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The Fast Fourier Transform Complexity of the DFT

The N-Point DFT
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The Fast Fourier Transform

The Fast Fourier Transform

Reference:

Section 8.1 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

N-1

X(k) = > x(n)xWg" k=01,... .N—1

n=0

Straightforward implementation of DFT to compute X(k) for
k=0,1,..., N — 1 requires:
» N? complex multiplications
» 1 complex mult =
(ar+jar)x(br+jb) = (ar x br —ay x by) +j(ar x bj +a; % br)
= 4 real mult + 2 real add
> 4N? = O(N?) real multiplications
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The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

N—-1
X(k) = > x(mWy', k=01, N-1

n=0

Straightforward implementation of DFT to compute X(k) for
k=0,1,..., N — 1 requires:
» N(N — 1) complex additions
» 1 complex add =
(ar + jar)+(bgr + jbr) = (ar + br) +j(a; + b;) = 2 real add
» 2N(N — 1) + 2N? (from complex mult) real additions
= 2N(2N — 1) = O(N?) real additions.
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The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

» Is O(N?) high?

» Yes. A linear increase in the length of the DFT increases the
complexity by a power of two.

» Given the multitude of applications where Fourier analysis is
employed (linear filtering, correlation analysis, spectrum
analysis), a method of efficient computation is needed.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of the N-Point DFT

» How can we reduce complexity?

» Exploit symmetry of the complex exponential.

N
Wit~ g
LHS = WETE = e2n™i _ gl ion '

s P
e 2w . (cos(—m) + jsin(—m))
e 2 (—1)
—e "N = —W} = RHS
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The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of the N-Point DFT

» How can we reduce complexity?

» Exploit periodicity of the complex exponential.

Wi = wh
LHS = W,(;J“N e*j2”% = e*jzﬂﬁ e*j%%
— e 22w
= e dw. (cos(—2m) + jsin(—27))
= e (1)
= e %N = Wk =RHS
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT

» We will demonstrate how to exploit the symmetry and
periodicity of Wy:
» to make an N-Point DFT look like two N/2-Point DFTs;
» to make an N/2-Point DFT look like two N /4-Point DFTs;
» to make an N/4-Point DFT look like two N/8-Point DFTs;

» The halving of the DFT length each time gives the name
Radix-2 FFT.

Note: We use the convention N-DFT to specify an N-Point DFT.
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The Fast Fourier Transform Radix-2 FFT Algorithm
Radix-2 FFT: Decimation-in-time
N-1
kn
X(k) = E x(n) Wy =0,1,...,N -1
n=0
- kn kn
= x(m)Wy" + x(mW,
n even n odd
N/2)—1 (N/2)—
k(2 k 2 1
= x(2m)W, (m—l— E x(2m+ 1)W, (m+)
m=0
(N/2)-1 (N/2)
= x(2m) Wikm 4 § : x(2m + 1) Wk Wy
m=0
=f(m) =hH(m)
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT

Two strategies:
» Decimation in time (our focus in the lecture)

» Decimation in frequency
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

$ 27 _j2m
Note: WG = e /W2 =e"2 = Wy,

(N/2)—1 (N/2)—1
X(k) = > (2 ) W2km Z (2m+1
m=0 o0 —f2(m)
(N/2)-1 (N/2)-
= ) AmWT+ W Z fo(m
m=0

-~
N_DFT of fi(m) N_DFT offz(m)

= F(k)+ WiF(k), k=01,....N—1
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The Fast Fourier Transform Radix-2 FFT Algorithm The Fast Fourier Transform Radix-2 FFT Algorithm
Radix-2 FFT: Decimation-in-time Radix-2 FFT: Decimation-in-time
Note: since Fi(k) and F»(k) are ¥-DFTs:
N
Fi(k) = Fi(k+ E)
N Therefore,
X(k) = Fi(k)+ WyF(k) k=0 Loy =1
we have, N N
X(k+=) = F(k)—WiF(k) k=01, ——1
X(k) = Fi(k) + WiFa(k) 2 2
N N kY N
X(k+5) = Akt 5)+ Wy 2 Fa(k + 5)
= Fi(k) — WyFa(k)
since WETF = e %)) = ok eI T Y = eI H(—1) = — W
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The Fast Fourier Transform Radix-2 FFT Algorithm The Fast Fourier Transform Radix-2 FFT Algorithm
Radix-2 FFT: Decimation-in-time Radix-2 FFT: Decimation-in-time
Repeating the decimation-in-time for f;(n) and £(n), we obtain: For N = 8.
via(n) = fA(2n) n=0,1,...,N/4—-1 x0)—  Zpoint }—
vio(n) = fA@2n+1) n=0,1,...,N/4—-1 X(4) — DFT — Combine |1
vai(n) = H(2n) n=0,1,...,N/4-1 2-point : — X(0)
via(n) = £H(2n+1) n—O,l,...,N/4— 1 «2— 2point DFTs B — X(1)
and x(6)— DFT ] Combine | X2
4-00i — X(3)
'p0|nt -
Fi(k) = Wi(k)+ ,V/2V12(k) k=0,1,...,N/4 -1 x()— 2point }— DFTs _ig
Fi(k+N/4) = Vii(k) — Via(k) k=0,1,...,N/4-1 x(5)— DFT —  Combine | | — X(6)
Fz(k) = V21(k) N/2 2(/() kZO,l,...,N/4—1 ZgFO-lint | — X(7)
Fo(k +N/&) = Voy(k) — WK K) k=0,1,...,N/4—1 X(3)—  2-point S -
2( /4) 21(k) — Wy 2 Vaa (k) / (7 DET B
consisting of N/4-DFTs.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

The Fast Fourier Transform Radix-2 FFT Algorithm

FFT Complexity
a A=a+Wyb

b ! A=a-W/b

» Each butterfly requires:

» one complex multiplication
» two complex additions

» In total, there are:
> % butterflies per stage
» log N stages

» Order of the overall DFT computation is: O(N log )
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For N = 8.
Stage 1 Stage 2 Stage 3
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The Fast Fourier Transform Radix-2 FFT Algorithm
Convolution using FFT
To compute the convolution of x(n) (support: n=10,1,...,L—1)

and h(n) (support: n=0,1,..., M —1):

» We know that the output y(n) = x(n) * h(n) will be of length
M+ L—1

» We want to select the smallest N = 2" such that

N=2">M+L—-1.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT

To compute the convolution of x(n) (support: n=10,1,...,L —1)
and h(n) (support: n=0,1,...,M —1):
1. Assign N to be the smallest power of 2 such that N=2"> M+ L — 1.
2. Zero pad both x(n) and h(n) to have support n=0,1,...,N —1.

)

3. Take the N-FFT of x(n) to give X(k), k=0,1,...,N —1.

4. Take the N-FFT of h(n) to give H(k), k=0,1,...,N — 1.
5. Produce Y (k) = X(k) - H(k), k=0,1,...,N —1.

6. Take the N-IFFT of Y(k) to give y(n), n=0,1,...,N —1.
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The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT

To compute the convolution of x(n) (support: n=0,1,...,L—1)
and h(n) (support: n=0,1,... M —1):

1. Assign N to be the smallest power of 2 such that N=2"> M+ L — 1.

2. Zero pad both x(n) and h(n) to have support n=10,1,... N —1.

o(1)
3. Take the N-FFT of x(n) to give X(k), k=0,1,...,N—1.
4. Take the N-FFT of h(n) to give H(k), k=0,1,...,N — 1.

O(N log N)
5. Produce Y (k) = X(k) - H(k), k=0,1,...,N —1.
O(N)
6. Take the N-IFFT of Y(k) to give y(n), n=0,1,...,N —1.
O(Nlog N)
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The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of Convolution using FFT

Therefore, the overall complexity of conducting convolution via the
FFT is:
O(Nlog N)

which is lower than O(N?) through naive direct computation of the
DFT.
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