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The Fast Fourier Transform

The Fast Fourier Transform

Reference:

Section 8.1 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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The Fast Fourier Transform Complexity of the DFT

The N-Point DFT

X (k) =
N−1∑
n=0

x(n)e−j2πk n
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)e j2πk
n
N , n = 0, 1, . . . ,N − 1

New notation: WN = e−j 2πN

X (k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)W−kn
N , n = 0, 1, . . . ,N − 1
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The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

X (k) =
N−1∑
n=0

x(n)×W kn
N , k = 0, 1, . . . ,N − 1

Straightforward implementation of DFT to compute X (k) for
k = 0, 1, . . . ,N − 1 requires:

I N2 complex multiplications
I 1 complex mult =

(aR + jaI )×(bR + jbI ) = (aR×bR−aI ×bI )+ j(aR×bI +aI ×bR)
= 4 real mult + 2 real add

I 4N2 = O(N2) real multiplications
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The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

X (k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . ,N − 1

Straightforward implementation of DFT to compute X (k) for
k = 0, 1, . . . ,N − 1 requires:

I N(N − 1) complex additions
I 1 complex add =

(aR + jaI )+(bR + jbI ) = (aR + bR) + j(aI + bI ) = 2 real add
I 2N(N − 1) + 2N2 (from complex mult) real additions

= 2N(2N − 1) = O(N2) real additions.
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The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

I Is O(N2) high?

I Yes. A linear increase in the length of the DFT increases the
complexity by a power of two.

I Given the multitude of applications where Fourier analysis is
employed (linear filtering, correlation analysis, spectrum
analysis), a method of efficient computation is needed.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of the N-Point DFT
I How can we reduce complexity?

I Exploit symmetry of the complex exponential.

W
k+N

2
N = −W k

N

LHS = W
k+N

2
N = e−j2π k+N/2

N = e−j2π k
N e−j2π N/2

N

= e−j2π k
N e−jπ

= e−j2π k
N · (cos(−π) + j sin(−π))

= e−j2π k
N (−1)

= −e−j2π k
N = −W k

N = RHS

Professor Deepa Kundur (University of Toronto) The Fast Fourier Transform 7 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of the N-Point DFT
I How can we reduce complexity?

I Exploit periodicity of the complex exponential.

W k+N
N = W k

N

LHS = W k+N
N = e−j2π k+N

N = e−j2π k
N e−j2π N

N

= e−j2π k
N e−j2π

= e−j2π k
N · (cos(−2π) + j sin(−2π))

= e−j2π k
N (1)

= e−j2π k
N = W k

N = RHS
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT

I We will demonstrate how to exploit the symmetry and

periodicity of W k
N :

I to make an N-Point DFT look like two N/2-Point DFTs;
I to make an N/2-Point DFT look like two N/4-Point DFTs;
I to make an N/4-Point DFT look like two N/8-Point DFTs;

I The halving of the DFT length each time gives the name
Radix-2 FFT.

Note: We use the convention N-DFT to specify an N-Point DFT.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT

Two strategies:

I Decimation in time (our focus in the lecture)

I Decimation in frequency

I Note: We assume that N is a power of two; i.e., N = 2r .
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

X (k) =
N−1∑
n=0

x(n)W kn
N k = 0, 1, . . . ,N − 1

=
∑
n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

=

(N/2)−1∑
m=0

x(2m)W
k(2m)
N +

(N/2)−1∑
m=0

x(2m + 1)W
k(2m+1)
N

=

(N/2)−1∑
m=0

x(2m)︸ ︷︷ ︸
≡f1(m)

W 2km
N +

(N/2)−1∑
m=0

x(2m + 1)︸ ︷︷ ︸
≡f2(m)

W 2km
N W k

N
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

Note: W 2
N = e−j 2π

N
·2 = e−j 2π

N/2 = WN/2

X (k) =

(N/2)−1∑
m=0

x(2m)︸ ︷︷ ︸
≡f1(m)

W 2km
N +

(N/2)−1∑
m=0

x(2m + 1)︸ ︷︷ ︸
≡f2(m)

W 2km
N W k

N

=

(N/2)−1∑
m=0

f1(m)W km
N/2︸ ︷︷ ︸

N
2
−DFT of f1(m)

+W k
N

(N/2)−1∑
m=0

f2(m)W km
N/2︸ ︷︷ ︸

N
2
−DFT of f2(m)

= F1(k) + W k
NF2(k), k = 0, 1, . . . ,N − 1
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

Note: since F1(k) and F2(k) are N
2

-DFTs:

F1(k) = F1(k +
N

2
)

F2(k) = F2(k +
N

2
)

we have,

X (k) = F1(k) + W k
NF2(k)

X (k +
N

2
) = F1(k +

N

2
) + W

k+N
2

N F2(k +
N

2
)

= F1(k) −W k
NF2(k)

since W
k+ N

2

N = e−j 2πN (k+ N
2 ) = e−j 2πN k · e−j 2πN

N
2 = e−j 2πN k(−1) = −W k

N
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

Therefore,

X (k) = F1(k) + W k
NF2(k) k = 0, 1, . . . ,

N

2
− 1

X (k +
N

2
) = F1(k) −W k

NF2(k) k = 0, 1, . . . ,
N

2
− 1
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

Repeating the decimation-in-time for f1(n) and f2(n), we obtain:

v11(n) = f1(2n) n = 0, 1, . . . ,N/4 − 1

v12(n) = f1(2n + 1) n = 0, 1, . . . ,N/4 − 1

v21(n) = f2(2n) n = 0, 1, . . . ,N/4 − 1

v22(n) = f2(2n + 1) n = 0, 1, . . . ,N/4 − 1

and

F1(k) = V11(k) + W k
N/2V12(k) k = 0, 1, . . . ,N/4 − 1

F1(k + N/4) = V11(k) −W k
N/2V12(k) k = 0, 1, . . . ,N/4 − 1

F2(k) = V21(k) + W k
N/2V22(k) k = 0, 1, . . . ,N/4 − 1

F2(k + N/4) = V21(k) −W k
N/2V22(k) k = 0, 1, . . . ,N/4 − 1

consisting of N/4-DFTs.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

For N = 8.

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

x(1)
x(5)

x(3)
x(7)

Combine
4-point
DFTs

x(0)
x(4)

x(2)
x(6)

2-point
DFT

2-point
DFT

Combine
2-point
DFTs

2-point
DFT

2-point
DFT

Combine
2-point
DFTs
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

For N = 8.

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

Stage 1 Stage 2 Stage 3

-1

-1

-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

0W 8

0W 8

0W 8

0W 8

0W 8

0W 8

1W 8

2W 8

2W 8

0W 8

2W 8
3W 8
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The Fast Fourier Transform Radix-2 FFT Algorithm

FFT Complexity

-1

WN
r

a

b

rr
NA = a + W   b

rr
NA = a - W   b

I Each butterfly requires:
I one complex multiplication
I two complex additions

I In total, there are:
I N

2 butterflies per stage
I logN stages

I Order of the overall DFT computation is: O(N logN)
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The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT

To compute the convolution of x(n) (support: n = 0, 1, . . . , L− 1)
and h(n) (support: n = 0, 1, . . . ,M − 1):

I We know that the output y(n) = x(n) ∗ h(n) will be of length
M + L− 1.

I We want to select the smallest N = 2r such that

N = 2r ≥ M + L− 1.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT
To compute the convolution of x(n) (support: n = 0, 1, . . . , L− 1)
and h(n) (support: n = 0, 1, . . . ,M − 1):

1. Assign N to be the smallest power of 2 such that N = 2r ≥ M + L− 1.

2. Zero pad both x(n) and h(n) to have support n = 0, 1, . . . ,N − 1.

3. Take the N-FFT of x(n) to give X (k), k = 0, 1, . . . ,N − 1.

4. Take the N-FFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

5. Produce Y (k) = X (k) · H(k), k = 0, 1, . . . ,N − 1.

6. Take the N-IFFT of Y (k) to give y(n), n = 0, 1, . . . ,N − 1.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT
To compute the convolution of x(n) (support: n = 0, 1, . . . , L− 1)
and h(n) (support: n = 0, 1, . . . ,M − 1):

1. Assign N to be the smallest power of 2 such that N = 2r ≥ M + L− 1.

2. Zero pad both x(n) and h(n) to have support n = 0, 1, . . . ,N − 1.
O(1)

3. Take the N-FFT of x(n) to give X (k), k = 0, 1, . . . ,N − 1.

4. Take the N-FFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.
O(N logN)

5. Produce Y (k) = X (k) · H(k), k = 0, 1, . . . ,N − 1.
O(N)

6. Take the N-IFFT of Y (k) to give y(n), n = 0, 1, . . . ,N − 1.
O(N logN)
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The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of Convolution using FFT

Therefore, the overall complexity of conducting convolution via the
FFT is:

O(N logN)

which is lower than O(N2) through naive direct computation of the
DFT. �
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