



- Strategy to compute $X(\omega)$:
 - 1. Compute $X(\omega)$ for equally spaced samples.
 - 2. Compute $X(\omega)$ samples for one period only (recall, $X(\omega)$ is periodic with period 2π)
- Assuming we compute N samples of $X(\omega)$ over one period of 2π , the resulting computed frequency signal would effectively be a sampled version of $X(\omega)$ such that:

$$\omega = \frac{2\pi k}{N}$$

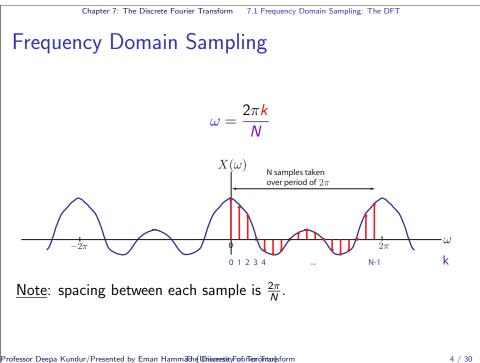
Discrete Fourier Transform

- ► Frequency analysis of discrete-time signals must conveniently be performed on a computer or DSP.
- ► Recall:

aperiodic in time $\stackrel{\mathcal{F}}{\longleftrightarrow}$ continuous in frequency $x(n) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$

• $X(\omega)$ cannot therefore be computed for the entire set $\omega \in \mathbb{R}$; for practicality, $X(\omega)$ must be computed for a discrete and finite set of values in $\omega \in \mathbb{R}$.

```
rofessor Deepa Kundur/Presented by Eman HammaTche (DhisoresittyFofrTeroTritor)sform
```



2 / 30

Chapter 7: The Discrete Fourier Transform 7.1 Frequency Domain Sampling: The DFT

Frequency Domain Sampling

▶ Recall, the discrete-time Fourier transform (DTFT):

$$\begin{aligned} x(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega \\ X(\omega) &= \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n} \end{aligned}$$

• Suppose we sample $X(\omega)$ according to: $\omega = \frac{2\pi k}{N}$.

Professor Deepa Kundur/Presented by Eman Hammadh (DisœesityFoturleroTrico)sform

$$Product State Transform (1) Trequery Domain Sampling: The DFT Example 1 and the formula of the product of t$$

5 / 30

Profes

Chapter 7: The Discrete Fourier Transform 7.1 Frequency Domain Sampling: The DFT

Frequency Domain Sampling

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$X\left(\frac{2\pi}{N}k\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\frac{2\pi}{N}kn},$$

$$= \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x(n)e^{-j2\pi k\frac{n}{N}} \quad \text{Let } n' = n - lN$$

$$= \sum_{l=-\infty}^{\infty} \sum_{n'=0}^{N-1} x(n' + lN) \underbrace{e^{-j2\pi k\frac{n'+lN}{N}}}_{=e^{-j2\pi k\frac{n'}{N}}\underbrace{e^{-j2\pi k\frac{lN}{N}}}_{=1}$$
see The parameters of the second second

Chapter 7: The Discrete Fourier Transform 7.1 Frequency Domain Sampling: The DFT
Frequency Domain Sampling
For
$$k = 0, 1, 2, ..., N - 1$$
,
 $X\left(\frac{2\pi}{N}k\right) = \sum_{n=0}^{N-1} x_p(n)e^{-j2\pi k \frac{n}{N}}$
• Characteristics of $x_p(n)$: (1) discrete-time, (2) period = N, (3) has as a

DTFS: N-1

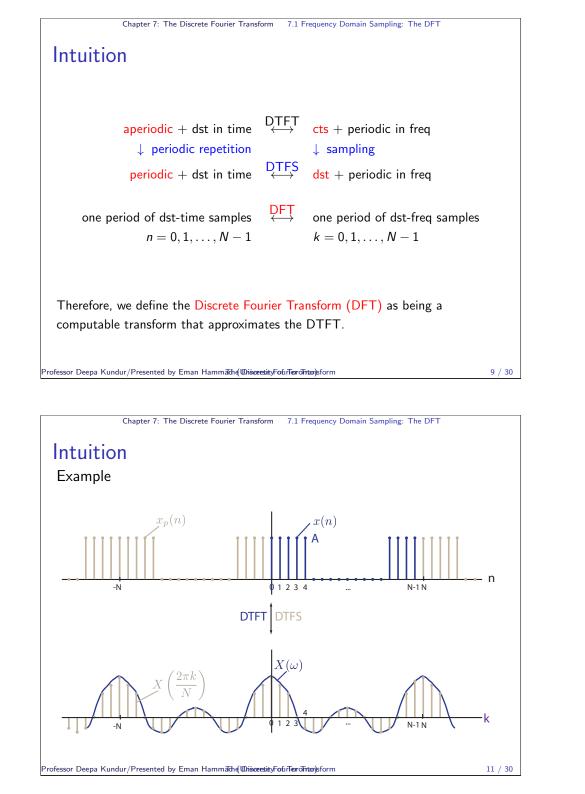
$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi k \frac{n}{N}}$$

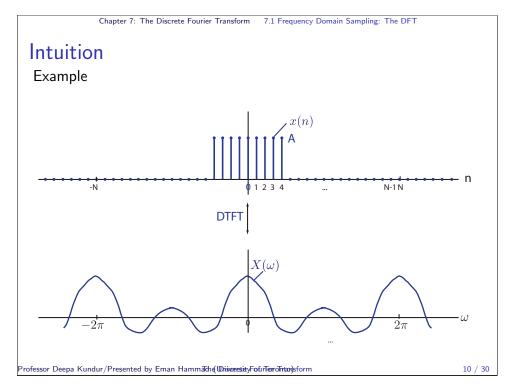
• $X\left(\frac{2\pi}{N}k\right)$ looks like a scaled DTFS of $x_p(n)$,

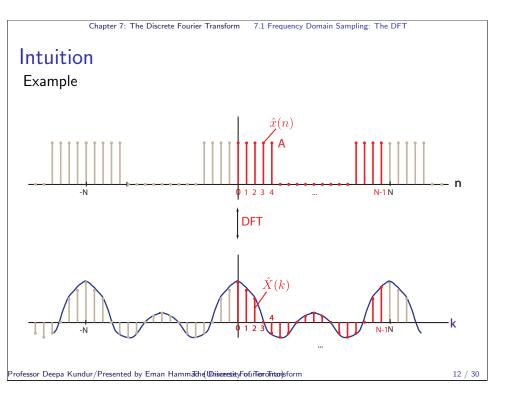
$$c_k = \frac{1}{N}X\left(\frac{2\pi}{N}k\right) \quad k=0,1,\ldots,N-1.$$

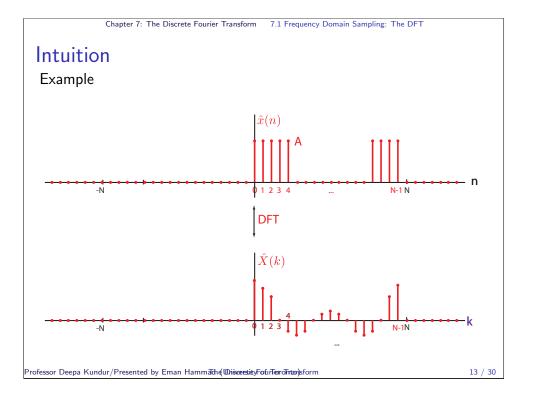
except we only take the coefficient values at $k = 0, 1, \ldots, N - 1$.

Professor Deepa Kundur/Presented by Eman Hamma**che(@hisœesityFofurTeroTrao)**sform









Frequency Domain Sampling

 Recall, sampling in time results in a periodic repetition in frequency.

$$X(n) = X_a(t)|_{t=nT} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a(\omega + \frac{2\pi}{T}k)$$

 Similarly, sampling in frequency results in periodic repetition in time.

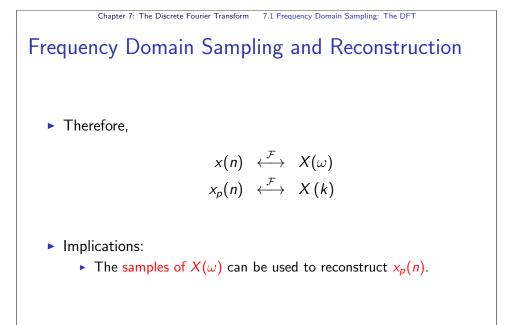
$$x_p(n) = \sum_{l=-\infty}^{\infty} x(n+lN) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(k) = X(\omega)|_{\omega = \frac{2\pi}{N}k}$$

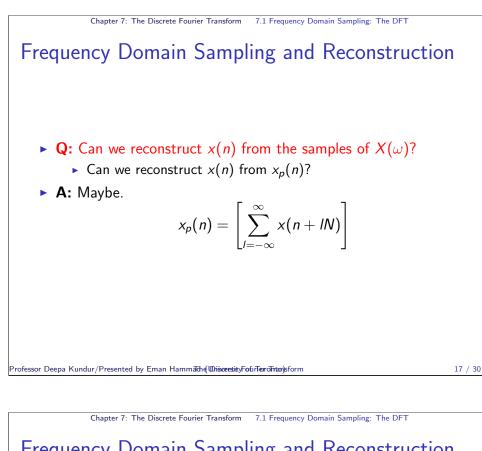
Chapter 7: The Discrete Fourier Transform 7.1 Frequency Domain Sampling: The DFT
DTFT, DTFS and DFT

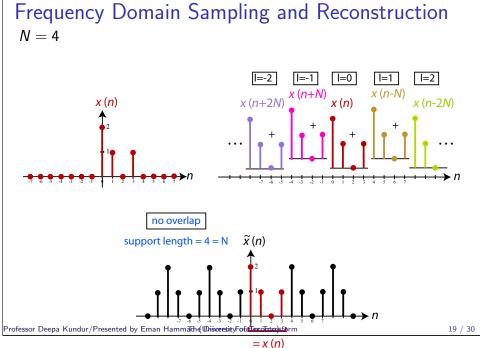
$$\begin{array}{c}
x(n) \text{ for all } n & \bigoplus_{i=1}^{\mathsf{DTFT}} X(\omega) \text{ for all } \omega \\
\downarrow \text{ periodic repetition} & \downarrow \text{ sampling} \\
x_p(n) = \sum_{l=-\infty}^{\infty} x(n+lN) \text{ for all } n & \bigoplus_{i=1}^{\mathsf{DTFS}} X(k) = X(\omega)|_{\omega=\frac{2\pi}{N}k} \text{ for all } k \\
\hat{x}(n) & \bigoplus_{i=1}^{\mathsf{PT}} \hat{X}(k)
\end{array}$$
where

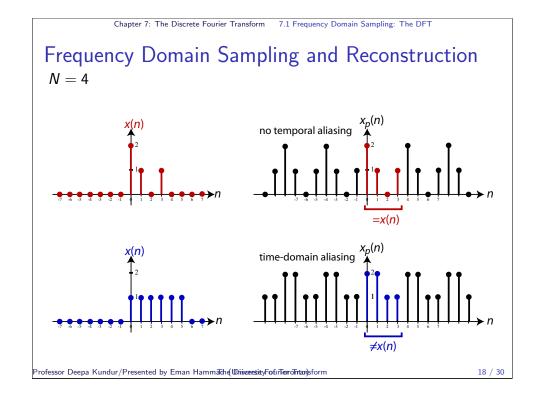
$$\begin{array}{c}
\hat{x}(n) = \begin{cases} x_p(n) & \text{for } n = 0, \dots, N-1 \\
0 & \text{otherwise} \end{cases}$$
and

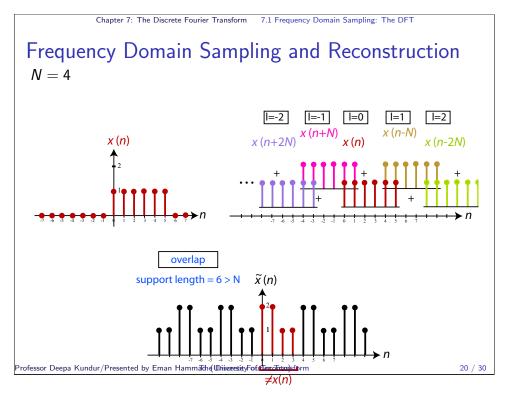
$$\begin{array}{c}
\hat{X}(k) = \begin{cases} X(k) & \text{for } k = 0, \dots, N-1 \\
0 & \text{otherwise} \end{cases}$$











Frequency Domain Sampling and Reconstruction

- ► x(n) can be recovered from x_p(n) if there is no overlap when taking the periodic repetition.
- If x(n) is finite duration and non-zero in the interval 0 ≤ n ≤ L − 1, then

$$x(n) = x_p(n), \quad 0 \le n \le N-1$$
 when $N \ge L$

- If N < L then, x(n) cannot be recovered from $x_p(n)$.
 - or equivalently $X(\omega)$ cannot be recovered from its samples $X\left(\frac{2\pi}{N}k\right)$ due to time-domain aliasing

Professor Deepa Kundur/Presented by Eman Hamm**adh((DisœesityFot**ur**TerroTrico**)sform

21 / 30

Chapter 7: The Discrete Fourier Transform 7.1 Frequency Domain Sampling: The DFT

DFT Example

Q: Determine the *N*-point DFT of the following sequence for $N \ge L$:

 $x(n) = \left\{ egin{array}{cc} 1 & 0 \leq n \leq L-1 \ 0 & ext{otherwise} \end{array}
ight.$

A: The DTFT of x(n) is given by:

$$X(\omega) = \sum_{n=0}^{L-1} x(n) e^{-j\omega n}$$
$$= \sum_{n=0}^{L-1} e^{-j\omega n} = \frac{\sin(\omega L/2)}{\sin(\omega/2)} e^{-j\omega(L-1)/2}$$

Chapter 7: The Discrete Fourier Transform 7.1 Frequency Domain Sampling: The DFT

The Discrete Fourier Transform Pair

► DFT and inverse-DFT (IDFT):

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi k \frac{n}{N}}, \quad k = 0, 1, \dots, N-1$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi k \frac{n}{N}}, \quad n = 0, 1, \dots, N-1$$

Note: we drop the $\hat{\cdot}$ notation from now on.

rofessor Deepa Kundur/Presented by Eman Hamma**rch ((DisetesityFot**ir**TeroTrtor)**sform

22 / 30

Thus, $X(\omega) = \frac{\sin(\omega L/2)}{\sin(\omega/2)}e^{-j\omega(L-1)/2}$ $X(k) = \frac{\sin(\frac{2\pi k}{N}L/2)}{\sin(\frac{2\pi k}{N}/2)}e^{-j\frac{2\pi k}{N}(L-1)/2}$ $= \frac{\sin(\pi kL/N)}{\sin(\pi k/N)}e^{-j\pi k(L-1)/N}$

Chapter 7: The Discrete Fourier Transform 7.2 Properties of the DFT

DFT Properties

- The properties of the DFT are different from those typical of the DTFS and DTFT because they are circular in nature.
- That is, they apply to the periodic repetition of the signal.

Professor Deepa Kundur/Presented by Eman Hamm**ach (DiscretityFofurTeroTruo)**sform

Chapter 7: The Discrete Fourier Transform 7.2 Properties of the DFT

Circular Properties

- ► Circular operations: apply the transformation on the periodic repetition of x(n) and then obtain the final result by taking points for n = 0, 1, ..., N 1
- ► Often use the modulo notation:

$$(n)_N = n \mod N = \text{remainder of } n/N$$

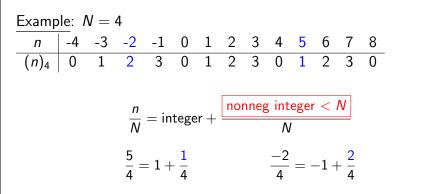
Important DFT Properties

Property	Time Domain	Frequency Domain
Notation:	x(n)	X(k)
Periodicity:	x(n) = x(n+N)	X(k) = X(k+N)
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(k) + a_2X_2(k)$
Time reversal	x(N-n)	X(N-k)
Circular time shift:	$x((n-l))_N$	$X(k)e^{-j2\pi kl/N}$
Circular frequency shift:		$X((k-l))_N$
Complex conjugate:		$X^*(N-k)$
Circular convolution:	$x_1(n) \otimes x_2(n)$	$X_1(k)X_2(k)$
Multiplication:	$x_1(n)x_2(n)$	$\frac{1}{N}X_1(k)\otimes X_2(k)$
Parseval's theorem:	$\sum_{n=0}^{N-1} x(n) y^*(n)$	$\frac{\frac{1}{N}X_1(k)\otimes X_2(k)}{\frac{1}{N}\sum_{k=0}^{N-1}X(k)Y^*(k)}$
sor Deepa Kundur/Presented by E	man Hammache(Diiseeesiet/Fo	fu rTeroIntan)sform

Chapter 7: The Discrete Fourier Transform 7.2 Properties of the DFT

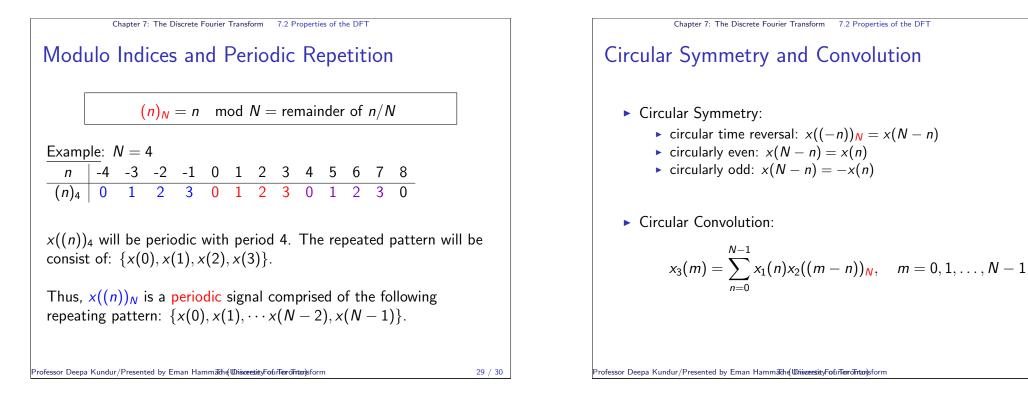
Modulo Indices and Periodic Repetition

 $(n)_N = n \mod N = \text{remainder of } n/N$



25 / 30

26 / 30



30 / 30