

Analog and Digital Signals

analog system = analog input + analog output

Chapter 1: Introduction

digital system = digital input + digital output

Chapter 1: Introduction

Analog and Digital Signals

- ► analog signal = continuous-time + continuous amplitude
- digital signal = discrete-time + discrete amplitude

Chapter 1: Introduction

Harmonically Related Complex Exponentials

Harmonically related	$s_k(t)=e^{jk\Omega_0t}=e^{j2\pi kF_0t}$
(cts-time)	$k=0,\pm 1,\pm 2,\ldots$

Scientific Designation	Frequency (Hz)	k for $F_0 = 8.176$
C-1	8.176	1
C0	16.352	2
C1	32.703	4
C2	65.406	8
C3	130.813	16
C4	261.626	32
÷	÷	
C9	8372.018	1024
ofessor Deepa Kundur (University of Toronto)ntroduct	ion to Digital Signal Processing	5

Chapter 1: Introduction

Harmonically Related Complex Exponentials

What does the family of harmonically related sinusoids $s_k(t)$ have in common?

Harmonically related
$$s_k(t) = e^{jk\Omega_0 t} = e^{j2\pi(kF_0)t}$$
,
(cts-time) $k = 0, \pm 1, \pm 2, ...$

fund. period:
$$T_{0,k} = \frac{1}{\text{cyclic frequency}} = \frac{1}{kF_0}$$

period: $T_k = \text{any integer multiple of } T_0$
common period: $T = k \cdot T_{0,k} = \frac{1}{F_0}$

Chapter 1: Introduction

Harmonically Related Complex Exponentials

	Scientific Designation	Frequency (Hz)	k for $F_0 = 8.176$	
	C1	32.703	4	
	C2	65.406	8	
	C3	130.813	16	
	C4 (middle C)	261.626	32	
	C5	523.251	64	
	C6	1046.502	128	
	C7	2093.005	256	
	C8	4186.009	512	
C1	C2 C3	C4 C5	C6 C7	Св
ofessor Deep	a Kundur (University of Toronto)ntroduct	ion to Digital Signal Processing	g	14 / 58

Harmonically Related Complex Exponentials

Chapter 1: Introduction

Discrete-time Case:

For periodicity, select $f_0 = \frac{1}{N}$ where $N \in \mathbb{Z}$:

• There are only N distinct dst-time harmonics: $s_k(n)$, k = 0, 1, 2, ..., N - 1.

Sampling Theorem Sampling Period = $T = \frac{1}{F_s} = \frac{1}{\text{Sampling Frequency}}$ Therefore, given the interpolation relation, $x_a(t)$ can be written as

$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a(nT)g(t - nT)$$
$$x_a(t) = \sum_{n=-\infty}^{\infty} x(n) g(t - nT)$$

where $x_a(nT) = x(n)$; called bandlimited interpolation.

Chapter 1: Introduction

Chapter 1: Introduction
Sampling Theorem

If the highest frequency contained in an analog signal $x_a(t)$ is $F_{max} = B$ and the signal is sampled at a rate

 $F_s > 2F_{max} = 2B$

then $x_a(t)$ can be exactly recovered from its sample values using the interpolation function

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt}$$

22 / 58

Note: $F_N = 2B = 2F_{max}$ is called the Nyquist rate.

rofessor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

In practice, "cheap" interpolation along with a smoothing filter is employed.

rofessor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

Chapter 2: Dst-Time Signals & Systems

Elementary Discrete-Time Signals

1. unit sample sequence (a.k.a. Kronecker delta function):

 $\delta(n) = \begin{cases} 1, & \text{for } n = 0 \\ 0, & \text{for } n \neq 0 \end{cases}$

2. unit step signal:

$$u(n) = \begin{cases} 1, & \text{for } n \ge 0\\ 0, & \text{for } n < 0 \end{cases}$$

3. unit ramp signal:

 $u_r(n) = \left\{ egin{array}{cc} n, & ext{for } n \geq 0 \\ 0, & ext{for } n < 0 \end{array}
ight.$

Note:

$$\frac{\delta(n)}{u(n)} = u(n) - u(n-1) = u_r(n+1) - 2u_r(n) + u_r(n-1)$$

$$u(n) = u_r(n+1) - u_r(n)$$

26 / 58

Simple Manipulation of Discrete-Time Signals I Find $x(\frac{3}{2}n + 1)$.

	п	$\frac{3n}{2} + 1$	$x(\frac{3n}{2}+1)$	
	< -1	$-\frac{1}{2}$	0 if $\frac{3n}{2} + 1$ is an integer; undefined otherwise	
	-1	$-\frac{1}{2}^{2}$	undefined	
	0	1	x(1) = 1	
	1	5	undefined	
	2	4	x(4) = 2	
	3	$\frac{11}{2}$	undefined	
	4	7	x(7) = 3	
	5	$\frac{17}{2}$	undefined	
	6	10	x(10) = 2	
	7	$\frac{23}{2}$	undefined	
	8	13	x(13) = 1	
	9	2 <u>9</u>	undefined	
	10	16	x(16) = -1	
	11	35	undefined	
	12	19	x(19) = -2	
	> 12	> 19	0 if $\frac{3n}{2} + 1$ is an integer; undefined otherwise	
		I	2	
² rofessor Deepa Kundu	r (Universit	y of Toronto)	ntroduction to Digital Signal Processing	35 / 58

Static vs. Dynamic

- Static system (a.k.a. memoryless): the output at time n depends only on the input sample at time n; otherwise the system is said to be dynamic
- ▶ a system is static iff (if and only if)

$$y(n) = \mathcal{T}[x(n), n]$$

for every time instant n.

Chapter 2: Dst-Time Signals & Systems **Classification of Discrete-Time Systems** Common System Properties:

	static	VS.	dynamic	
	time-invariant	VS.	time-variant	
	linear	VS.	nonlinear	
	causal	VS.	non-causal	
	stable	VS.	unstable systems	
	÷		÷	
Deere Kundun (Uniu	anita of Tourist Natural asian	ta Disital	Circul Dramanian	20 / 50
Deepa Rundur (Onive	ersity of Toronto Introduction	to Digital	Signal Flocessing	30 / 50

Chapter 2: Dst-Time Signals & Systems

Static vs. Dynamic

Professor

• Consider the general system:

$$y(n) = \mathcal{T}[x(n-N), x(n-N+1), \cdots, x(n-1), x(n), x(n+1), \dots, x(n+M-1), x(n+M-1), \dots, x(n+M)], N, M > 0$$

- For N = M = 0, $y(n) = \mathcal{T}[x(n)]$, the system is static.
- For 0 < N, M < ∞, the system is said to be dynamic with <u>finite</u> memory of duration N + M + 1.
- For either N and/or M equal to infinite, the system is said to have <u>infinite</u> memory.

Static vs. Dynamic

Examples: memoryless or not?

- $y(n) = A x(n), A \neq 0$
- ► y(n) = A x(n) + B, $A, B, \neq 0$
- ► $y(n) = x(n) \cos(\frac{\pi}{25}(n-5))$
- ► y(n) = x(-n)
- ► y(n) = x(n+1)

•
$$y(n) = \frac{1}{1-x(n+2)}$$

$$\flat y(n) = e^{3x(n)}$$

•
$$y(n) = \sum_{k=-\infty}^{n} x(k)$$

Ans: Y, Y, N, N, N, Y, N Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing 41 / 58

Chapter 2: Dst-Time Signals & Systems The Convolution Sum Recall: $x(n) = \sum_{k=-\infty}^{\infty} x(k) \delta(n-k)$

Chapter 2: Dst-Time Signals & Systems

The Convolution Sum

Let the response of a linear time-invariant (LTI) system to the unit sample input $\delta(n)$ be h(n).

$$\delta(n) \xrightarrow{\mathcal{T}} h(n)$$

$$\delta(n-k) \xrightarrow{\mathcal{T}} h(n-k)$$

$$\alpha \ \delta(n-k) \xrightarrow{\mathcal{T}} \alpha \ h(n-k)$$

$$x(k) \ \delta(n-k) \xrightarrow{\mathcal{T}} x(k) \ h(n-k)$$

$$\sum_{k=-\infty}^{\infty} x(k)\delta(n-k) \xrightarrow{\mathcal{T}} \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$x(n) \xrightarrow{\mathcal{T}} y(n)$$

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

The Convolution Sum

Therefore,

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = x(n) * h(n)$$

for any LTI system.

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

Chapter 2: Dst-Time Signals & Systems

System Realization

General expression for Nth-order LCCDE:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \qquad a_0 \triangleq 1$$

Initial conditions: $y(-1), y(-2), y(-3), \ldots, y(-N)$.

Need: (1) constant scale, (2) addition, (3) delay elements.

Professor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

45 / 58

Chapter 2: Dst-Time Signals & Systems

Finite vs. Infinite Impulse Response

Implementation: Two classes

Finite impulse response (FIR):

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$
 and a nonrecursive systems

Infinite impulse response (IIR):

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$
 } recursive systems

46 / 58

rofessor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

Direct Form I vs. Direct Form II Realizations

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

is equivalent to the cascade of the following systems:

Chapter 2: Dst-Time Signals & Systems

Direct Form I IIR Filter Implementation

rofessor Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing

The Direct *z*-Transform

► Direct *z*-Transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

Notation:

Professor

$$X(z) \equiv \mathcal{Z}\{x(n)\}$$

 $x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$
Deepa Kundur (University of Toronto)ntroduction to Digital Signal Processing 53 / 58

z-Transform Properties

Property	Time Domain	<i>z</i> -Domain	ROC	
Notation:	x(n)	X(z)	ROC: $r_2 < z < r_1$	
	$x_1(n)$	$X_1(z)$	ROC ₁	
	$x_2(n)$	$X_2(z)$	ROC ₂	
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z)+a_2X_2(z)$	At least $ROC_1 \cap ROC_2$	
Time shifting:	x(n-k)	$z^{-k}X(z)$	At least ROC, except	
			z = 0 (if $k > 0$)	
			and $z = \infty$ (if $k < 0$)	
z-Scaling:	a'' x(n)	$X(a^{-1}z)$	$ a r_2 < z < a r_1$	
l ime reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$	
Conjugation:	$x^*(n)$	$X^*(z^*)$	ROC	
z-Differentiation:	n x(n)	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$	
Convolution:	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least $ROC_1 \cap ROC_2$	
			among others	
			0	
sor Deepa Kundur (Univ	ersity of Toronto)ntroductior	to Digital Signal Processing		

Chapter 3: The z-Transform and Its Applications

Common Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC	
1	$\delta(n)$	1	All z	
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1	
3	$a^n u(n)$	$\frac{\bar{1}}{1-az^{-1}}$	z > a	
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a	
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
7	$\cos(\omega_0 n)u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1	
8	$\sin(\omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1	
9	$a^n \cos(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a	
10	$a^n \sin(\omega_0 n) u(n)$	$\frac{1\!-\!az^{-1}\sin\omega_0}{1\!-\!2az^{-1}\cos\omega_0\!+\!a^2z^{-2}}$	z > a	
ofessor Deepa Kundur (Ur	niversity of Toronto)ntroduction	to Digital Signal Processing		58

