The Fast Fourier Transform

Professor Deepa Kundur

University of Toronto

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

1 / 22

The Fast Fourier Transform

Reference:

Section 8.1 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

2 / 22

The Fast Fourier Transform Complexity of the DFT

The N-Point DFT

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi k \frac{n}{N}}, \quad k = 0, 1, \dots, N-1$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j2\pi k \frac{n}{N}}, \quad n = 0, 1, \dots, N-1$$

New notation: $W_N = e^{-j\frac{2\pi}{N}}$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}, \quad k = 0, 1, \dots, N-1$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, \quad n = 0, 1, \dots, N-1$$

The Fast Fourier Transform Complexity of the DFT

Complexity of the N-Point DFT

$$X(k) = \sum_{n=0}^{N-1} x(n) \times W_N^{kn}, \quad k = 0, 1, ..., N-1$$

Straightforward implementation of DFT to compute X(k) for k = 0, 1, ..., N - 1 requires:

- ► N² complex multiplications
 - ▶ 1 complex mult = $(a_R + ja_I) \times (b_R + jb_I) = (a_R \times b_R a_I \times b_I) + j(a_R \times b_I + a_I \times b_R)$ = 4 real mult + 2 real add
 - ▶ $4N^2 = O(N^2)$ real multiplications

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

3 / 22

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

4 / 22

Complexity of the *N*-Point DFT

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}, \quad k = 0, 1, ..., N-1$$

Straightforward implementation of DFT to compute X(k) for $k = 0, 1, \dots, N - 1$ requires:

- \triangleright N(N-1) complex additions
 - ▶ 1 complex add =

$$(a_R + ja_I) + (b_R + jb_I) = (a_R + b_R) + j(a_I + b_I) = 2$$
 real add

▶ $2N(N-1) + 2N^2$ (from complex mult) real additions $=2N(2N-1)=O(N^2)$ real additions.

rofessor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

The Fast Fourier Transform Radix-2 FFT Algorithm

5 / 22

Complexity of the *N*-Point DFT

- ▶ How can we reduce complexity?
 - Exploit symmetry of the complex exponential.

$$W_{N}^{k+\frac{N}{2}} = -W_{N}^{k}$$

$$LHS = W_{N}^{k+\frac{N}{2}} = e^{-j2\pi \frac{k+N/2}{N}} = e^{-j2\pi \frac{k}{N}} e^{-j2\pi \frac{N/2}{N}}$$

$$= e^{-j2\pi \frac{k}{N}} e^{-j\pi}$$

$$= e^{-j2\pi \frac{k}{N}} \cdot (\cos(-\pi) + j\sin(-\pi))$$

$$= e^{-j2\pi \frac{k}{N}} (-1)$$

$$= -e^{-j2\pi \frac{k}{N}} = -W_{N}^{k} = RHS$$

Complexity of the *N*-Point DFT

- ▶ Is $O(N^2)$ high?
 - ▶ Yes. A linear increase in the length of the DFT increases the complexity by a power of two.
 - ▶ Given the multitude of applications where Fourier analysis is employed (linear filtering, correlation analysis, spectrum analysis), a method of efficient computation is needed.

rofessor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

6 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of the *N*-Point DFT

- ► How can we reduce complexity?
 - Exploit periodicity of the complex exponential.

$$W_{N}^{k+N} = W_{N}^{k}$$

$$LHS = W_{N}^{k+N} = e^{-j2\pi \frac{k+N}{N}} = e^{-j2\pi \frac{k}{N}} e^{-j2\pi \frac{N}{N}}$$

$$= e^{-j2\pi \frac{k}{N}} e^{-j2\pi}$$

$$= e^{-j2\pi \frac{k}{N}} \cdot (\cos(-2\pi) + j\sin(-2\pi))$$

$$= e^{-j2\pi \frac{k}{N}} (1)$$

$$= e^{-j2\pi \frac{k}{N}} = W_{N}^{k} = RHS$$

Professor Deepa Kundur (University of Toronto) The Fast Fourier Transform 7 / 22

rofessor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

Radix-2 FFT

- We will demonstrate how to exploit the symmetry and periodicity of W_N^k :
 - ▶ to make an N-Point DFT look like two N/2-Point DFTs;
 - ▶ to make an N/2-Point DFT look like two N/4-Point DFTs;
 - ▶ to make an N/4-Point DFT look like two N/8-Point DFTs;
- ▶ The halving of the DFT length each time gives the name Radix-2 FFT.

Note: We use the convention N-DFT to specify an N-Point DFT.

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

9 / 22

11 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn} \quad k = 0, 1, \dots, N-1$$

$$= \sum_{n \text{ even}} x(n) W_N^{kn} + \sum_{n \text{ odd}} x(n) W_N^{kn}$$

$$= \sum_{m=0}^{(N/2)-1} x(2m) W_N^{k(2m)} + \sum_{m=0}^{(N/2)-1} x(2m+1) W_N^{k(2m+1)}$$

$$= \sum_{m=0}^{(N/2)-1} \underbrace{x(2m)}_{\equiv f_1(m)} W_N^{2km} + \sum_{m=0}^{(N/2)-1} \underbrace{x(2m+1)}_{\equiv f_2(m)} W_N^{2km} W_N^{k}$$

Radix-2 FFT

Two strategies:

- Decimation in time (our focus in the lecture)
- Decimation in frequency
- Note: We assume that N is a power of two; i.e., $N = 2^r$.

rofessor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

10 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

Note:
$$W_N^2 = e^{-j\frac{2\pi}{N}\cdot 2} = e^{-j\frac{2\pi}{N/2}} = W_{N/2}$$

$$X(k) = \sum_{m=0}^{(N/2)-1} \underbrace{x(2m)}_{\equiv f_1(m)} W_N^{2km} + \sum_{m=0}^{(N/2)-1} \underbrace{x(2m+1)}_{\equiv f_2(m)} W_N^{2km} W_N^k$$

$$= \sum_{m=0}^{(N/2)-1} f_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{(N/2)-1} f_2(m) W_{N/2}^{km}$$

$$= \underbrace{\sum_{m=0}^{(N/2)-1} f_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{(N/2)-1} f_2(m) W_{N/2}^{km}}_{\geq -DFT \text{ of } f_2(m)}$$

$$= F_1(k) + W_N^k F_2(k), \quad k = 0, 1, \dots, N-1$$

rofessor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

Note: since $F_1(k)$ and $F_2(k)$ are $\frac{N}{2}$ -DFTs:

Radix-2 FFT. Decimation-in-time

$$F_1(k) = F_1(k + \frac{N}{2})$$

 $F_2(k) = F_2(k + \frac{N}{2})$

we have.

$$X(k) = F_1(k) + W_N^k F_2(k)$$

$$X(k + \frac{N}{2}) = F_1(k + \frac{N}{2}) + W_N^{k + \frac{N}{2}} F_2(k + \frac{N}{2})$$

$$= F_1(k) - W_N^k F_2(k)$$

since $W_N^{k+\frac{N}{2}} = e^{-j\frac{2\pi}{N}(k+\frac{N}{2})} = e^{-j\frac{2\pi}{N}k} \cdot e^{-j\frac{2\pi}{N}\frac{N}{2}} = e^{-j\frac{2\pi}{N}k}(-1) = -W_N^k$

rofessor Deepa Kundur (University of Toronto) The Fast Fourier Transform

13 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Radix-2 FFT: Decimation-in-time

Repeating the decimation-in-time for $f_1(n)$ and $f_2(n)$, we obtain:

$$v_{11}(n) = f_1(2n) \quad n = 0, 1, \dots, N/4 - 1$$

 $v_{12}(n) = f_1(2n+1) \quad n = 0, 1, \dots, N/4 - 1$

$$v_{21}(n) = f_2(2n) \quad n = 0, 1, ..., N/4 - 1$$

$$v_{22}(n) = f_2(2n+1) \quad n = 0, 1, \dots, N/4 - 1$$

and

$$F_1(k) = V_{11}(k) + W_{N/2}^k V_{12}(k) \quad k = 0, 1, \dots, N/4 - 1$$

$$F_1(k+N/4) = V_{11}(k) - W_{N/2}^k V_{12}(k) \quad k = 0, 1, \dots, N/4 - 1$$

$$F_2(k) = V_{21}(k) + W_{N/2}^k V_{22}(k) \quad k = 0, 1, ..., N/4 - 1$$

$$F_2(k+N/4) = V_{21}(k) - W_{N/2}^k V_{22}(k) \quad k=0,1,\ldots,N/4-1$$

consisting of N/4-DFTs.

The Fast Fourier Transform

Radix-2 FFT: Decimation-in-time

Therefore,

$$X(k) = F_1(k) + W_N^k F_2(k) \quad k = 0, 1, \dots, \frac{N}{2} - 1$$
$$X(k + \frac{N}{2}) = F_1(k) - W_N^k F_2(k) \quad k = 0, 1, \dots, \frac{N}{2} - 1$$

rofessor Deepa Kundur (University of Toronto)

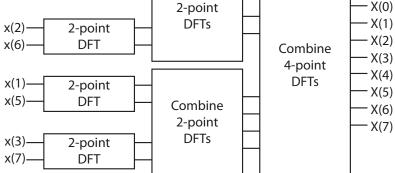
rofessor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

14 / 22

16 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm Radix-2 FFT: Decimation-in-time For N=8. x(0)2-point x(4)DFT Combine

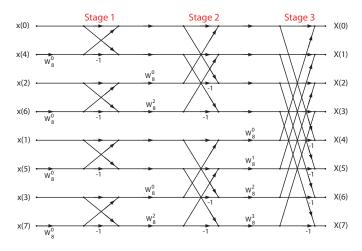


The Fast Fourier Transform

15 / 22

Radix-2 FFT: Decimation-in-time

For N = 8.



Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

17 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT

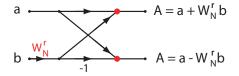
To compute the convolution of x(n) (support: n = 0, 1, ..., L - 1) and h(n) (support: n = 0, 1, ..., M - 1):

- ▶ We know that the output y(n) = x(n) * h(n) will be of length M + L 1.
- ▶ We want to select the smallest $N = 2^r$ such that

$$N=2^r>M+L-1.$$

The Fast Fourier Transform Radix-2 FFT Algorithm

FFT Complexity



- ► Each butterfly requires:
 - ▶ one complex multiplication
 - two complex additions
- ▶ In total, there are:
 - $\frac{N}{2}$ butterflies per stage
 - ▶ log *N* stages
- ▶ Order of the overall DFT computation is: $O(N \log N)$

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

18 / 22

The Fast Fourier Transform

Radix-2 FFT Algorithm

Convolution using FFT

To compute the convolution of x(n) (support: n = 0, 1, ..., L - 1) and h(n) (support: n = 0, 1, ..., M - 1):

- 1. Assign N to be the smallest power of 2 such that $N = 2^r \ge M + L 1$.
- 2. Zero pad both x(n) and h(n) to have support n = 0, 1, ..., N 1.
- 3. Take the *N*-FFT of x(n) to give X(k), k = 0, 1, ..., N 1.
- 4. Take the *N*-FFT of h(n) to give H(k), k = 0, 1, ..., N 1.
- 5. Produce $Y(k) = X(k) \cdot H(k), k = 0, 1, ..., N 1$.
- 6. Take the *N*-IFFT of Y(k) to give y(n), n = 0, 1, ..., N 1.

The Fast Fourier Transform Radix-2 FFT Algorithm

Convolution using FFT

To compute the convolution of x(n) (support: n = 0, 1, ..., L - 1) and h(n) (support: n = 0, 1, ..., M - 1):

- 1. Assign N to be the smallest power of 2 such that $N = 2^r \ge M + L 1$.
- 2. Zero pad both x(n) and h(n) to have support n = 0, 1, ..., N 1.

 O(1)
- 3. Take the *N*-FFT of x(n) to give X(k), k = 0, 1, ..., N 1.
- 4. Take the *N*-FFT of h(n) to give H(k), k = 0, 1, ..., N 1. $O(N \log N)$
- 5. Produce $Y(k) = X(k) \cdot H(k)$, k = 0, 1, ..., N 1.
- 6. Take the *N*-IFFT of Y(k) to give y(n), n = 0, 1, ..., N 1. $O(N \log N)$

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

21 / 22

The Fast Fourier Transform Radix-2 FFT Algorithm

Complexity of Convolution using FFT

Therefore, the overall complexity of conducting convolution via the FFT is:

 $O(N \log N)$

which is lower than $O(N^2)$ through naive direct computation of the DFT.

Professor Deepa Kundur (University of Toronto)

The Fast Fourier Transform

22 / 22