
Name: Student No.:

University of Toronto
Electrical & Computer Engineering

ECE 362, Winter 2013
Thursday, April 4, 2013

Test #2
Professor Deepa Kundur
Duration: 110 minutes

• All work must be performed within the space provided. You may use the back of sheets if
necessary.
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grammable) calculator.

• Answer all questions.

• If a particular question seems unclear, please explicitly state any reasonable assumptions and
proceed with the problem.

• Please properly label all points of interest on sketches and graphs that you are requested to
draw, so that there is no ambiguity.

• For full marks, show all steps and present results clearly.

• Important tables are given at the end of the test.
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1. (10 marks)

(a) Assume the z-Transform of x(n) is given by X(z) with region of convergence (ROC)
r1 < |z| < r2. Prove the time-reversal property of the z-Transform from first principles:

x(−n)
Z←→ X(z−1),

1

r2
< |z| < 1

r1
.

For full points, please show all steps.

(b) Consider a signal x(n) with z-Transform:

X(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3

a0 + a1z−1 + a2z−2 + a3z−3
.

For what general values of a0, a1, a2, a3, b1 and b2 is x(n) even?

Solution:

(a) We start from the definition of the z-Transform of x(−n). Let y(n) = x(−n) and
m = −n.

Y (z) =

∞∑
n=−∞

y(n)z−n =

∞∑
n=−∞

x(−n)z−n

=
∞∑

m=−∞
x(m)zm =

∞∑
m=−∞

x(m)(z−1)−m = X(z−1)

For the ROC, where X(z) was finite, now X(z−1) is finite, so we have:

r1 < |z| < r2

r1 < |z−1| < r2

r1 <
1
|z| < r2

1

r2
< |z| <

1

r1

(b) If x(n) is even, then x(n) = x(−n). Therefore,

X(z) = X(z−1)

b0 + b1z
−1 + b2z

−2 + b3z
−3

a0 + a1z−1 + a2z−2 + a3z−3
=

b0 + b1z + b2z
2 + b3z

3

a0 + a1z + a2z2 + a3z3
z−3

z−3
=

b3 + b2z
−1 + b1z

−2 + b0z
−3

a3 + a2z−1 + a1z−2 + a0z−3
α

α

b0 + b1z
−1 + b2z

−2 + b3z
−3

a0 + a1z−1 + a2z−2 + a3z−3
=

αb3 + αb2z
−1 + αb1z

−2 + αb0z
−3

αa3 + αa2z−1 + αa1z−2 + αa0z−3
for α 6= 0

Therefore, we may have the following general relationships amongst the parameters:

b0 = αb3 and b3 = αb0

b1 = αb2 and b2 = αb1

a0 = αa3 and a3 = αa0

a1 = αa2 and a2 = αa1
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We can see from above that a solution only exists for α2 = 1 or α = ±1, since for for example
the first set of equalities: b0 = αb3 = α · αb0 = α2b0 . Therefore, the signal is even for:

b0 = αb3 and b1 = αb2

a0 = αa3 and a1 = αa2

where α = ±1.
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2. (10 marks)

Consider the signal:
x(n) = { 1, 0, −1, 2, 3 }

↑
with discrete-time Fourier transform (DTFT) X(ω) = XR(ω) + jXI(ω) where XR(ω) and
XI(ω) are the real and imaginary parts of X(ω) in rectangular coordinates.

(a) Determine and sketch the signal y1(n) with DTFT:

Y1(ω) = XR(ω) +XI(ω).

(b) Determine and sketch the signal y2(n) with DTFT:

Y2(ω) = XR(ω)− jXI(ω).

(c) Determine and sketch the signal y3(n) with DTFT:

Y3(ω) = j

∫
2π
XR(φ)XI(φ− ω)dφ.

Solution:

From the tables at the end of this test and given x(n) is real, we can see that

x(n) + x∗(−n)

2
=
x(n) + x(−n)

2
= xe(n)

F←→ XR(ω)

x(n)− x∗(−n)

2
=
x(n)− x(−n)

2
= xo(n)

F←→ jXI(ω)

−jxo(n)
F←→ XI(ω)

We compute the even and odd components of x(n) to give,

xe(n) =
1

2
[{1, 0,−1, 2, 3, 0, 0}+ {0, 0, 3, 2,−1, 0, 1}]

=
{ 1

2 , 0, 1, 2, 1, 0, 1
2 }

↑

xo(n) =
1

2
[{1, 0,−1, 2, 3, 0, 0} − {0, 0, 3, 2,−1, 0, 1}]

=
{ 1

2 , 0, −2, 0, 2, 0, −1
2 }

↑

(a) Therefore, we see that

y1(n) = xe(n)− jxo(n)
F←→ Y1(ω) = XR(ω) +XI(ω)

to give
y1(n) = { 1

2 − j
1
2 , 0, 1 + j2, 2, 1− j2, 0, 1

2 + j 12 }
↑
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(b) Similarly, we see that

y2(n) = xe(n)− xo(n)
F←→ Y2(ω) = XR(ω)− jXI(ω)

to give
y2(n) = { 0, 0, 3, 2, −1, 0, 1 }

↑

(c) Again, we see that

y3(n) = 2π · xe(n) · xo(n)
F←→ Y3(ω) = j

∫
2π
XR(φ)XI(φ− ω)dφ

to give
y3(n) = { π

2 , 0, −4π, 0, 4π, 0, −π
2 }

↑
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3. (10 marks)

Consider the following system for L ∈ Z+:

y(n) = x(n+ L)− x(n− L) (1)

(a) Using the following standard building block elements: adders, constant multipliers, unit
delay elements, unit advance elements and signal multipliers, determine a realization of
the system that uses minimum unit delay/advance elements.

(b) Determine and sketch the magnitude and phase of the frequency response of the system
Eq. 1.

(c) Determine the locations of all spectral nulls, if any.

(d) This system is not causal. Suppose you connect the following system y(n) = x(n−M)
with input x(n), output y(n) and M ∈ Z in series with the system of Eq. 1. What values
of M would make the new overall series connection system causal? For the minimum
M , determine the input-output equation of this overall series connected causal system.

(e) Determine the frequency response expression of the system in part (d).

Solution:

(a) The realization is given below where there are L unit delay and unit advance elements
in each row.

Constant multiplier:

Signal multiplier: +

Unit delay:

Unit advance:

Adder: +

+

... ...

... ...

+

-

(b) The frequency response is given by:

y(n) = x(n+ L)− x(n− L)

Y (ω) = ejωLX(ω)− e−jωLX(ω) = [ejωL − e−jωL]X(ω)

H(ω) =
Y (ω)

X(ω)
= [ejωL − e−jωL] = 2j sin(ωL)

|H(ω)| = 2| sin(ωL)|

∠H(ω) =

{
π
2

2kπ
L < ω < (2k+1)π

L

−π
2

(2k−1)π
L < ω < 2kπ

L

, k ∈ Z
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0

0

2

(c) The spectral nulls occur when H(ω) = 2j sin(ωL) = 0, which occurs when ωL = πk or
ω = πk

L for k ∈ Z.

(d) The overall series connection would be causal for M ≥ L, the minimum occurring for
M = L. The overall input-output equation is given by:

y1(n) = x1(n+ L)− x1(n− L)

y2(n) = x2(n−M) = y1(n−M) = x1(n−M + L)− x1(n−M − L)

∴ y(n) = x(n)− x(n− 2L) for M = L

(e) We have that

H1(ω) = 2j sin(ωL)

H2(ω) = e−jωL

Hoverall(ω) = H1(ω) ·H2(ω) = 2je−jωL sin(ωL)
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4. (10 marks)

(a) Compute the N -point discrete Fourier transform (DFT) of the signal: x1(n) = δ(n).

(b) Show
∞∑

l=−∞
δ(n+ lN) =

1

N

N−1∑
k=0

ej(2π/N)kn.

Solution:

(a) The N -point discrete Fourier transform (DFT) of x1(n) = δ(n) is:

X(k) =
N−1∑
k=0

x(n)ej(2π/N)kn, k = 0, 1, . . . , N − 1

=

N−1∑
k=0

δ(n)ej(2π/N)kn

= 1, k = 0, 1, . . . , N − 1

(b) We see that
∑∞

l=−∞ δ(n+lN) is a periodic repetition of δ(n) for period N . Therefore, its
discrete-time Fourier series (DTFS) coefficients are ck = 1 for all k ∈ Z (since the DFT
is just a windowed version of the DTFS such that the DTFS is a periodic repetition of
the DFT for k = 0, 1, . . . , N − 1). The DTFS synthesis expression is given by:

x(n) =
1

N

N−1∑
k=0

cke
j(2π/N)kn

We also know that:

∞∑
l=−∞

δ(n+ lN)
DTFS←→ 1

which we can plug back in to the DTFS synthesis equation to give:

∞∑
l=−∞

δ(n+ lN) =
1

N

N−1∑
k=0

ej(2π/N)kn.
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5. (10 marks)

Since the class seemed concerned about drawing butterflies, the butterfly representation for
a radix-2 decimation-in-time 8-point FFT is provided below. Please fill in the blanks (i.e.,
the slightly shaded boxes, specifically representing the input values into the butterfly network
and the four twiddle factors between Stage 2 and Stage 3). Hint: the missing twiddle factors
can be deduced by taking a first-level radix-2 decimation-in-time decomposition that we did in
the lectures and finding the WN factor that comes out of one of the summations. Here is how
you would start:

X(k) =
N−1∑
n=0

x(n)W kn
N =

∑
n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N k = 0, 1, . . . , N − 1

Solution:

X(k) =
N−1∑
n=0

x(n)W kn
N k = 0, 1, . . . , N − 1

=
∑
n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

=

(N/2)−1∑
m=0

x(2m)W
k(2m)
N +

(N/2)−1∑
m=0

x(2m+ 1)W
k(2m+1)
N

=

(N/2)−1∑
m=0

x(2m)︸ ︷︷ ︸
≡f1(m)

W 2km
N +

(N/2)−1∑
m=0

x(2m+ 1)︸ ︷︷ ︸
≡f2(m)

W 2km
N W k

N

=

(N/2)−1∑
m=0

f1(m)W km
N/2︸ ︷︷ ︸

N
2
−DFT of f1(m)

+W k
N

(N/2)−1∑
m=0

f2(m)W km
N/2︸ ︷︷ ︸

N
2
−DFT of f2(m)

= F1(k) +W k
NF2(k), k = 0, 1, . . . , N − 1
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X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

Stage 1 Stage 2 Stage 3

-1

-1

-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

0W 8

0W 8

0W 8

0W 8

0W 8

0W 8

1W 8

2W 8

2W 8

0W 8

2W 8
3W 8

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

0W 8

1W 8

2W 8

3W 8
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Common z-Transform Pairs

Signal, x(n) z-Transform, X(z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z| > 1

3 anu(n) 1
1−az−1 |z| > |a|

4 nanu(n) az−1

(1−az−1)2
|z| > |a|

5 −anu(−n− 1) 1
1−az−1 |z| < |a|

6 −nanu(−n− 1) az−1

(1−az−1)2
|z| < |a|

7 cos(ω0n)u(n) 1−z−1 cosω0
1−2z−1 cosω0+z−2 |z| > 1

8 sin(ω0n)u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z| > 1

9 an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z| > |a|

10 an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z| > |a|

z-Transform Properties

Property Time Domain z-Domain ROC

Notation: x(n) X(z) ROC: r2 < |z| < r1

x1(n) X1(z) ROC1

x2(n) X2(z) ROC2

Linearity: a1x1(n) + a2x2(n) a1X1(z) + a2X2(z) At least ROC1∩ ROC2

Time shifting: x(n− k) z−kX(z) At least ROC, except
z = 0 (if k > 0)
and z =∞ (if k < 0)

z-Scaling: anx(n) X(a−1z) |a|r2 < |z| < |a|r1

Time reversal x(−n) X(z−1) 1
r1
< |z| < 1

r2

Conjugation: x∗(n) X∗(z∗) ROC

z-Differentiation: n x(n) −z dX(z)
dz

r2 < |z| < r1

Convolution: x1(n) ∗ x2(n) X1(z)X2(z) At least ROC1∩ ROC2

DTFT Theorems and Properties

Property Time Domain Frequency Domain

Notation: x(n) X(ω)
x1(n) X1(ω)
x2(n) X1(ω)

Linearity: a1x1(n) + a2x2(n) a1X1(ω) + a2X2(ω)

Time shifting: x(n− k) e−jωkX(ω)
Time reversal x(−n) X(−ω)
Convolution: x1(n) ∗ x2(n) X1(ω)X2(ω)
Multiplication: x1(n)x2(n) 1

2π

∫
2π
X1(λ)X2(ω − λ)dλ

Correlation: rx1x2(l) = x1(l) ∗ x2(−l) Sx1x2(ω) = X1(ω)X2(−ω)
= X1(ω)X∗2 (ω) [if x2(n) real]

Wiener-Khintchine: rxx(l) = x(l) ∗ x(−l) Sxx(ω) = |X(ω)|2
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DTFT Symmetry Properties

Time Sequence DTFT

x(n) X(ω)
x∗(n) X∗(−ω)
x∗(−n) X∗(ω)
x(−n) X(−ω)
xR(n) Xe(ω) = 1

2
[X(ω) +X∗(−ω)]

jxI(n) Xo(ω) = 1
2
[X(ω)−X∗(−ω)]

X(ω) = X∗(−ω)
XR(ω) = XR(−ω)

x(n) real XI(ω) = −XI(−ω)
|X(ω)| = |X(−ω)|

∠X(ω) = −∠X(−ω)

x′e(n) = 1
2
[x(n) + x∗(−n)] XR(ω)

x′o(n) = 1
2
[x(n)− x∗(−n)] jXI(ω)

DFT Properties

Property Time Domain Frequency Domain

Notation: x(n) X(k)
Periodicity: x(n) = x(n+N) X(k) = X(k +N)
Linearity: a1x1(n) + a2x2(n) a1X1(k) + a2X2(k)
Time reversal x(N − n) X(N − k)

Circular time shift: x((n− l))N X(k)e−j2πkl/N

Circular frequency shift: x(n)ej2πln/N X((k − l))N
Complex conjugate: x∗(n) X∗(N − k)
Circular convolution: x1(n)⊗ x2(n) X1(k)X2(k)

Multiplication: x1(n)x2(n) 1
N
X1(k)⊗X2(k)

Parseval’s theorem:
∑N−1
n=0 x(n)y∗(n) 1

N

∑N−1
k=0 X(k)Y ∗(k)
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Note: The following tables are courtesy of Ashish Khisti and Ravi Adve and were developed
originally for ECE355.

Fourier Properties

Property DTFS CTFS DTFT CTFT

Synthesis x[n] = x(t) = x[n] = x(t) =∑
k=<N> ake

jkΩ0n
∑∞
k=−∞ ake

jkω0t 1
2π

∫
2π
X(ejΩ)ejΩndΩ 1

2π

∫∞
−∞X(jω)ejωtdω

Analysis ak = ak = X(ejΩ) = X(jω) =
1
N

∑
n=<N> x[n]e−jkΩ0n 1

T

∫
T
x(t)e−jkω0tdt

∑∞
−∞ x[n]e−jΩn

∫∞
−∞ x(t)e−jωtdt

Linearity
αx[n] + βy[n]↔ αx(t) + βy(t)↔ αx[n] + βy[n]↔ αx(t) + βy(t)↔

αak + βbk αak + βbk αX(ejΩ) + βY (ejΩ) αX(jω) + βY (jω)

Time Shifting x[n− n0]↔ ake
−j2πn0k/N x(t− t0)↔ ake

−jkω0t0 x[n− n0]↔ e−jΩn0X(ejΩ) x(t− t0)↔ e−jωt0X(jω)

Frequency Shift x[n]ej2πmn/N ↔ ak−m x(t)ejmω0t ↔ ak−m x[n]ejΩ0n ↔ X(ej(Ω−Ω0)n) x(t)ejω0t ↔ X(j(ω − ω0))

Conjugation x∗[n]↔ a∗−k x∗(t)↔ a∗−k x∗[n]↔ X∗(e−jΩ) x∗(t)↔ X∗(−jω)

Time Reversal x[−n]↔ a−k x(−t)↔ a−k x[−n]↔ X(e−jΩ) x(−t)↔ X(−jω)

Convolution

∑N−1
r=0 x[r]y[n− r]

∫
T
x(τ)y(t− τ)dτ x[n] ∗ y[n]↔ X(ejΩ)Y (ejΩ) x(t) ∗ y(t)↔ X(jω)Y (jω)

↔ Nakbk ↔ Takbk

Multiplication

x[n]y[n]↔
∑N−1
r=0 arbk−r x(t)y(t)↔ ak ∗ bk x[n]y[n]↔ x(t)y(t)↔

1
2π

∫
2π
X(ejθ)Y (ej(Ω−θ))dθ 1

2π
X(jω) ∗ Y (jω)

First Difference/ x[n]− x[n− 1]↔ dx(t)
dt
↔ jkω0ak x[n]− x[n− 1]↔ dx(t)

dt
↔ jωX(jω)

Derivative (1− e−j2πk/N )ak (1− e−jΩ)X(ejΩ)

Running Sum/
∑n
k=−∞ x[k]↔

∫ t
−∞ x(τ)dτ ↔ ak

jkω0

∑n
k=−∞ x[k]↔ X(ejΩ)

1−e−jΩ
∫ t
−∞ x(τ)dτ ↔ X(jω)

jω

Integration ak
1−e−j2πk/N +πX(ej0)δ(Ω) +πX(j0)δ(ω)

Parseval’s 1
N

∑N−1
n=0 |x[n]|2 1

T

∫
T
|x(t)|2dt

∑∞
n=−∞ |x[n]|2

∫∞
−∞ |x(t)|2dt

Relation =
∑N−1
k=0 |ak|

2 =
∑∞
k=−∞ |ak|

2 = 1
2π

∫
2π
|X(ejΩ)|2dΩ = 1

2π

∫∞
−∞ |X(jω)|2dω

Real and even Real and even

signals in frequency domain

Real and odd Purely imaginary and odd

signals in frequency domain

Additional Property: A real-valued time-domain signal x(t) or x[n] will have a conjugate-symmetric Fourier repre-
sentation.

Notes:

1. For the CTFS, the signal x(t) has a period of T , fundamental frequency ω0 = 2π/T ; for the DTFS, the signal
x[n] has a period of N , fundamental frequency Ω0 = 2π/N . ak and bk denote the Fourier coefficients of x(t)
(or x[n]) and y(t) (or y[n]) respectively.

2. Periodic convolutions can be evaluated by summing or integrating over any single period, not just those
indicated above.

3. The “Running Sum” formula for the DTFT above is valid for Ω in the range −π < Ω ≤ π.
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Fourier Pairs
Fourier Series Coefficients of Periodic Signals∗

Continuous-Time Discrete-Time∗∗

Time Domain – x(t) Frequency Domain – ak Time Domain – x[n] Frequency Domain – ak

Aejω0t a1 = A AejΩ0n a1 = A,
ak = 0, k 6= 1 ak = 0, k 6= 1

A cos(ω0t) a1 = a−1 = A/2 A cos(Ω0n) a1 = a−1 = A/2
ak = 0, k 6= 1 ak = 0, k 6= 1

A sin(ω0t) a1 = a∗−1 = A
2j

A sin(Ω0n) a1 = a∗−1 = A
2j

ak = 0, k 6= 1 ak = 0, k 6= 1

x(t) = A a0 = A, ak = 0 otherwise x[n] = A a0 = A, ak = 0 otherwise∑∞
n=−∞ δ(t− nT ) ak = 1

T

∑∞
k=−∞ δ[n− kN ] ak = 1

N

Periodic square wave a0 =
2T1

T

x(t) =

{
1 |t| < T1

0 T1 < |t| ≤ T
2

ak =
sin(kω0T1)

kπ
, k 6= 0

and x(t) = x(t+ T )

Fourier Transform Pairs

Continuous-Time Discrete-Time∗∗

Time Domain – x(t) Frequency Domain – X(jω) Time Domain – x[n] Frequency Domain – X(ejΩ)

x(t) =

{
1, |t| < T1

0, |t| > T1

2 sin(ωT1)

ω
x[n] =

{
1, |n| ≤ N1

0, |n| > N1

sin(Ω(N1 + 1/2))

sin(Ω/2)
sinWt

πt
X(jω) =

{
1, |ω| < W
0, otherwise

sinWn

πn
X(ejΩ) =

{
1, |Ω| ≤W
0, otherwise

δ(t) 1 δ[n] 1

1 2πδ(ω) 1 2πδ(Ω)

u(t)
1

jω
+ πδ(ω) u[n]

1

1− e−jΩ + πδ(Ω)

e−atu(t),Re(a) > 0
1

a+ jω
anu[n], |a| < 1

1

1− ae−jΩ
tn−1

(n− 1)!
e−atu(t),Re(a) > 0

1

(a+ jω)n
(n+ r − 1)!

n!(r − 1)!
anu[n], |a| < 1

1

(1− ae−jΩ)r

∗In the Fourier series table, ω0 = 2π
T

and Ω0 = 2π
N

, where T and N are the periods of x(t) and x[n] respectively.
∗∗For the DTFS, ak is given only for k in the range −N/2+1 ≤ k ≤ N/2 for even N , −(N−1)/2 ≤ k ≤ (N−1)/2 for
oddN , and ak = ak+N ; for the DTFTX(ejΩ) is given only for Ω in the range−π < Ω ≤ π, andX(ejΩ) = X(ej(Ω+2π)).

Fourier Transform for Periodic Signals:

x(t) =

∞∑
k=−∞

ake
jkω0t ↔ X(jω) = 2π

∞∑
k=−∞

akδ(ω − kω0)

x[n] =
∑

k=<N>

ake
jkΩ0n ↔ X(ejΩ) = 2π

∞∑
k=−∞

akδ(Ω− kΩ0)
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