

Update

Coverage:

Before Reading Week:	4.1
With Eman:	4.2, 4.3, 4.4, 5.1
Today and Wed:	Brief Rev of 4.1, 4.2, 4.3, 4.4, 5.1 and Sections 5.2, 5.4, 5.5

John G. Proakis and Dimitris G. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 4th edition, 2007.

rofessor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

Classification of Fourier Pairs

	CTS-TIME	DST-TIME
	Continuous-Time	Discrete-Time
PERIODIC	Fourier Series	Fourier Series
	(CTFS)	(DTFS)
APERIODIC	Continuous-Time	Discrete-Time
	Fourier Transform	Fourier Transform
	(CTFT)	(DTFT)

Convergence **CTS-TIME** DST-TIME PER $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi kF_0 t}$
 $c_k = \frac{1}{T_p} \int_{T_p} x(t) e^{-j2\pi kF_0 t} dt$ $x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$
 $c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$ APER $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$
 $X(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$ $x(n) = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$
 $X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$

Review of 4.1, 4.2, 4.3, 4.4

- Convergence issues are prevalent when you have infinite sums and integration.
- Dirichlet conditions provide sufficient conditions for convergence of the Fourier pair at continuous points of the signal.

Continuous-Time Fourier Series (CTFS)

For continuous-time periodic signals with period $T_p = \frac{1}{F_0}$:

Synthesis equation:

$$\mathbf{x}(t) = \sum_{k=-\infty}^{\infty} \mathbf{c}_{k} e^{j2\pi k F_{0} t}$$

Analysis equation:

$$c_{k} = \frac{1}{T_{p}} \int_{T_{p}} x(t) e^{-j2\pi k F_{0} t} dt$$

13 / 44

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

Review of 4.1, 4.2, 4.3, 4.4 CTFS: Dirichlet Conditions

- 1. x(t) has a finite number of discontinuities in any period.
- x(t) contains a finite number of maxima and minima during any period.
- 3. x(t) is absolutely integrable in any period:

$$\int_{T_p} |x(t)| dt < \infty$$

rofessor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

14 / 44

Continuous-Time Fourier Transform (CTFT)

For continuous-time aperiodic signals:

Synthesis equation:

$$\mathbf{x}(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\Omega) e^{j\Omega t} d\Omega$$

► Analysis equation:

$$X(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

Review of 4.1, 4.2, 4.3, 4.4 Review of 4.1, 4.2, 4.3, 4.4 Continuous-Time Fourier Transform (CTFT) CTFT. Dirichlet Conditions Cyclic frequency can also be used. Synthesis equation: • Allowing $T_p \rightarrow \infty$ in CTFS Dirichlet conditions: 1. x(t) has a finite number of finite discontinuities. $x(t) = \int_{-\infty}^{\infty} X(F) e^{j2\pi Ft} dF$ 2. x(t) has a finite number of maxima and minima. 3. x(t) is absolutely integrable: Analysis equation: $\int_{-\infty}^{\infty} |x(t)| dt < \infty$ $X(F) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi Ft} dt$ rofessor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis 21 / 44 rofessor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

22 / 44

Discrete-Time Fourier Series (DTFS)

For discrete-time periodic signals with period *N*:

Synthesis equation:

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

► Analysis equation:

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$$

Review of 4.1, 4.2, 4.3, 4.4 The Discrete-Time Fourier Series (DTFS)

DTFS vs. CTFS: Why a finite sum?

$$x(n)=\sum_{k=0}^{N-1}c_ke^{j2\pi kn/N}$$
 vs. $x(t)=\sum_{k=-\infty}^{\infty}c_ke^{j2\pi kF_0t}$

- Continuous-time sinusoids are unique for distinct frequencies; $e^{j\frac{2}{3}\pi t} \neq e^{-j\frac{16}{3}\pi t}$.
- Discrete-time sinusoids with cyclic frequencies an integer number apart are the same; $e^{j\frac{2}{3}\pi n} = e^{-j\frac{16}{3}\pi n}$.

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

Preview of 4.1, 4.2, 4.3, 4.4
DTFS vs. CTFS: Why a finite sum?

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N} \quad \text{vs.} \quad x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi kF_0 t}$$
Consider

$$s_k(n) = e^{j2\pi kn/N}, \quad k = 0, \pm 1, \pm 2, \dots$$

- ► $s_k(n)$ is periodic since $e^{j2\pi kn/N} = e^{j2\pi f_0 n}$ where $f_0 = \frac{k}{N} \equiv \text{rational}$.
- ► There are only N distinct dst-time harmonics s_k(n): k = 0, 1, 2, ..., N − 1.

29 / 44

Review of 4.1, 4.2, 4.3, 4.4

Harmonically Related Dst-Time Sinusoids

• There are only N distinct dst-time harmonics $s_k(n)$.

- $s_k(n)$ harmonics are unique for $k = 0, 1, 2, \dots, N - 1$.
- Outside this range of k, the cyclic frequencies are integers apart thus resulting in the same sinusoids as for k = 0, 1, 2, ..., N 1.

Discrete-Time Fourier Transform (DTFT)

For discrete-time aperiodic signals:

Synthesis equation:

$$\mathbf{x}(n) = \frac{1}{2\pi} \int_{2\pi} \mathbf{X}(\omega) e^{j\omega n} d\omega$$

Analysis equation:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

37 / 44

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis
$$38 / 44$$

Professor Deepa Kundur (University of Toronto) Continuous-Time Frequency Analysis

DTFT Theorems and Properties

Property	Time Domain	Frequency Domain
Notation:	<i>x</i> (<i>n</i>)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_1(\omega)$
Linearity:	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting:	x(n-k)	$e^{-j\omega\kappa}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution:	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlation:	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
		$= X_1(\omega)X_2^*(\omega) \text{ [if } x_2(n) \text{ real]}$
Wiener-Khintchine:	$r_{xx}(l) = x(l) * x(-l)$	$S_{ ext{xx}}(\omega) = X(\omega) ^2$
		among others

DTFT Symmetry Properties

Review of 4.1, 4.2, 4.3, 4.4

Time Sequence	DTFT
x(n)	$X(\omega)$
$x^*(n)$	$X^*(-\omega)$
$x^*(-n)$	$X^*(\omega)$
x(-n)	$X(-\omega)$
$x_R(n)$	$X_e(\omega) = rac{1}{2}[X(\omega) + X^*(-\omega)]$
$jx_l(n)$	$X_o(\omega) = rac{1}{2}[X(\omega) - X^*(-\omega)]$
x(n) real	$X(\omega) = X^*(-\omega)$
	$X_R(\omega) = X_R(-\omega)$
	$X_I(\omega) = -X_I(-\omega)$
	$ X(\omega) = X(-\omega) $
	$igtriangle X(\omega) = -igtriangle X(-\omega)$
$x'_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$	$X_R(\omega)$
$x'_o(n) = \frac{1}{2}[x(n) - x^*(-n)]$	$jX_I(\omega)$