

	4.1 Frequency Analysis of Continuous-Time Signals	
	Reference	
	Reference:	
	Section 4.1 of	
	John G. Proakis and Dimitris G. Manolakis, <i>Digital Signal Processing Principles, Algorithms, and Applications</i> , 4th edition, 2007.	g:
P	rofessor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis 2	/ 41

4.1 Frequency Analysis of Continuous-Time Signals

Continuous-Time Fourier Series (CTFS)

For continuous-time periodic signals with period $T_p = \frac{1}{F_0}$

Synthesis equation:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

Analysis equation:

$$c_k = rac{1}{T_
ho} \int_{T_
ho} x(t) e^{-j2\pi k F_0 t} dt$$

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Intuition

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

- Thus, x(t) is being broken down into a series of <u>orthogonal basis</u> functions that are sinusoidal in nature.
- c_k are the coefficients needed to represent x(t) in the <u>basis</u> set $\{e^{j2\pi kF_0 t}\}$.
- ► There is a decoupling that takes place such that modifying the frequency components of x(t) related to $2\pi kF_0$ will not affect those related to $2\pi mF_0$ for $m \neq k$.

9 / 41

4.1 Frequency Analysis of Continuous-Time Signals

CTFS: Intuition

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

• $\{e^{j2\pi kF_0 t}\}$ forms an orthogonal set for $k = 0, \pm 1, \pm 2, \pm 3, \dots$

$$< e^{j2\pi kF_0 t}, e^{j2\pi mF_0 t} > = \int_{T_p} e^{j2\pi kF_0 t} (e^{j2\pi mF_0 t})^* dt$$
$$= \int_{T_p} e^{j2\pi kF_0 t} e^{-j2\pi mF_0 t} dt = \int_0^{T_p} e^{j2\pi (k-m)F_0 t} dt$$
$$= \begin{cases} t|_0^{T_p} & k=m\\ \frac{e^{j2\pi (k-m)F_0 t}}{j2\pi (k-m)F_0} \Big|_0^{T_p} & k\neq m \end{cases} = \begin{cases} T_p & k=m\\ 0 & k\neq m \end{cases}$$
Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis 10 / 41

4.1 Frequency Analysis of Continuous-Time Signals

$$CTFS: Dirichlet Conditions$$

$$c_{k} = \frac{1}{T_{p}} \int_{T_{p}} x(t) e^{-j2\pi kF_{0}t} dt$$

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_{k} e^{j2\pi kF_{0}t}$$
Q: For what conditions is $\tilde{x}(t)$ equal to $x(t)$?

The Continuous-Time Fourier Transform

(CTFT)

4.1 Frequency Analysis of Continuous-Time Signals

Continuous-Time Fourier Transform (CTFT)

For continuous-time aperiodic signals

Synthesis equation:

$$\mathbf{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\Omega) e^{j\Omega t} d\Omega$$

► Analysis equation:

$$X(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

4.1 Frequency Analysis of Continuous-Time Signals Continuous-Time Fourier Transform (CTFT) $\underbrace{Cyclic \ frequency \ can \ also \ be \ used.}$ • Synthesis equation: $x(t) = \int_{-\infty}^{\infty} X(F) e^{j2\pi Ft} dF$ • Analysis equation: $X(F) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi Ft} dt$ (CTFT: Dirichlet Condition) $f_{-\infty}^{\infty} X(t) e^{-j2\pi Ft} dt$

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Intuition

$$\mathbf{x}(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\Omega) e^{j\Omega t} d\Omega$$

- We may consider x(t) as a <u>linear combination</u> of $e^{i\Omega t}$ for $\Omega \in \mathbb{R}$.
- The larger $|X(\Omega)|$, the more x(t) will look like a sinusoid with Ω .

4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Intuition

$$X(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

• Suppose a(t) and b(t) are continuous-time aperiodic signals. We define:

 $\langle \mathsf{a}(t), \mathsf{b}(t)
angle = \int_{-\infty}^{\infty} \mathsf{a}(t) \mathsf{b}^*(t) dt$

• Therefore, we can interpret $X(\Omega)$ as follows:

$$X(\Omega) = \langle x(t), e^{j\Omega t} \rangle$$

rofessor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

4.1 Frequency Analysis of Continuous-Time Signals $\begin{aligned}
\mathbf{CTFT: Duality} \\
\mathbf{x}(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\Omega) e^{j\Omega t} d\Omega \\
\mathbf{X}(\Omega) &= \int_{-\infty}^{\infty} \mathbf{x}(t) e^{-j\Omega t} dt \\
\mathbf{x}(t) & \xleftarrow{\mathcal{F}} \mathbf{X}(\Omega) \\
\text{rectangle} & \xleftarrow{\mathcal{F}} \text{sinc} \\
\text{sinc} & \xleftarrow{\mathcal{F}} \text{rectangle} \\
\text{convolution} & \xleftarrow{\mathcal{F}} \text{multiplication} \\
\text{multiplication} & \xleftarrow{\mathcal{F}} \text{ convolution}
\end{aligned}$

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

CTFT: Duality $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$ $\chi(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$ Shape A $\xleftarrow{\mathcal{F}}$ Shape BShape B $\xleftarrow{\mathcal{F}}$ Shape AOperation A $\xleftarrow{\mathcal{F}}$ Operation BOperation B $\xleftarrow{\mathcal{F}}$ Operation A

4.1 Frequency Analysis of Continuous-Time Signals CTFT: Magnitude and Phase $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$ $= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)| e^{j(\Delta t)} e^{j\Omega t} d\Omega$ $= \int_{\infty}^{\infty} |X(\Omega)| e^{i(\Omega t + ∠X(\Omega))} df$ • [X(Ω)] dictates the relative presence of the sinusoid of frequency Ω in x(t). • ∠X(Ω) dictates the relative alignment of the sinusoid of frequency Ω in x(t). • ∠X(Ω) dictates the relative alignment of the sinusoid of frequency Ω in x(t).

4.1 Frequency Analysis of Continuous-Time Signals

CTFT: Audio Example

- An audio signal is represented by a real function x(t).
- The function x(-t) represents playing the audio signal backwards.
- ► Since *x*(*t*) is real:

 $\begin{array}{lll} X(\Omega) & = & X^*(-\Omega) \\ |X(\Omega)| & = & |X^*(-\Omega)| = |X(-\Omega)| & \text{since } |c| = |c^*| \text{ for } c \in \mathbb{C} \end{array}$

Therefore,

$$|X(\Omega)| = |X(-\Omega)|$$

That is, the CTFT magnitude is even for x(t) real.

4.1 Frequency Analysis of Continuous-Time Signals

Example: Still Image $x(t_1, t_2)$

CTFT: Magnitude and Phase

Q: Which is more important for a given signal? **A:** Phase

- Does one component (magnitude or phase) contain more information than another? A: Yes, phase
- When filtering, if we had to preserve on component (magnitude or phase) more, which one would it be?
 - A: Phase

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

41 / 41

