

Reference

Reference:

Sections 3.3 and 3.4 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th edition, 2007.

Why Rational?

- $X(z)$ is a rational function iff it can be represented as the ratio of two polynomials in z^{-1} (or z):

$$
X(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{N} z^{-N}}
$$

- For LTI systems that are represented by LCCDEs, the z-Transform of the unit sample response $h(n)$, denoted $H(z)=\mathcal{Z}\{h(n)\}$, is rational

Rational z-Transforms and Its Inverse $\quad 3.3$ Rational z-Transforms

Poles and Zeros

- zeros of $X(z)$: values of z for which $X(z)=0$
- poles of $X(z)$: values of z for which $X(z)=\infty$

Poles and Zeros of the Rational z-Transform

$$
X(z)=G z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)} \text { where } G \equiv \frac{b_{0}}{a_{0}}
$$

- $X(z)$ has M finite zeros at $z=z_{1}, z_{2}, \ldots, z_{M}$
- $X(z)$ has N finite poles at $z=p_{1}, p_{2}, \ldots, p_{N}$
- For $N-M \neq 0$
- if $N-M>0$, there are $|N-M|$ zeros at origin, $z=0$
- if $N-M<0$, there are $|N-M|$ poles at origin, $z=0$

Poles and Zeros of the Rational z-Transform

Let $a_{0}, b_{0} \neq 0$:

$$
\begin{aligned}
X(z)=\frac{B(z)}{A(z)} & =\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{N} z^{-N}} \\
& =\left(\frac{b_{0} z^{-M}}{a_{0} z^{-N}}\right) \frac{z^{M}+\left(b_{1} / b_{0}\right) z^{M-1}+\cdots+b_{M} / b_{0}}{z^{N}+\left(a_{1} / a_{0}\right) z^{N-1}+\cdots+a_{N} / a_{0}} \\
& =\frac{b_{0}}{a_{0}} z^{-M+N} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)} \\
& =G z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
\end{aligned}
$$

Poles and Zeros of the Rational z-Transform

Example:

$$
\begin{aligned}
X(z)= & z \frac{2 z^{2}-2 z+1}{16 z^{3}+6 z+5} \\
= & (z-0) \frac{\left(z-\left(\frac{1}{2}+j \frac{1}{2}\right)\right)\left(z-\left(\frac{1}{2}-j \frac{1}{2}\right)\right)}{\left(z-\left(\frac{1}{4}+j \frac{3}{4}\right)\right)\left(z-\left(\frac{1}{4}-j \frac{3}{4}\right)\right)\left(z-\left(-\frac{1}{2}\right)\right)} \\
& \text { poles: } z=\frac{1}{4} \pm j \frac{3}{4},-\frac{1}{2} \\
& \text { zeros: } z=0, \frac{1}{2} \pm j \frac{1}{2}
\end{aligned}
$$

Pole-Zero Plot

Example: poles: $z=\frac{1}{4} \pm j \frac{3}{4},-\frac{1}{2}$, zeros: $z=0, \frac{1}{2} \pm j \frac{1}{2}$

Professor Deepa Kundur (University of Toronto) Rational z-Transforms and Its Inverse

Rational z-Transforms and Its Inverse \quad 3.3 Rational z-Transforms

Pole-Zero Plot and the ROC

- Recall, for causal signals, the ROC will be the outer region of a disk

- ROC cannot necessarily include poles $\left(\because X\left(p_{k}\right)=\infty\right)$

Pole-Zero Plot and Conjugate Pairs

- For real time-domain signals, the coefficients of $X(z)$ are necessarily real
- complex poles and zeros must occur in conjugate pairs
- note: real poles and zeros do not have to be paired up

$$
X(z)=z \frac{2 z^{2}-2 z+1}{16 z^{3}+6 z+5} \Longrightarrow
$$

Professor Deepa Kundur (University of Toronto) Rational z-Transforms and Its Inverse

Pole-Zero Plot and the ROC

- Therefore, for a causal signal the ROC is the smallest (origin-centered) circle encompassing all the poles.

Rational z-Transforms and Its Inverse $\quad 3.3$ Rational z-Transforms

Causality and Stability

- Recall,

$$
\begin{aligned}
& \text { LTI system is } \\
& \text { stable }
\end{aligned} \Longleftrightarrow \sum_{n=-\infty}^{\infty}|h(n)|<\infty
$$

- Moreover,

$$
\begin{aligned}
|H(z)| & =\left|\sum_{n=-\infty}^{\infty} h(n) z^{-n}\right| \leq \sum_{n=-\infty}^{\infty}\left|h(n) z^{-n}\right| \\
& =\sum_{n=-\infty}^{\infty}|h(n)| \quad \text { for }|z|=1
\end{aligned}
$$

- It can be shown:

$$
\begin{array}{cc}
\text { LTI system is } \\
\text { stable }
\end{array} \Longleftrightarrow \sum_{n=-\infty}^{\infty}|h(n)|<\infty \quad \Longleftrightarrow \quad \text { ROC of } H(z) \text { contains } \begin{gathered}
\text { unit circle }
\end{gathered}
$$

Professor Deepa Kundur (University of Toronto) Rational z-Transforms and Its Inverse

The System Function

$$
\begin{aligned}
& h(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} H(z) \\
& \text { time-domain } \stackrel{\mathcal{Z}}{\longleftrightarrow} \\
& z \text {-domain } \\
& \text { impulse response } \stackrel{\mathcal{Z}}{\longleftrightarrow} \\
& \text { system function } \\
& y(n)=x(n) * h(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)=X(z) \cdot H(z)
\end{aligned}
$$

Therefore,

$$
H(z)=\frac{Y(z)}{X(z)}
$$

Pole-Zero Plot, Causality and Stability

- For stable systems, the ROC will include the unit circle.

- For stability of a causal system, the poles must lie inside the unit circle.

Professor Deepa Kundur (University of Toronto) Rational z-Transforms and Its Inverse

The System Function of LCCDEs

$$
\begin{aligned}
y(n) & =-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k) \\
\mathcal{Z}\{y(n)\} & =\mathcal{Z}\left\{-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k)\right\} \\
\mathcal{Z}\{y(n)\} & =-\sum_{k=1}^{N} a_{k} \mathcal{Z}\{y(n-k)\}+\sum_{k=0}^{M} b_{k} \mathcal{Z}\{x(n-k)\} \\
Y(z) & =-\sum_{k=1}^{N} a_{k} z^{-k} Y(z)+\sum_{k=0}^{M} b_{k} z^{-k} X(z)
\end{aligned}
$$

The System Function of LCCDEs

$$
\begin{aligned}
Y(z)+\sum_{k=1}^{N} a_{k} z^{-k} Y(z) & =\sum_{k=0}^{M} b_{k} z^{-k} X(z) \\
Y(z)\left[1+\sum_{k=1}^{N} a_{k} z^{-k}\right] & =X(z) \sum_{k=0}^{M} b_{k} z^{-k} \\
H(z)=\frac{Y(z)}{X(z)} & =\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\left[1+\sum_{k=1}^{N} a_{k} z^{-k}\right]} \\
\text { LCCDE } & \longleftrightarrow \text { Rational System Function }
\end{aligned}
$$

Many signals of practical interest have a rational z-Transform

Rational z-Transforms and Its Inverse $\quad 3.4$ Inversion of the z-Transform
Inversion of the z-Transform

Three popular methods:

1. Contour integration:

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

2. Expansion into a power series in z or z^{-1} :

$$
X(z)=\sum_{k=-\infty}^{\infty} x(k) z^{-k}
$$

and obtaining $x(k)$ for all k by inspection.
3. Partial-fraction expansion and table look-up.

Inversion of the z-Transform

Rational z-Transforms and Its Inverse $\quad 3.4$ Inversion of the z-Transform

Expansion into Power Series

Example:

$$
\begin{aligned}
X(z) & =\log \left(1+a z^{-1}\right), \quad|z|>|a| \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^{n} z^{-n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^{n}}{n} z^{-n}
\end{aligned}
$$

By inspection:

$$
x(n)= \begin{cases}\frac{(-1)^{n+1} a^{n}}{n} & n \geq 1 \\ 0 & n \leq 0\end{cases}
$$

Rational z-Transforms and Its Inverse \quad 3.4 Inversion of the z-Transform

Partial-Fraction Expansion

1. Find the distinct poles of $X(z): p_{1}, p_{2}, \ldots, p_{K}$ and their corresponding multiplicities $m_{1}, m_{2}, \ldots, m_{K}$.
2. The partial-fraction expansion is of the form:

$$
z^{-R} X(z)=\sum_{k=1}^{k}\left(\frac{A_{1 k}}{z-p_{k}}+\frac{A_{2 k}}{\left(z-p_{k}\right)^{2}}+\cdots+\frac{A_{m k}}{\left(z-p_{k}\right)^{m_{k}}}\right)
$$

where p_{k} is an m_{k} th order pole (i.e., has multiplicity m_{k}) and R is selected to make $z^{-R} X(z)$ a strictly proper rational function.
3. Use an appropriate approach to compute $\left\{A_{i k}\right\}$

Partial-Fraction Expansion

$$
\begin{aligned}
\frac{z^{2}(z+2)}{(z+2)(z-1)^{2}} & =\frac{A_{1}(z+2)}{z+2}+\frac{A_{2}(z+2)}{z-1}+\frac{A_{3}(z+2)}{(z-1)^{2}} \\
\frac{z^{2}}{(z-1)^{2}} & =A_{1}+\frac{A_{2}(z+2)}{z-1}+\left.\frac{A_{3}(z+2)}{(z-1)^{2}}\right|_{z=-2} \\
A_{1} & =\frac{4}{9}
\end{aligned}
$$

Partial-Fraction Expansion

Example: Find $x(n)$ given poles of $X(z)$ at $p_{1}=-2$ and a double pole at $p_{2}=p_{3}=1$; specifically,

$$
\begin{aligned}
X(z) & =\frac{1}{\left(1+2 z^{-1}\right)\left(1-z^{-1}\right)^{2}} \\
\frac{X(z)}{z} & =\frac{z^{2}}{(z+2)(z-1)^{2}} \\
\frac{z^{2}}{(z+2)(z-1)^{2}} & =\frac{A_{1}}{z+2}+\frac{A_{2}}{z-1}+\frac{A_{3}}{(z-1)^{2}}
\end{aligned}
$$

Note: we need a strictly proper rational function.
DO NOT FORGET TO MULTIPLY BY z IN THE END.

Professor Deepa Kundur (University of Toronto) Rational z-Transforms and Its Inverse

Partial-Fraction Expansion

$$
\begin{aligned}
\frac{z^{2}(z-1)^{2}}{(z+2)(z-1)^{2}} & =\frac{A_{1}(z-1)^{2}}{z+2}+\frac{A_{2}(z-1)^{2}}{z-1}+\frac{A_{3}(z-1)^{2}}{(z-1)^{2}} \\
\frac{z^{2}}{(z+2)} & =\frac{A_{1}(z-1)^{2}}{z+2}+A_{2}(z-1)+\left.A_{3}\right|_{z=1} \\
A_{3} & =\frac{1}{3}
\end{aligned}
$$

Partial-Fraction Expansion

$$
\begin{aligned}
\frac{z^{2}(z-1)^{2}}{(z+2)(z-1)^{2}} & =\frac{A_{1}(z-1)^{2}}{z+2}+\frac{A_{2}(z-1)^{2}}{z-1}+\frac{A_{3}(z-1)^{2}}{(z-1)^{2}} \\
\frac{z^{2}}{(z+2)} & =\frac{A_{1}(z-1)^{2}}{z+2}+A_{2}(z-1)+A_{3} \\
\frac{d}{d z}\left[\frac{z^{2}}{(z+2)}\right] & =\left.\frac{d}{d z}\left[\frac{A_{1}(z-1)^{2}}{z+2}+A_{2}(z-1)+A_{3}\right]\right|_{z=1} \\
A_{2} & =\frac{5}{9}
\end{aligned}
$$

Partial-Fraction Expansion

Therefore, assuming causality, and using the following pairs:

$$
\begin{aligned}
a^{n} u(n) & \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-a z^{-1}} \\
n a^{n} u(n) & \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
X(z) & =\frac{4}{9} \frac{1}{1+2 z^{-1}}+\frac{5}{9} \frac{1}{1-z^{-1}}+\frac{1}{3} \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}} \\
x(n) & =\frac{4}{9}(-2)^{n} u(n)+\frac{5}{9} u(n)+\frac{1}{3} n u(n) \\
& =\left[\frac{(-2)^{n+2}}{9}+\frac{5}{9}+\frac{n}{3}\right] u(n)
\end{aligned}
$$

\square

