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Discrete-Time Signals and Systems
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Chapter 1: Introduction 1.1 Signals, Systems and Signal Processing

What is a Signal? What is a System?

I Signal:
I any physical quantity that varies with time, space, or any other

independent variable or variables
I Examples: pressure as a function of altitude, sound as a

function of time, color as a function of space, . . .
I x(t) = cos(2πt), x(t) = 4

√
t + t3, x(m, n) = (m + n)2

I System:
I a physical device that performs an operation on a signal
I Examples: analog amplifier, noise canceler, communication

channel, transistor, . . .
I y(t) = −4x(t), dy(t)

dt + 3y(t) = −dx(t)
dt + 6x(t),

y(n)− 1
2y(n − 2) = 3x(n) + x(n − 2)
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Chapter 1: Introduction 1.1 Signals, Systems and Signal Processing

Independent Variable

I A signal can be represented as a function x(t) and consists of:

1. one or more dependent variable components (e.g., air pressure
x , R-G-B color [x1 x2 x3]T );

2. one or more independent variables (e.g., time t, 3-D spacial
location (s1, s2, s3)).

Please note: in this course we will typically use time t to
represent the independent variable although in general it can
correspond to any other type of independent variable.
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Chapter 1: Introduction 1.2 Classification of Signals

Continuous-Time versus Discrete-Time Signals

I Continuous-Time Signals: signal is defined for every value of
time in a given interval (a, b) where a ≥ −∞ and b ≤ ∞.

I Examples: voltage as a function of time, height as a function of
pressure, number of positron emissions as a function of time.
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Chapter 1: Introduction 1.2 Classification of Signals

Continuous-Time versus Discrete-Time Signals

I Discrete-Time Signals: signal is defined only for certain specific
values of time; typically taken to be equally spaced points in an
interval.

I Examples: number of stocks traded per day, average income per
province. t
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Chapter 1: Introduction 1.2 Classification of Signals

Continuous-Amplitude versus Discrete-Amplitude

I Continuous-Amplitude Signals: signal amplitude takes on a
spectrum of values within one or more intervals

I Examples: color, temperature, pain-level

t

2

1 2 3-1-2-3 4

-2

-4

x(t)

t
1

2

1 2 3-1-2-3 0.5 1.5 2.5 4

0.5

-2

-4

x(t)

-1 10
n

x[n]

-2-3 2 3

1

-1 10
n

x[n]

-2-3 2 3

2

1 1

Professor Deepa Kundur (University of Toronto)Introduction to Digital Signal Processing 7 / 51

Chapter 1: Introduction 1.2 Classification of Signals

Continuous-Amplitude versus Discrete-Amplitude

I Discrete-Amplitude Signals: signal amplitude takes on values
from a finite set

I Examples: digital image, population of a country
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Chapter 1: Introduction 1.2 Classification of Signals

Analog and Digital Signals

I analog signal = continuous-time + continuous amplitude

I digital signal = discrete-time + discrete amplitude
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Chapter 1: Introduction 1.2 Classification of Signals

Analog and Digital Signals

I Analog signals are fundamentally significant because we must
interface with the real world which is analog by nature.

I Digital signals are important because they facilitate the use of
digital signal processing (DSP) systems, which have practical
and performance advantages for several applications.
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Chapter 1: Introduction 1.2 Classification of Signals

Analog and Digital Systems

I analog system =
analog signal input + analog signal output

I advantages: easy to interface to real world, do not need A/D or
D/A converters, speed not dependent on clock rate

I digital system =
digital signal input + digital signal output

I advantages: re-configurability using software, greater control
over accuracy/resolution, predictable and reproducible behavior
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Chapter 1: Introduction 1.2 Classification of Signals

Deterministic vs. Random Signals

I Deterministic signal:
I any signal that can be uniquely described by an explicit

mathematical expression, a table of data, or a well-defined rule
I past, present and future values of the signal are known precisely

without any uncertainty

I Random signal:
I any signal that lacks a unique and explicit mathematical

expression and thus evolves in time in an unpredictable manner
I it may not be possible to accurately describe the signal
I the deterministic model of the signal may be too complicated to

be of use.
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Chapter 1: Introduction 1.3 The Concept of Frequency

What is a “pure frequency” signal?

0 t
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Chapter 1: Introduction 1.3 The Concept of Frequency

What is a “pure frequency” signal?

xa(t) = A cos(Ωt + θ) = A cos(2πFt + θ), t ∈ R

I analog signal, ∵ −A ≤ xa(t) ≤ A and −∞ < t <∞
I A = amplitude

I Ω = frequency in rad/s

I F = frequency in Hz (or cycles/s); note: Ω = 2πF

I θ = phase in rad
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Chapter 1: Introduction 1.3 The Concept of Frequency

Continuous-time Sinusoids

xa(t) = A cos(Ωt + θ) = A cos(2πFt + θ), t ∈ R

1. for F ∈ R, xa(t) is periodic
I i.e., there exists Tp ∈ R+ such that xa(t) = xa(t + Tp)

2. distinct frequencies result in distinct sinusoids
I i.e., for F1 6= F2, A cos(2πF1t + θ) 6= A cos(2πF2t + θ)

3. increasing frequency results in an increase in the rate of
oscillation of the sinusoid

I i.e., for |F1| < |F2|, A cos(2πF1t + θ) has a lower rate of
oscillation than A cos(2πF2t + θ)
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Chapter 1: Introduction 1.3 The Concept of Frequency

Continuous-time Sinusoids: Frequency

smaller F , larger T

t

larger F , smaller T

t
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Chapter 1: Introduction 1.3 The Concept of Frequency

Discrete-time Sinusoids

x(n) = A cos(ωn + θ) = A cos(2πfn + θ), n ∈ Z

I discrete-time signal (not digital), ∵ −A ≤ xa(t) ≤ A and n ∈ Z
I A = amplitude

I ω = frequency in rad/sample

I f = frequency in cycles/sample; note: ω = 2πf

I θ = phase in rad
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Chapter 1: Introduction 1.3 The Concept of Frequency

Discrete-time Sinusoids

x(n) = A cos(ωn + θ) = A cos(2πfn + θ), n ∈ Z

1. x(n) is periodic only if its frequency f is a rational number
I Note: rational number is of the form k1

k2
for k1, k2 ∈ Z

I periodic discrete-time sinusoids:
x(n) = 2 cos( 4

7πn), x(n) = sin(−π
5n +

√
3)

I aperiodic discrete-time sinusoids:
x(n) = 2 cos( 4

7n), x(n) = sin(
√

2πn +
√

3)
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Chapter 1: Introduction 1.3 The Concept of Frequency

Discrete-time Sinusoids

x(n) = A cos(ωn + θ) = A cos(2πfn + θ), n ∈ Z

2. radian frequencies separated by an integer multiple of 2π are
identical

I or cyclic frequencies separated by an integer multiple are
identical

3. lowest rate of oscillation is achieved for ω = 2kπ and highest
rate of oscillation is achieved for ω = (2k + 1)π, for k ∈ Z

I subsequently, this corresponds to lowest rate for f = k (integer)
and highest rate for f = 2k+1

2 (half integer), for k ∈ Z.
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Chapter 1: Introduction 1.3 The Concept of Frequency

MINIMUM OSCILLATION

MINIMUM OSCILLATION

MAXIMUM OSCILLATION
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Chapter 1: Introduction 1.3 The Concept of Frequency

Complex Exponentials

e jφ = cos(φ) + j sin(φ) Euler’s relation

cos(φ) = e jφ+e−jφ

2

sin(φ) = e jφ−e−jφ

2j

where j ,
√
−1
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Chapter 1: Introduction 1.3 The Concept of Frequency

Complex Exponentials

Continuous-time: A e j(Ωt+θ) = A e j(2πFt+θ)

Discrete-time: A e j(ωn+θ) = A e j(2πfn+θ)
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Chapter 1: Introduction 1.3 The Concept of Frequency

Periodicity: Continuous-time

x(t) = x(t + T ),T ∈ R+

A e j(2πFt+θ) = A e j(2πF (t+T )+θ)

e j2πFt · e jθ = e j2πFt · e j2πFT · e jθ

1 = e j2πFT

e j2πk = 1 = e j2πFT , k ∈ Z

T =
k

F
k ∈ Z

T0 =
1

|F |
, k = sgn(F )
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Chapter 1: Introduction 1.3 The Concept of Frequency

Periodicity: Discrete-time

x(n) = x(n + N),N ∈ Z+

A e j(2πfn+θ) = A e j(2πf (n+N)+θ)

e j2πfn · e jθ = e j2πfn · e j2πfN · e jθ

1 = e j2πfN

e j2πk = 1 = e j2πfN , k ∈ Z

f =
k

N
k ∈ Z

N0 =
k ′

f
,min |k ′| ∈ Z such that

k ′

f
∈ Z+
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Chapter 1: Introduction 1.3 The Concept of Frequency

Example 1: ω = π/6 = π · 1
6

x [n] = cos
(πn

6

)

N =
2πk

Ω
=

2πk

π 1
6

= 12k

N0 = 12 for k = 1

The fundamental period is 12 which corresponds to k = 1 envelope
cycles.
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Chapter 1: Introduction 1.3 The Concept of Frequency

ENVELOPE CYCLES
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Chapter 1: Introduction 1.3 The Concept of Frequency

Example 2: ω = 8π/31 = π · 8
31

x [n] = cos

(
8πn

31

)

N =
2πk

Ω
=

2πk

π 8
31

=
31

4
k

N0 = 31 for k = 4

The fundamental period is 31 which corresponds to k = 4 envelope
cycles.
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Chapter 1: Introduction 1.3 The Concept of Frequency

ENVELOPE CYCLES
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Chapter 1: Introduction 1.3 The Concept of Frequency

Example 3: ω = 1/6 = π · 1
6π

x [n] = cos
(n

6

)

N =
2πk

Ω
=

2πk
1
6

= 12πk

N ∈ Z+ does not exist for any k ∈ Z; x [n] is non-periodic.
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Chapter 1: Introduction 1.3 The Concept of Frequency

NOT PERIODIC
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Chapter 1: Introduction 1.3 The Concept of Frequency

Uniqueness: Continuous-time

For F1 6= F2,
A cos(2πF1t + θ) 6= A cos(2πF2t + θ)

except at discrete points in time.
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Chapter 1: Introduction 1.3 The Concept of Frequency

Uniqueness: Discrete-time

Let f1 = f0 + k where k ∈ Z,

x1(n) = A e j(2πf1n+θ)

= A e j(2π(f0+k)n+θ)

= A e j(2πf0n+θ) · e j(2πkn)

= x0(n) · 1 = x0(n)
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Chapter 1: Introduction 1.3 The Concept of Frequency

0 1 3 4-1-3 5
2-2 6

0 1 3 4-1-3 5
2-2 6
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Chapter 1: Introduction 1.3 The Concept of Frequency

0 1 3 4-1-3 5
2-2 6

0 1 3 4-1-3 5
2-2 6
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Chapter 1: Introduction 1.3 The Concept of Frequency

Uniqueness: Discrete-time

I Therefore, dst-time sinusoids are unique for f ∈ [0, 1).

I For any sinusoid with f1 6∈ [0, 1), ∃ f0 ∈ [0, 1) such that

x1(n) = A e j(2πf1n+θ) = A e j(2πf0n+θ) = x0(n).

I Example: A dst-time sinusoid with frequency f1 = 4.56 is the
same as a dst-time sinusoid with frequency f0 = 4.56− 4 = 0.56.

I Example: A dst-time sinusoid with frequency f1 = −7
8

is the
same as a dst-time sinusoid with frequency f0 = −7

8
+ 1 = 1

8
.
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Chapter 1: Introduction 1.3 The Concept of Frequency

Harmonically Related Complex Exponentials

Harmonically related sk(t) = e jkΩ0t = e j2πkF0t ,
(cts-time) k = 0,±1,±2, . . .

Scientific Designation Frequency (Hz) k for F0 = 8.176

C-1 8.176 1
C0 16.352 2
C1 32.703 4
C2 65.406 8
C3 130.813 16
C4 261.626 32
...

...
C9 8372.018 1024
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Chapter 1: Introduction 1.3 The Concept of Frequency

Harmonically Related Complex Exponentials

Scientific Designation Frequency (Hz) k for F0 = 8.176

C1 32.703 4
C2 65.406 8
C3 130.813 16

C4 (middle C) 261.626 32
C5 523.251 64
C6 1046.502 128
C7 2093.005 256
C8 4186.009 512

C1 C2 C3 C4 C5 C6 C7 C8
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Chapter 1: Introduction 1.3 The Concept of Frequency

Harmonically Related Complex Exponentials

What does the family of harmonically related sinusoids sk(t) have in
common?

Harmonically related sk(t) = e jkΩ0t = e j2π(kF0)t ,
(cts-time) k = 0,±1,±2, . . .

fund. period: T0,k =
1

cyclic frequency
=

1

kF0

period: Tk = any integer multiple of T0

common period: T = k · T0,k =
1

F0
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Chapter 1: Introduction 1.3 The Concept of Frequency

Harmonically Related Complex Exponentials

Discrete-time Case:

For periodicity, select f0 = 1
N

where N ∈ Z:

Harmonically related sk(n) = e j2πkf0n = e j2πkn/N ,
(dts-time) k = 0,±1,±2, . . .

I There are only N distinct dst-time harmonics:
sk(n), k = 0, 1, 2, . . . ,N − 1.
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Chapter 1: Introduction 1.3 The Concept of Frequency

Harmonically Related Complex Exponentials

sk+N(n) = e j2π(k+N)n/N

= e j2πkn/N · e j2πNn/N

= e j2πkn/N · 1
= e j2πkn/N = sk(n)

Therefore, there are only N distinct dst-time harmonics:
sk(n), k = 0, 1, 2, . . . ,N − 1.
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Sampling:
I conversion from cts-time to dst-time by taking “samples” at

discrete time instants

I E.g., uniform sampling: x(n) = xa(nT ) where T is the sampling
period and n ∈ Z
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Quantization:
I conversion from dst-time cts-valued signal to a dst-time

dst-valued signal

I quantization error: eq(n) = xq(n)− x(n) for all n ∈ Z
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Coding:
I representation of each dst-value xq(n) by a

b-bit binary sequence

I e.g., if for any n, xq(n) ∈ {0, 1, . . . , 6, 7}, then the coder may
use the following mapping to code the quantized amplitude:
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Analog-to-Digital Conversion

CoderQuantizer
x(n)x (t)a x (n)q

Analog
signal

Discrete-time
signal

Quantized
signal

Digital
signal

A/D converter

0 1 0 1 1 . . .
Sampler

Example coder:

0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Sampling Theorem

If the highest frequency contained in an analog signal xa(t) is
Fmax = B and the signal is sampled at a rate

Fs > 2Fmax = 2B

then xa(t) can be exactly recovered from its sample values using the
interpolation function

g(t) =
sin(2πBt)

2πBt

Note: FN = 2B = 2Fmax is called the Nyquist rate.
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Sampling Theorem

Sampling Period = T =
1

Fs
=

1

Sampling Frequency

Therefore, given the interpolation relation, xa(t) can be written as

xa(t) =
∞∑

n=−∞

xa(nT )g(t − nT )

xa(t) =
∞∑

n=−∞

x(n) g(t − nT )

where xa(nT ) = x(n); called bandlimited interpolation.
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Bandlimited Interpolation

0 
n

bandlimited interpolation
function -- sinc

x(n) samples
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Chapter 1: Introduction 1.4 Analog-to-Digital and Digital-to-Analog Conversion

Digital-to-Analog Conversion

0 
n

original/bandlimited
interpolated signal

x(n)
1

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.

�
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Digital-to-Analog Conversion
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I Common interpolation approaches: bandlimited interpolation,
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Digital-to-Analog Conversion
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-3T
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original/bandlimited
interpolated signal

I Common interpolation approaches: bandlimited interpolation,
zero-order hold, linear interpolation, higher-order interpolation
techniques, e.g., using splines

I In practice, “cheap” interpolation along with a smoothing filter
is employed.
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