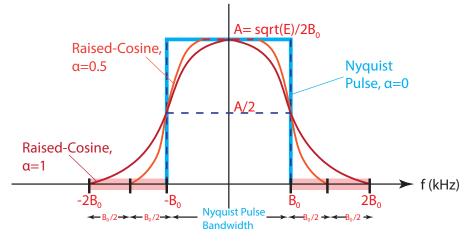
$$P(f) = \begin{cases} \frac{\sqrt{E}}{2B_0} & 0 \le |f| < f_1 \\ \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos\left[\frac{\pi(|f| - f_1)}{(B_0 - f_1)}\right] \right\} & f_1 < f < 2B_0 - f_1 \\ 2B_0 - f_1 \le |f| \end{cases}$$

$$\alpha = 1 - \frac{f_1}{B_0}$$

$$B_T = B_0(1 + \alpha) \quad \text{where } B_0 = \frac{1}{2T_b} \text{ and } f_v = \alpha B_0$$

<u>Note</u>: No ISI. :: $p_i = 0$ for $i \neq 0$. Professor Deepa Kundur (University of Toronto) Final Exam Review

Raised-Cosine Pulse Spectrum



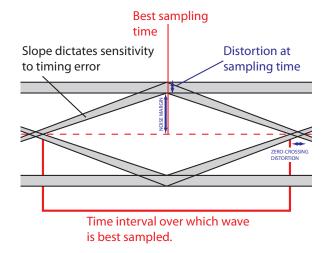
Trade-off: larger bandwidth than Nyquist pulse.

Professor Deepa Kundur (University of Toronto)

Final Exam Review

101 / 103

The Eye Pattern



 $\underline{Note}:$ an "open" eye denotes a larger noise margin, lower zero-crossing distortion and greater robustness to timing error.

Professor Deepa Kundur (University of Toronto)

Final Exam Review

102 / 103

Important Identities

$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\cos(A)\cos(B) = \frac{1}{2}\cos(A + B) + \frac{1}{2}\cos(A - B)$$

$$\cos(A)\sin(B) = \frac{1}{2}\sin(A + B) - \frac{1}{2}\sin(A - B)$$

$$\cos(A) = \sin\left(A + \frac{\pi}{2}\right) \qquad \cos(A + \pi) = -\cos(A)$$

$$\cos(A) = \cos(-A) \qquad \sin(A) = -\sin(-A)$$

$$\cos^{2}(A) = \frac{1}{2} + \frac{1}{2}\cos(2A)$$

$$\cos^{2}(A) + \sin^{2}(A) = 1$$

$$\cos(A) \approx 1 \qquad \text{for } |A| \ll 1$$

$$\sin(A) \approx A \qquad \text{for } |A| \ll 1$$