

Chapter 1: Introduction 1.1 Signals, Systems and Signal Processing

What is a Signal? What is a System?

► Signal:

- any physical quantity that varies with time, space, or any other independent variable or variables
- Examples: pressure as a function of altitude, sound as a function of time, color as a function of space, ...
- $x(t) = \cos(2\pi t), x(t) = 4\sqrt{t} + t^3, x(m, n) = (m + n)^2$

System:

- ▶ a physical device that performs an operation on a signal
- Examples: analog amplifier, noise canceler, communication channel, transistor, ...
- ► $y(t) = -4x(t), \frac{dy(t)}{dt} + 3y(t) = -\frac{dx(t)}{dt} + 6x(t),$ $y(n) - \frac{1}{2}y(n-2) = 3x(n) + x(n-2)$

Discrete-Time Signals and Systems

Reference:

Sections 1.1 - 1.4 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

rofessor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

Chapter 1: Introduction 1.1 Signals, Systems and Signal Processing

Independent Variable

- A signal can be represented as a function x(t) and consists of:
 - one or more dependent variable components (e.g., air pressure x, R-G-B color [x₁ x₂ x₃]^T);
 - one or more independent variables (e.g., time t, 3-D spacial location (s₁, s₂, s₃)).

<u>Please note</u>: in this course we will typically use time t to represent the independent variable although in general it can correspond to any other type of independent variable.

2 / 51

Continuous-Time versus Discrete-Time Signals

- Discrete-Time Signals: signal is defined only for certain specific values of time; typically taken to be equally spaced points in an interval.
 - Examples: number of stocks traded per day, average income per province.

Chapter 1: Introduction 1.2 Classification of Signals

Analog and Digital Signals

- ▶ analog signal = continuous-time + continuous amplitude
- ► digital signal = discrete-time + discrete amplitude

Chapter 1: Introduction 1.2 Classification of Signals

Analog and Digital Systems

- analog system =
- analog signal input + analog signal output
- \blacktriangleright advantages: easy to interface to real world, do not need A/D or $\overline{D/A}$ converters, speed not dependent on clock rate
- digital system =
- digital signal input + digital signal output
- advantages: re-configurability using software, greater control over accuracy/resolution, predictable and reproducible behavior

Analog and Digital Signals

- Analog signals are fundamentally significant because we must interface with the real world which is analog by nature.
- Digital signals are important because they facilitate the use of digital signal processing (DSP) systems, which have practical and performance advantages for several applications.

rofessor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

Chapter 1: Introduction 1.2 Classification of Signals

Deterministic vs. Random Signals

► Deterministic signal:

- any signal that can be uniquely described by an explicit mathematical expression, a table of data, or a well-defined rule
- past, present and future values of the signal are known precisely without any uncertainty

► Random signal:

- any signal that lacks a unique and explicit mathematical expression and thus evolves in time in an unpredictable manner
- it may not be possible to accurately describe the signal
- the deterministic model of the signal may be too complicated to be of use.

10 / 51

Chapter 1: Introduction 1.2 Classification of Signals

The fundamental period is 31 which corresponds to k = 4 envelope cycles.

Chapter 1: Introduction 1.3 The Concept of Frequency

Uniqueness: Discrete-time

- Therefore, dst-time sinusoids are unique for $f \in [0, 1)$.
- ▶ For any sinusoid with $f_1 \notin [0,1)$, $\exists f_0 \in [0,1)$ such that

$$x_1(n) = A \ e^{j(2\pi f_1 n + \theta)} = A \ e^{j(2\pi f_0 n + \theta)} = x_0(n).$$

- Example: A dst-time sinusoid with frequency $f_1 = 4.56$ is the same as a dst-time sinusoid with frequency $f_0 = 4.56 4 = 0.56$.
- ► Example: A dst-time sinusoid with frequency $f_1 = -\frac{7}{8}$ is the same as a dst-time sinusoid with frequency $f_0 = -\frac{7}{8} + 1 = \frac{1}{8}$.

Chapter 1: Introduction 1.3 The Concept of Frequency

Harmonically Related Complex Exponentials

Harmonically related $s_k(t) = e^{jk\Omega_0 t} = e^{j2\pi kF_0 t}$, (cts-time) $k = 0, \pm 1, \pm 2, \dots$

Scientific Designation	Frequency (Hz)	k for $F_0 = 8.176$
C-1	8.176	1
C0	16.352	2
C1	32.703	4
C2	65.406	8
C3	130.813	16
C4	261.626	32
:	:	
C9	8372.018	1024

Harmonically Related Complex Exponentials

What does the family of harmonically related sinusoids $s_k(t)$ have in common?

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

Sampling Theorem

Sampling Period =
$$T = \frac{1}{F_s} = \frac{1}{\text{Sampling Frequency}}$$

Therefore, given the interpolation relation, $x_a(t)$ can be written as

$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a(nT)g(t - nT)$$
$$x_a(t) = \sum_{n=-\infty}^{\infty} x(n) g(t - nT)$$

where $x_a(nT) = x(n)$; called bandlimited interpolation.

46 / 51

Sampling Theorem

If the highest frequency contained in an analog signal $x_a(t)$ is $F_{max} = B$ and the signal is sampled at a rate

 $F_s > 2F_{max} = 2B$

then $x_a(t)$ can be exactly recovered from its sample values using the interpolation function

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt}$$

Note: $F_N = 2B = 2F_{max}$ is called the Nyquist rate.

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

