

The z-Transform and Its Properties 3.1 The z-Transform

The Direct *z*-Transform

► Direct *z*-Transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

Notation:

$$\begin{array}{rcl} X(z) & \equiv & \mathcal{Z}\{x(n)\} \\ \\ x(n) & \stackrel{\mathcal{Z}}{\longleftrightarrow} & X(z) \end{array}$$

The z-Transform and Its Properties

Reference:

Sections 3.1 and 3.2 of

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

Professor Deepa Kundur (University of Toronto) The z-Transform and Its Properties

The z-Transform and Its Properties 3.1 The z-Transform

Region of Convergence

- the region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value
- ► The *z*-Transform is, therefore, uniquely characterized by:
 - expression for X(z)
 ROC of X(z)

2 / 20

The z-Transform and Its Properties 3.2 Properties of the z-Transform z-Transform Properties

Property	Time Domain	z-Domain	ROC	
Notation:	x(n)	X(z)	ROC: $r_2 < z < r_1$	
	$x_1(n)$	$X_1(z)$	ROC ₁	
	$x_2(n)$	$X_2(z)$	ROC ₂	
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least $ROC_1 \cap ROC_2$	
Time shifting:	x(n-k)	$z^{-k}X(z)$	At least ROC, except	
			z = 0 (if $k > 0$)	
	P ()		and $z = \infty$ (if $k < 0$)	
z-Scaling:	a'' x(n)	$X(a^{-1}z)$	$ a r_2 < z < a r_1$	
Time reversal	$\times (-n)$	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$	
Conjugation:	$x^{*}(n)$	$X^{*}(z^{*})$	ROC	
z-Differentiation:	n x(n)	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$	
Convolution:	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least $ROC_1 \cap ROC_2$	
			among others	
sor Deepa Kundur (Univ	arsity of Toronto) The z Tr	ansform and Its Properties		7 /

The z-Transform and Its Properties 3.2 Properties of the z-Transform
Time Shifting Property
Let
$$y(n) = x(n - k)$$
.

$$Y(z) = \sum_{n=-\infty}^{\infty} y(n)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} (x(n - k))z^{-n}$$
Let $m = n - k$

$$= \sum_{m=-\infty}^{\infty} x(m)z^{-(m+k)} = \sum_{m=-\infty}^{\infty} x(m)z^{-m}z^{-k}$$

$$= z^{-k} \left[\sum_{m=-\infty}^{\infty} x(m)z^{-m} \right] = z^{-k}X(z)$$
rofessor Deepa Kundur (University of Toroto) The z-Transform and Its Properties

11 / 20

The z-Transform and Its Properties 3.2 Properties of the z-Transform
Time Shifting Property

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z), \quad \text{ROC}$$

 $x(n-k) \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-k}X(z), \quad \text{At least ROC}$
 $except \ z = 0 \ (k > 0) \text{ or}$
 $z = \infty \ (k < 0)$

The z-Transform and Its Properties 3.2 Properties of the z-Transform
Time Shifting Property: ROC

$$x(n) = \delta(n) \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z) = 1, \text{ROC: entire z-plane}$$
• Example: For $k = -1$

$$y(n) = x(n - (-1)) = x(n + 1) = \delta(n + 1)$$

$$y(n) = \delta(n + 1) \stackrel{\mathbb{Z}}{\longleftrightarrow} Y(z) = z, \text{ROC: entire z-plane}$$
except $z = \infty$
• Example: For $k = 1$

$$y(n) = x(n - (1)) = x(n - 1) = \delta(n - 1)$$

$$y(n) = \delta(n - 1) \stackrel{\mathbb{Z}}{\longleftrightarrow} Y(z) = z^{-1}, \text{ROC: entire z-plane}}$$
except $z = 0$

The z-Transform and Its Properties 3.2 Properties of the z-Transform Scaling in the z-Domain Let $y(n) = a^n x(n)$ $Y(z) = \sum_{n=-\infty}^{\infty} y(n) z^{-n}$ $= \sum_{n=-\infty}^{\infty} a^n x(n) z^{-n}$ $= \sum_{n=-\infty}^{\infty} x(n) (a^{-1}z)^{-n}$ $= X(a^{-1}z)$ ROC: $r_1 < |a^{-1}z| = \frac{|z|}{|a|} < r_2 \equiv |a|r_1 < |z| < |a|r_2$ Profesor Deepa Kundur (University of Toronto) The z-Transform and Its Properties 14/20

The z-Transform and Its Properties 3.2 Properties of the z-Transform
Convolution Property
Y(z) = Y(z) + Y(z) + Y(z) + Y(z)
$\mathbf{x}(n) = \mathbf{x}_1(n) * \mathbf{x}_2(n) \iff \mathbf{x}(2) = \mathbf{x}_1(2) \cdot \mathbf{x}_2(2)$

16 / 20

The z-Transform and Its Properties 3.2 Properties of the z-Transform

Convolution using the z-Transform

Basic Steps:

1. Compute z-Transform of each of the signals to convolve (time domain \rightarrow z-domain):

$$X_1(z) = \mathcal{Z}\{x_1(n)\}$$

$$X_2(z) = \mathcal{Z}\{x_2(n)\}$$

2. Multiply the two z-Transforms (in z-domain):

$$X(z) = X_1(z)X_2(z)$$

3. Find the inverse z-Transform of the product (z-domain \rightarrow time domain):

$$x(n) = \mathcal{Z}^{-1}\{X(z)\}$$

Professor Deepa Kundur (University of Toronto) The z-Transform and Its Properties

17 / 20

Professor D

Common Transform Pairs

	Signal, x(n)	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{\bar{1}}{1-az^{-1}}$	z > a
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$\cos(\omega_0 n)u(n)$	$\frac{1 - z^{-1} \cos \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1
8	$\sin(\omega_0 n)u(n)$	$rac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$a^n \cos(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$a^n \sin(\omega_0 n) u(n)$	$rac{1 - az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
Jur (Un	iversity of Toronto) The z-Tra	nsform and Its Properties	

