

Chapter 1: Introduction

Course Review

References:

Sections: 1.1, 1.2, 1.3, 1.4 2.1, 2.2, 2.3, 2.4, 2.5 3.1, 3.2, 3.3, 3.4 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.4, 5.5 7.1, 7.2, 8.1 11.2, 11.3, 11.4 of John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications,* 4th edition, 2007,

and supplementary audio, image and video processing notes.

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

Sampling Theorem

If the highest frequency contained in an analog signal $x_a(t)$ is $F_{max} = B$ and the signal is sampled at a rate

$$F_s > 2F_{max} = 2B$$

then $x_a(t)$ can be exactly recovered from its sample values using the interpolation function

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt}$$

Note: $F_N = 2B = 2F_{max}$ is called the Nyquist rate.

Sampling Theorem

Sampling Period =
$$T = \frac{1}{F_s} = \frac{1}{\text{Sampling Frequency}}$$

Therefore, given the interpolation relation, $x_a(t)$ can be written as

$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a(nT)g(t - nT)$$
$$x_a(t) = \sum_{n=-\infty}^{\infty} x(n) g(t - nT)$$

where $x_a(nT) = x(n)$; called bandlimited interpolation.

Professor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review

- Common interpolation approaches: bandlimited interpolation, zero-order hold, linear interpolation, higher-order interpolation techniques, e.g., using splines
- In practice, "cheap" interpolation along with a smoothing filter is employed.

"black box" representation:

$$x(n) \xrightarrow{\mathcal{T}} y(n)$$

rofessor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review

Classification of Discrete-Time Systems

Common System Properties:

The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit sample input $\delta(n)$ be h(n).

$$\begin{split} \delta(n) & \stackrel{\mathcal{T}}{\longrightarrow} h(n) \\ \delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} h(n-k) \\ \alpha & \delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} \alpha & h(n-k) \\ x(k) & \delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} x(k) & h(n-k) \\ \sum_{k=-\infty}^{\infty} x(k)\delta(n-k) & \stackrel{\mathcal{T}}{\longrightarrow} & \sum_{k=-\infty}^{\infty} x(k)h(n-k) \\ x(n) & \stackrel{\mathcal{T}}{\longrightarrow} y(n) \end{split}$$
Professor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review 13 / 97

Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$
 a nonrecursive systems

Infinite impulse response (IIR):

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$
 } recursive systems

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

The Convolution Sum

Therefore,

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = x(n) * h(n)$$

for any LTI system.

Professor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review

System Realization

General expression for Nth-order LCCDE:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \qquad a_0 \triangleq 1$$

Initial conditions: $y(-1), y(-2), y(-3), \ldots, y(-N)$.

Need: (1) constant scale, (2) addition, (3) delay elements.

Professor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review

Direct Form I vs. Direct Form II Realizations

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

is equivalent to the cascade of the following systems:

Direct Form II IIR Filter Implementation

Direct z-Transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

Notation:

$$\begin{array}{rcl} X(z) & \equiv & \mathcal{Z}\{x(n)\} \\ \\ x(n) & \stackrel{\mathcal{Z}}{\longleftrightarrow} & X(z) \end{array}$$

z-Transform Properties

Property	Time Domain	z-Domain	ROC	
Notation:	x(n)	X(z)	ROC: $r_2 < z < r_1$	
	$x_1(n)$ $x_2(n)$	$X_1(z)$ $X_2(z)$	ROC_1	
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least $ROC_1 \cap ROC_2$	
Time shifting:	x(n-k)	$z^{-k}X(z)$	At least ROC, except	
			z = 0 (if $k > 0$) and $z = \infty$ (if $k < 0$)	
z-Scaling:	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$	
Time reversal	x(-n)	$X(z^{-1})'$	$\frac{1}{r_1} < z < \frac{1}{r_2}$	
Conjugation:	x*(n)	$X^{*}(z^{*})$	ROC	
z-Differentiation:	n x(n)	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$	
Convolution:	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least $ROC_1 \cap ROC_2$	
			among others	
fessor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review				

Convolution using the *z*-Transform

Basic Steps:

1. Compute *z*-Transform of each of the signals to convolve (time domain $\rightarrow z$ -domain):

$$X_1(z) = \mathcal{Z}\{x_1(n)\}$$

$$X_2(z) = \mathcal{Z}\{x_2(n)\}$$

2. Multiply the two *z*-Transforms (in *z*-domain):

$$X(z) = X_1(z)X_2(z)$$

3. Find the inverse z-Transform of the product (z-domain \rightarrow time domain):

$$x(n) = \mathcal{Z}^{-1}\{X(z)\}$$

	Signal, x(n)	z-Transform, $X(z)$	ROC	
1	$\delta(n)$	1	All z	
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1	
3	a ⁿ u(n)	$\frac{1}{1-az^{-1}}$	z > a	
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
5	$-a^nu(-n-1)$	$\frac{1}{1-2z^{-1}}$	z < a	
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
7	$\cos(\omega_0 n)u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1	
8	$\sin(\omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1	
9	$a^n \cos(\omega_0 n) u(n)$	$\frac{1-az^{-1}\cos\omega_0}{1-2az^{-1}\cos\omega_0+a^2z^{-2}}$	z > a	
10	$a^n \sin(\omega_0 n) u(n)$	$\frac{1 - az^{-1} \sin \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$	z > a	

Common Transform Pairs

	Signal, x(n)	z-Transform, $X(z)$	ROC	
1	$\delta(n)$	1	All z	
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1	
3	a ⁿ u(n)	$\frac{1}{1-az^{-1}}$	z > a	
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a	
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
7	$\cos(\omega_0 n)u(n)$	$\frac{1 - z^{-1} \cos \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1	
8	$\sin(\omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1	
9	$a^n \cos(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a	
10	$a^n \sin(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a	
Deepa Kundur (University of TorontoDigital Signal Processing: Course Review				

The System Function $h(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} H(z)$ time-domain $\stackrel{\mathcal{Z}}{\longleftrightarrow} z$ -domain impulse response $\stackrel{\mathcal{Z}}{\longleftrightarrow}$ system function $y(n) = x(n) * h(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z) = X(z) \cdot H(z)$

Therefore,

Professor

$$H(z) = \frac{Y(z)}{X(z)}$$

The System Function of LCCDEs

$$y(n) = -\sum_{k=1}^{N} a_{k}y(n-k) + \sum_{k=0}^{M} b_{k}x(n-k)$$

$$\mathcal{Z}\{y(n)\} = \mathcal{Z}\{-\sum_{k=1}^{N} a_{k}y(n-k) + \sum_{k=0}^{M} b_{k}x(n-k)\}$$

$$\mathcal{Z}\{y(n)\} = -\sum_{k=1}^{N} a_{k}\mathcal{Z}\{y(n-k)\} + \sum_{k=0}^{M} b_{k}\mathcal{Z}\{x(n-k)\}$$

$$Y(z) = -\sum_{k=1}^{N} a_{k}z^{-k}Y(z) + \sum_{k=0}^{M} b_{k}z^{-k}X(z)$$

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

33 / 97

The System Function of LCCDEs

$$Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

$$Y(z) \left[1 + \sum_{k=1}^{N} a_k z^{-k} \right] = X(z) \sum_{k=0}^{M} b_k z^{-k}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\left[1 + \sum_{k=1}^{N} a_k z^{-k} \right]}$$

$$LCCDE \iff \text{Rational System Function}$$
Many signals of practical interest have a rational z-Transform.

Inversion of the *z*-Transform

Three popular methods:

1. Contour integration:

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

2. Expansion into a power series in z or z^{-1} :

$$X(z) = \sum_{k=-\infty}^{\infty} x(k) z^{-k}$$

and obtaining x(k) for all k by inspection.

3. Partial-fraction expansion and table look-up.

Professor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review 35 / 97 Profess

Chapter 4: Frequency Analysis of Signals

97

$$\mathbf{x}(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\Omega) e^{j\Omega t} d\Omega$$

- We may consider x(t) as a linear combination of $e^{j\Omega t}$ for $\Omega \in \mathbb{R}$.
- The larger $|X(\Omega)|$, the more x(t) will look like a sinusoid with Ω .

CTFT: Magnitude and Phase

$$\begin{aligned} \mathsf{x}(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathsf{X}(\Omega) e^{j\Omega t} d\Omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathsf{X}(\Omega)| e^{j \angle \mathsf{X}(\Omega)} e^{j\Omega t} d\Omega \\ &= \int_{\infty}^{\infty} |\mathsf{X}(\Omega)| e^{j(\Omega t + \angle \mathsf{X}(\Omega))} df \end{aligned}$$

- $|X(\Omega)|$ dictates the relative presence of the sinusoid of frequency Ω in x(t).
- $\angle X(\Omega)$ dictates the relative alignment of the sinusoid of frequency Ω in x(t).

CTFT: Duality

$$\begin{aligned} \mathbf{x}(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\Omega) e^{j\Omega t} d\Omega \\ \mathbf{X}(\Omega) &= \int_{-\infty}^{\infty} \mathbf{x}(t) e^{-j\Omega t} dt \end{aligned}$$

Shape A
$$\stackrel{\mathcal{F}}{\longleftrightarrow}$$
Shape BShape B $\stackrel{\mathcal{F}}{\longleftrightarrow}$ Shape AOperation A $\stackrel{\mathcal{F}}{\longleftrightarrow}$ Operation BOperation B $\stackrel{\mathcal{F}}{\longleftrightarrow}$ Operation A

38 / 97

rofessor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

	CTS-TIME	DST-TIME
	Continuous-Time	Discrete-Time
PERIODIC	Fourier Series	Fourier Series
	(CTFS)	(DTFS)
	Continuous-Time	Discrete-Time
APERIODIC	Fourier Transform	Fourier Transform
	(CTFT)	(DTFT)

Discrete-Time Fourier Series (DTFS)

For discrete-time periodic signals with period N:

Synthesis equation:

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

Analysis equation:

$$c_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$$

Convergence conditions: None due to finite sums.

Duality

Discrete-Time Fourier Transform (DTFT)

For discrete-time aperiodic signals:

► Synthesis equation:

$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$

► Analysis equation:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

45 / 97

Convergence conditions:

$$\sum_{n=-\infty}^{\infty} |x(n)| < \infty$$

Professor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review

DTFT Theorems and Properties

Property	Time Domain	Frequency Domain
Notation:	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_1(\omega)$
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(\omega) + a_2 X_2(\omega)$
Time shifting:	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution:	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlation:	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
		$=X_1(\omega)X_2^*(\omega)$ [if $x_2(n)$ real]
Wiener-Khintchine:	$r_{xx}(l) = x(l) * x(-l)$	$S_{xx}(\omega) = X(\omega) ^2$

among others . . .

DTFT	Symmetry Proper	ties	
	Time Sequence	DTFT	
	x(n)	$X(\omega)$	
	$x^*(n)$	$X^*(-\omega)$	
	$x^*(-n)$	$X^*(\omega)$	
	$\times (-n)$	$X(-\omega)$	
	$x_R(n)$	$X_e(\omega) = \frac{1}{2} [X(\omega) + X^*(-\omega)]$	
	<i>Jx</i> _l (n)	$X_{o}(\omega) = \frac{1}{2} [X(\omega) - X^{*}(-\omega)]$	
		$\lambda(\omega) = \lambda(-\omega)$ $\lambda_{\rm P}(\omega) = \lambda_{\rm P}(-\omega)$	
	x(n) real	$X_R(\omega) = X_R(-\omega)$ $X_I(\omega) = -X_I(-\omega)$	
		$ X(\omega) = X(-\omega) $	
		$\angle X(\omega) = -\angle X(-\omega)$	
	$x'_{e}(n) = \frac{1}{2}[x(n) + x^{*}(-n)]$	$X_R(\omega)$	
	$x'_{o}(n) = \frac{1}{2}[x(n) - x^{*}(-n)]$	$jX_{I}(\omega)$	
	-		
fessor Deepa Kur	ndur (University of Toronto)Digital Signal Proc	essing: Course Review	49 /

Frequency Response of LTI Systems

LTI Systems as Frequency-Selective Filters

- Filter: device that discriminates, according to some attribute of the input, what passes through it
- For LTI systems, given $Y(\omega) = X(\omega)H(\omega)$
 - *H*(ω) acts as a kind of weighting function or spectral shaping function of the different frequency components of the signal

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

Invertibility of Systems

- Invertible system: there is a one-to-one correspondence between its input and output signals
- the one-to-one nature allows the process of reversing the transformation between input and output; suppose

$$y(n) = \mathcal{T}[x(n)]$$
 where \mathcal{T} is one-to-one
 $w(n) = \mathcal{T}^{-1}[y(n)] = \mathcal{T}^{-1}[\mathcal{T}[x(n)]] = x(n)$

Invertibility of LTI Systems

► Therefore,

 $h(n) * h_l(n) = \delta(n)$

- For a given h(n), how do we find $h_1(n)$?
- ► Consider the *z*-domain

$$H(z)H_{l}(z) = 1$$

$$H_{l}(z) = \frac{1}{H(z)}$$

The Discrete Fourier Transform Pair

► DFT and inverse-DFT (IDFT):

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi k \frac{n}{N}}, \quad k = 0, 1, \dots, N-1$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi k \frac{n}{N}}, \quad n = 0, 1, \dots, N-1$$

69 / 97

Note: we drop the $\hat{\cdot}$ notation from now on.

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

Frequency Domain Sampling

 Recall, sampling in time results in a periodic repetition in frequency.

$$x(n) = x_a(t)|_{t=nT} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a(\omega + \frac{2\pi}{T}k)$$

 Similarly, sampling in frequency results in periodic repetition in time.

$$x_p(n) = \sum_{l=-\infty}^{\infty} x(n+lN) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(k) = X(\omega)|_{\omega = \frac{2\pi}{N}k}$$

70 / 97

rofessor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

Chapter 8: The Fast Fourier Transform

Important DFT Properties

Property	Time Domain	Frequency Domain	
Notation:	x(n)	X(k)	
Periodicity:	x(n) = x(n+N)	X(k) = X(k+N)	
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(k) + a_2 X_2(k)$	
Time reversal	x(N-n)	X(N-k)	
Circular time shift:	$x((n-l))_N$	$X(k)e^{-j2\pi kl/N}$	
Circular frequency shift:	$x(n)e^{j2\pi ln/N}$	$X((k-l))_N$	
Complex conjugate:	$x^{*}(n)$	$X^{*}(N-k)$	
Circular convolution:	$x_1(n) \otimes x_2(n)$	$X_1(k)X_2(k)$	
Multiplication:	$x_1(n)x_2(n)$	$\frac{1}{N}X_1(k) \otimes X_2(k)$	
Parseval's theorem:	$\sum_{n=0}^{N-1} x(n) y^*(n)$	$\frac{1}{N}\sum_{k=0}^{N-1}X(k)Y^{*}(k)$	
fessor Deepa Kundur (University of TorontoDigital Signal Processing: Course Review			

Radix-2 FFT

Two strategies:

- Decimation in time (our focus in the lecture)
- Decimation in frequency
- <u>Note</u>: We assume that *N* is a power of two; i.e., $N = 2^r$.

Radix-2 FFT: Decimation-in-time

For N = 8.

- ► log N stages
- Order of the overall DFT computation is: $O(N \log N)$.

Sampling Rate Conversion

► Goal: Given a discrete-time signal x(n) sampled at period T from an underlying continuous-time signal x_a(t), determine a new sequence x̂(n) that is a sampled version of x_a(t) at a different sampling rate T_d.

Sampling of Discrete-Time Signals

Suppose a discrete-time signal x(n) is sampled by taking every Dth sample as follows:

$$x_d(n) = x(nD),$$
 for all n

Interpolation of Discrete-time Signals

To achieve this, consider a two-stage process:

- Stage 1: Upsample to appropriately compress the spectrum.
- Stage 2: Then filter with an appropriate lowpass filter.
- We will consider upsampling by a factor of *I*.
 - Note: we change here the interpolation factor from D to I to distinguish our results from decimation.

Interpolation of Discrete-time Signals

• Upsampling (without filtering) can be represented as:

 $v(m) = \begin{cases} x(m/I) & m = 0, \pm I, \pm 2I, \dots \\ 0 & \text{otherwise} \end{cases}$ $V(\omega) = X(\omega I)$

90 / 97

rofessor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

Professor Deepa Kundur (University of Toronto)Digital Signal Processing: Course Review

